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ABSTRACT

Motivation: Functional characterization of genes is of great
importance for the understanding of complex cellular processes.
Valuable information for this purpose can be obtained from pathway
databases, like KEGG. However, only a small fraction of genes
is annotated with pathway information up to now. In contrast,
information on contained protein domains can be obtained for a
significantly higher number of genes, e.g. from the InterPro database.
Results: We present a classification model, which for a specific gene
of interest can predict the mapping to a KEGG pathway, based on its
domain signature. The classifier makes explicit use of the hierarchical
organization of pathways in the KEGG database. Furthermore, we
take into account that a specific gene can be mapped to different
pathways at the same time. The classification method produces a
scoring of all possible mapping positions of the gene in the KEGG
hierarchy. Evaluations of our model, which is a combination of a
SVM and ranking perceptron approach, show a high prediction
performance. Moreover, for signaling pathways we reveal that it is
even possible to forecast accurately the membership to individual
pathway components.
Availability: The R package gene2pathway is a supplement to this
article.
Contact: h.froehlich@dkfz-heidelberg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Biological characterization of genes is of fundamental importance
for the understanding of complex cellular processes, like cancer.
Valuable information can be obtained from databases, like the Gene
Ontology (GO; The Gene Ontology Consortium, 2004) or KEGG
(Kanehisa et al., 2008). However, usually only a small fraction of
genes have known functions. Most genes are annotated in GO,
only few in KEGG. For example, the total number of human
genes annotated in KEGG currently is about 4000. This contrasts
remarkably with the estimated number of putative protein-coding
genes, which is 20 000–25 000 (Pennisi, 2007). It is therefore highly
important to link other sources of information with these databases
to improve the quality of biological characterization. Especially
interesting for this purpose is the InterPro database (Mulder
et al., 2008), which offers predicted protein-domain annotation for
∼19 000 genes. Of the 4000 genes in the KEGG database nearly
all have at least one InterPro domain. Together, these comprise
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∼3000 distinct InterPro domains. Protein domains very often
directly correspond to some core biological function, such as
DNA binding, kinase or phosphorylation activity or to cellular
localization. Hence, predicted protein domains are often utilized for
prediction annotations, such as in the GO database.

Hahne et al. (2008) introduced a method linking protein-domain
signatures with assignments of genes to KEGG pathways. In
this approach one looks for a protein-domain signature being
significantly enriched in a list of genes. This information is then
used to find the most probable pathway these genes come from by
comparing the enriched protein-domain signature with all pathway
domain signatures.

In contrast to Hahne et al. our aim is to make a prediction and
thus a biological characterization for individual genes. This broadens
the applicability of our method significantly. We explicitly take into
account that a particular gene can be mapped to different pathways
at the same time. Furthermore, our classifier makes use of the
hierarchical organization of the KEGG database in three levels: at
the top hierarchy there are the four branches ‘Metabolism’, ‘Genetic
Information Processing’, ‘Environmental Information Processing’
and ‘Cellular Processes’ (we do not consider ‘Human Diseases’
here). On the next hierarchy level each of these branches is divided
further. For instance, ‘Environmental Information Processing’
contains the branches ‘Membrane Transport’, ‘Signal Transduction’
and ‘Signaling Molecules and Interaction’. On the third hierarchy
level we have the individual KEGG pathways. We expect that a
good classifier should give especially precise predictions at the
top levels of the KEGG hierarchy, while at the bottom levels
misclassifications are more tolerable. That means it is worse
to predict a MAPK pathway (branch ‘Signal Transduction’ in
‘Environmental Information Processing’) gene to be involved in
‘Olfactory transduction’ (branch ‘Sensory System’ in ‘Cellular
Processes’) than to predict it as a member of some other signal
transduction pathway. This behavior, leading to a hierarchical
classification scheme, is encoded into an appropriate loss function
within our framework. Our classifier is also able to indicate the
reliability of a pathway prediction. A 10× 10-fold cross-validation
experiment with 2346 genes having both, a KEGG annotation and a
unique protein-domain signature, shows that our method yields good
classification performance. We further demonstrate the usefulness of
our method on a microarray dataset, where we obtain meaningful
results.

