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Abstract: In this paper, a novel parallel factor (PARAFAC) model for processing the nested
vector-sensor array is proposed. It is first shown that a nested vector-sensor array can be
divided into multiple nested scalar-sensor subarrays. By means of the autocorrelation matrices
of the measurements of these subarrays and the cross-correlation matrices among them, it is then
demonstrated that these subarrays can be transformed into virtual scalar-sensor uniform linear
arrays (ULAs). When the measurement matrices of these scalar-sensor ULAs are combined to form a
third-order tensor, a novel PARAFAC model is obtained, which corresponds to a longer vector-sensor
ULA and includes all of the measurements of the difference co-array constructed from the original
nested vector-sensor array. Analyses show that the proposed PARAFAC model can fully use all of
the measurements of the difference co-array, instead of its partial measurements as the reported
models do in literature. It implies that all of the measurements of the difference co-array can be
fully exploited to do the 2-D direction of arrival (DOA) and polarization parameter estimation
effectively by a PARAFAC decomposition method so that both the better estimation performance
and slightly improved identifiability are achieved. Simulation results confirm the efficiency of the
proposed model.

Keywords: direction of arrival estimation; nested array; vector sensor; parallel factor (PARAFAC)
decomposition

1. Introduction

The vector sensors, e.g., the acoustic [1] and electromagnetic (EM) [2] ones, can record two to six
signal components on a collocated sensor. Hence, the redundancy of signals is one of their advantages.
By means of a single polarized vector sensor, Yuan in [3] achieved estimating the direction of arrival
(DOA) and the polarization of a completely-polarized polynomial-phase signal of an arbitrary degree.
In [4,5], the vector sensors were applied to the target localization. A multiple-input multiple-output
(MIMO) array system with the EM vector antennas was presented in [6]. However, all these
contributions utilized the so-called “long-vector” approach which could destroy the multidimensional
structure of the received signals of vector sensors [7]. In order to fully utilize the multidimensional
structure information of vector sensors, a tensor decomposition method for effectively estimating
vector-sensor-based signal parameters was proposed in [8].

The topic of source localization with fewer sensors than sources has received extensive attention
in recent years. One of the most effective methods for doing that is to construct a virtual array,
i.e., the difference co-array from the physical array covariance, with a higher degrees-of-freedom
(DOF) than that of the physical array. One of the typical schemes reported in literature is the nested
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array [9]. The nested array can achieve O(N2) DOF with N sensors when two or more uniform
linear arrays (ULAs) with increasing inter-element spacing are suitably combined to form a difference
co-array. The nested array theory has been applied to various scenarios, e.g., the off-grid DOA
estimations [10], two-dimensional arrays [11], conformal arrays [12], L-shaped nested arrays [13,14],
adaptive beamforming [15], wideband signals [16], distributed sources [17], and spatial-temporal
nested sampling [18].

For utilizing the 1-D array to achieve the 2-D DOA estimation and resolve significantly more
sources than the actual number of physical sensors, the nested vector-sensor array was proposed
in [19]. Since the data structure of the nested vector-sensor array is more complex, the multilinear
algebra, that is the tensor algebra [20], was utilized in [19]. Although the measurements of the nested
vector-sensor array in [19] were modeled as a tensor, the ones of the difference co-array constructed
from the nested vector-sensor array were described as a matrix. As a result, 1/M (M is the components
number in a vector sensor) observation data of the difference co-array were only exploited, which
means that the redundancy of signals offered by the vector sensors has not been taken full advantage.
Furthermore, for achieving the 2-D DOA and polarization parameter estimation, it has to apply at least
two-way spectral peak searching, maybe up to four-way, to the difference co-array covariance tensor
as shown in [19], which implies that the high computational complexity has to be paid.

In order to take full advantage of the redundancy of signals offered by the nested vector-sensor
array and avoid the multidimensional spectrum peak search, a novel parallel factor (PARAFAC)
model for processing such an array is proposed in this paper. Analyses show that by dividing the
measurement tenor of the nested vector-sensor array into matrices, we can obtain M matrix models
corresponding to M independent nested scalar-sensor subarrays, each of which is constructed from the
components of the N vector sensors with the same orientation. From the autocorrelation matrices of
the received signals of the M subarrays and cross-correlation matrices among them, M measurement
matrices corresponding to M virtual ULAs with N2/2 + N − 1 scalar sensors are obtained. Since these
virtual scalar-sensor ULAs enjoy the same spatial and equivalent temporal diversity spaces, we can
combine them to form a new virtual ULA with N2/2 + N − 1 vector sensors and M snapshots, and
model it as a tensor with a PARAFAC decomposition form. In this way, all of the measurements from
the difference co-array of the original nested vector-sensor array are described as a PARAFAC model,
instead of a matrix one reported in [19]. It also means that these measurements are fully exploited to
improve the estimation performance and the identifiability of the difference co-array when a PARAFAC
decomposition method is applied to our model. Simulation results confirm the correctness of the
analytical results and verify the effectiveness of the proposed model.

The reminders of the paper are organized as follows. In Section 2, three tensor operators required
by this paper are simply reviewed. The PARAFAC model with an explicit diversity structure for
a nested vector-sensor array is given in Section 3. In Section 4, the novel PARAFAC model for the
difference co-array of the nested vector-sensor array is proposed. How to employ the proposed model
to achieve the source localization and polarization estimation is reported in Section 5. Simulation
results are presented in Section 6. Section 7 concludes this paper.

Notations: (·)∗, (·)T , ◦,⊗, and� denote conjugation, transpose, outer product, Kronecker product,
and Khatri-Rao product, respectively.

2. Tensor Algebra Prerequisites

For the readers’