Signaling pathways are of special importance for the functioning
of biological systems. In an extension of our approach we
demonstrate that it is not only possible to reliably predict a
gene’s membership to the different signaling pathways, but also
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to connected pathway components within individual signaling
pathways. Again, results on our microarray dataset show the
biological relevance of our method.

2 METHODS

2.1 Hierarchical KEGG pathway classification
2.1.1 Classification scheme We suppose that each gene product p is
represented by a binary vector x with component xi=1, if the corresponding
InterPro domain is contained in the protein and 0 otherwise. We hereby have
to take into account that InterPro domains are organized in a hierarchical
fashion. Hence, if domain i is contained in p, also all its parent domains are
contained in p, and therefore all corresponding positions in x have to be 1
as well.

The mapping position(s) of a gene to the KEGG hierarchy can be encoded
into a binary vector C as well. The dimension K of this vector equals the
number of individual KEGG pathways plus the number of branches at level
2 plus the number of branches at top level. We set component Cl=1, if the
gene maps to the corresponding branch or any of its sub-branches. Note that
any position code vector C can contain more than one, if the corresponding
gene maps to more than one branch in the KEGG hierarchy.

Given a binary vector representation x for a gene product p, our
classification scheme now consists of two basic steps, which are an adaption
of an approach proposed by Melvin et al. (2007) for classifying proteins
within the SCOP hierarchy:

(1) On each hierarchy level we use support vector machine (SVM)
classifiers, trained to separate one specific branch from all others.
Linear kernels are used, and all soft margin parameters C= 1. Each
SVM classifier j will produce a decision value fj(x)∈R. Please note
that the decision value is not the same as the predicted class label,
which is the sign of the decision value. For each gene product p
represented by a binary vector x we summarize the decision values
of all K SVMs into a input code vector �f (x)= (f1(x), ...,fK (x)).

(2) Each input code vector �f (x) is mapped on the best matching position
code vector(s)

C∗=Cĵ (1)

ĵ=argmax
j
〈Cj,�f (x)∗w〉 (2)

where {C1,...,Cm} is a dictionary of possible position vectors, w is
a weight vector and ∗ indicates component-wise multiplication. The
dictionary of position vectors consists of all unique position vectors
from a training set of gene products with both, KEGG and InterPro
domain annotation. The weight vector w is chosen to minimize the
mismatch between predicted and true KEGG hierarchy positions on
the training data.

Please note that the maximum in Equation (2) is not necessarily
unique. In other words, it is possible to predict several positions
vectors, which are all equally likely. Hence, we capture the often
appearing situation that a gene maps to several positions in the KEGG
hierarchy at the same time.

2.1.2 Training procedure Similar to the classification scheme, the training
procedure consists of two steps.

(1) All K binary SVM classifiers are trained to obtain a position labeled
dataset D={(�f1(x1),C1),...,(�fn(xn),Cn)}. For training the individual
SVMs we only use genes belonging to the same super-branch. For
example, for training the SVM classifier detecting signal transduction,
we only use genes mapping to other branches than signal transduction
in ‘Environmental Information Processing’ as negative examples.
Each SVM classifier is thus trained to detect one specific branch in
the KEGG hierarchy only.

Algorithm 1 Pseudocode for the ranking perceptron algorithm to
learn the input code vector weighting. The learning rate η was set
to 0.1 here

Input: Learning rate η, position labeled data set D
Output: weight vector w
Define F(x,y)=〈Cy,�f (x)∗w〉
w=0
for i=1 to n

foes(i)={1,...,n}−{p|�(Ci,Cp)=0}
l=argmaxp∈foes(i)F(xi,p)
if F(xi,i)−F(xi,l)<2

w←w+η ·�(Ci,Cl)·(�f (xi)∗Ci−�f (xi)∗Cl)
end for

(2) Given the position labeled dataset D, we employ the modified ranking
perceptron algorithm presented in Melvin et al. (2007) to learn a
weight vector w of the input code vectors �fi(xi). In the spirit of SVM
classifiers, the weight vector is optimized to maximize the margin
between position code vectors Ci, Cj with Ci �=Cj in input code
vector space. The algorithm shown in Figure 1 involves updating w
proportional to the loss we obtain by predicting a wrong position
vector Cj instead of the true position vector Ci. The choice of
this loss function is the essential part of the algorithm, because it
reflects our knowledge about the KEGG hierarchy. Making a wrong
prediction at the higher levels of the hierarchy should be punished
more than confusing individual KEGG pathways at the bottom level.
We therefore set up the following loss function:

�(C,C′)=
K∑

i=1

ci1{Ci �=C′i and ((Cj=C′j ∀j∈Anc(j)) or (Anc(j)=∅))}
(3)

where Anc denotes the set of all ancestors of branch j and 1 is
the indicator function. By this loss function we punish the first
mismatch on the path down the hierarchy to the final predicted
position. The higher in the hierarchy the mismatch occurs, the higher
the punishment ci should be. We thus choose

ci= |T (i)|
|T (root)| (4)

where |T (i)| denotes the size of the hierarchy down of branch i and
|T (root)| is the size of the complete KEGG hierarchy.

2.2 Hierarchical signaling pathway component
classification

Viewing all gene–gene interactions as an undirected graph, we calculated the
connected components for each signaling pathway (Siek et al., 2002). Our
hierarchy for signaling pathways thus consists of two levels: at the first level
we have all individual signaling pathways and at the second level we have
their corresponding connected components. The training and classification
procedure is then the same as described above.

3 RESULTS

3.1 Estimating prediction performance
3.1.1 Hierarchical KEGG pathway classification We used all
human genes annotated in both, KEGG and InterPro. KEGG
annotation was retrieved via the R package KEGG 2.0.1 (released
August 2007). InterPro annotation was retrieved directly from
the Ensembl database (Flicek et al., 2008) via the R package
biomaRt 1.12.1 in March 2008. Hierarchy information for KEGG
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and InterPro was obtained from the corresponding homepages via
FTP in March 2008. A total of 3705 genes had both, KEGG and
InterPro annotation. Since we employed a 10-fold cross-validation
procedure for estimating the classification accuracy, we decided to
remove genes with the same InterPro annotation, thus avoiding an
overoptimistic prediction performance estimation by having one of
the duplicates in the training and one in the test set. This way our
set of genes was reduced to 2346, containing 2752 distinct InterPro
domains in total.

As already noted by Hahne et al. (2008) it is unlikely to
reliably separate metabolic pathways based on their InterPro domain
signatures. We thus decided to prune the KEGG hierarchy in order
to improve the prediction accuracy for branches of especially high
importance. We cut the hierarchy for metabolic pathways at the top
and for ‘Genetic Information Processing’ pathways at the second
hierarchy level. At the same time, we required to have more than 30
genes to be mapped to the corresponding hierarchy branch in order
to consider it in the classification hierarchy. This way we ended up
with a total of 53 hierarchy branches to distinguish (Table 1).

We ran a 10 times repeated 10-fold cross-validation procedure to
assess the prediction performance of our hierarchical classification
model. The classification performance was evaluated using four
different measures.

1. The accuracy, measured as 1− average classification loss
[Equation (3)].

2. The precision (also known as positive predictive value),
defined as TP

TP+FP , where TP and FP are the number of
true positives and false positives summed over all hierarchy
branches. That is, we first calculated true and false positives
for each component in the position code vector individually
and then summed up.

3. The recall (also known as sensitivity), defined as TP
FP+FN ,

where FN are the number of false negatives summed over all
hierarchy branches.

4. The F1 value, defined as 2·precision·recall
precision+recall ·

The results, depicted in Figure 1A as boxplots showed a high median
accuracy of >95% and a median F1 value of ∼60% with precision
and recall being in the same range. It should be noted that only the
accuracy measure takes into account the KEGG hierarchy via the
loss function Equation (3), whereas the other three measures weight
all errors equally. Further analysis of the median F1 values for all
top level and second level hierarchy branches approximately showed
a uniform distribution, i.e. all branches could be predicted equally
well within each hierarchy level.

To train our final hierarchical classification model, which we
employed to give predictions on further unseen datasets, we used
the complete set of 3705 genes without removing duplicates. The
number of hierarchy branches to distinguish was 58 now (Table 1).
For further improvement of predictive power and in order to obtain
confidence scores for predictions, our final model was bagged
(Hastie et al., 2001). That means we drew 11 bootstrap training
datasets with replacement and trained our classification model on
each of them. To give a prediction, the majority vote among these
11 sub-models was used. This was done for each component in the

position code-vector separately. A confidence score for the complete
prediction can then be calculated as

score= 1

2
(v̄++1− v̄−) (5)

where v̄+ is the average of all vote proportions >50% and v̄− the
average of all vote proportions ≤50%.

3.1.2 Hierarchical signaling pathway component classification
A setup similar to the one described above was chosen. The number
of human genes with a unique InterPro domain signature and a
corresponding KEGG annotation was 515 and the total number
of used InterPro domains 795. A minimum of 10 mapping genes
per pathway component was required. Therefore, we ended up with
19 hierarchy branches to distinguish (Table 1).

The result, depicted in Figure 1B showed a high median accuracy
of∼100% and a median F1 value of∼70% with precision and recall
being in the same range. Again, the median F1 values for all top-
level and second-level hierarchy branches approximately followed
a uniform distribution, i.e. all branches could be predicted equally
well within each hierarchy level.

To train our final hierarchical classification model, the same
procedure was used as described above. The total number of genes
used for training was 788, and the number of hierarchy branches to
distinguish was 22 (Table 1).

3.2 Application to microarray data
We applied our method to predict the KEGG pathway membership
for a microarray dataset produced in our department: human MCF-7
breast cancer cells were treated with 100 nM tamoxifen for 48 h. On
mRNA level effects were measured with in-house developed cDNA
two-color microarrays having 26 722 functioning probes (Barth
et al., 2006). After variance stabilization normalization (VSN)
(Huber et al., 2002) 2937 differentially expressed genes were found
with limma (Smyth, 2004) using a Benjamini–Hochberg FDR cutoff
of 5% (Benjamini and Hochberg, 1995). Further details on the
experiment can be obtained from the authors upon request. The
26 722 probes correspond to 12 692 genes with an Entrez gene ID, of
which for 10 057 InterPro annotation and for 2760 KEGG annotation
was available. Comparison of our predicted and the original KEGG
pathway annotations for the 2760 common genes indicated a very
good median accuracy of ∼100% with a median F1-value ∼80%
and precision and recall in the same range (Fig. 2A). There were
a few outliers, as indicated in the boxplot. These genes are mostly
linked to the KEGG category ‘Human Diseases’, which we did not
include in our model.

By our model we could predict pathway memberships for several
genes with previously unknown KEGG annotation: e.g. NR2C2
is a member of the nuclear hormone receptor family and acts as
ligand-activated transcription factor (Yoshikawa et al., 1996). We
predicted NR2C2 to belong to the branch ‘Neuroactive ligand-
receptor interaction’ (confidence = 99.66%), which exactly fits this
knowledge. As another example we predicted TOMM34 to be a
member of the branches ‘Folding, Sorting and Degradation’ and
‘Cell Cycle’ (confidence = 100%). Indeed, the protein encoded by
TOMM34 is involved in the import of precursor proteins into
mitochondria. The encoded protein has a chaperone-like activity,
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Table 1. Pruned KEGG hierarchy used for our classification model

Level 1 Level 2 Level 3

Metabolism — —

Genetic Inf.Proc. Transcription (–) —
Translation —
Folding, sorting, degradation —

Env. Inf. Proc. Membrane transport (–) —
Signal transduction MAPK pathway

ErbB pathway (2, 0)
Wnt pathway (2)
Notch pathway
Hedgehog pathway
TGF-β pathway (3, 2)
VEGF pathway
Jak-STAT pathway
Calcium signaling (4)
Phosphatidylinositol system
mTOR signaling (–)

Signaling molecules and Neuroactive ligand-receptor interaction
interaction Cytokine–cytokine receptor interaction

ECM–receptor interaction
Cell adhesion molecules

Cellular Processes Cell motility —
Cell growth and death Cell cycle

Apoptosis
p53pathway

Cell communication Focal adhesion
Adherens junction
Tight junction
Gap junction

Endocrine system Insulin pathway
Adipocytokine pathway
PPAR pathway
GnRH pathway
Melanogenesis

Immune system Hematopoietic cell lineage
Complement and coagulation cascades
Toll-like receptor pathway
Natural killer cell-mediated cytotoxicity
Antigen processing and presentation
T-cell receptor signaling
B-cell receptor signaling
Fc-ε RI pathway
Leukocyte transendothelial migration

Nervous system Long-term potentiation
Long-term depression

Sensory system Olfactory transduction (–)
Taste transduction (–)

Development —

Hierarchy branches marked with ‘–’ are left out in the cross-validation procedure, but are included in the final model. For signaling
pathways the number in brackets indicate the number of connected pathway components. The first number refers to the number
of connected pathway components used in the final model, and the second (italic) to the number used in the cross-validation
procedure.

binding the mature portion of unfolded proteins and aiding their
import into mitochondria (Chewawiwat et al., 1999).

In a second step of our analysis we filtered those genes,
which were either known to be involved in signal transduction
by KEGG annotation (458 genes), or which were predicted by

our model to map to the corresponding KEGG hierarchy branch
with confidence >99% (164 genes). Comparison of our pathway
component predictions for the 458 genes with the original KEGG
information, revealed a very high median accuracy of ∼100%
with a median F1-value >80% and precision and recall in the
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Fig. 1. Prediction performance of our method (10×10-fold cross-validation). The accuracy measure uses the same loss function, which was used to train the
classifier, and which takes into account the KEGG hierarchy. (A) Pathway prediction within pruned KEGG hierarchy (53 branches). (B) Pathway component
prediction for signaling pathways (19 branches).

accuracy precision recall F1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

external validation set (n = 2760)

accuracy precision recall F1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ext. valid. set signal transduction (n = 458)
A B

Fig. 2. Prediction performance of the hierarchical classification model on an external validation set for the pruned KEGG hierarchy (A, 2760 genes) and for
signaling pathway components (B, 458 genes).

Fig. 3. Predicted pathway component (shaded) for PLCH2 in the Calcium
signaling pathway.

same range (Fig. 2B). As an example application of our model, in
Figure 3 we depict the predicted connected component for PLCH2
(confidence = 100%) in the calcium signaling pathway, for which
previously no KEGG annotation was available. The gene has an
associated GO function ‘calcium ion binding’ and GO process
‘intracellular signaling cascade’ (The Gene Ontology Consortium,
2004).

In a final step, we looked for those KEGG branches, which were
statistically overrepresented in the set of differentially expressed
genes compared to the rest. We used all predicted and all original
KEGG annotation for this purpose. Fisher’s exact test was employed
to assess statistical significance, and a multiple testing correction
using the method of Benjamini and Yekutieli (2001), which assumes
the statistical dependence of the individual tests, with a 10% cutoff
was performed. The test shows an enrichment of metabolic, cell
motility and cancer-related pathways. None of this would have been
found using KEGG annotation only.

4 CONCLUSIONS
We presented a novel hierarchical classification method, which
can predict the KEGG annotations of individual genes based on
their InterPro domain signatures. In an extension of our approach,
we showed that it is also possible to classify individual signaling
pathway components via InterPro domain information. We think that
linking KEGG with InterPro is an important step to generate new
hypotheses about genetic pathways, which is finally of fundamental
importance for a better understanding of human diseases like
cancer. With our method it is not only possible to analyze lists of
genes, as done in Hahne et al. (2008), but to give predictions for
individual genes of interest. This way we can drop the unrealistic
assumption that all genes in the list come from the same pathway.
Moreover, our method is not restricted to microarray experiments
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any more, but can be used in a much broader spectrum of
applications.

We have implemented our method in the R package
gene2pathway, which is available as a supplementary Material to
this article.
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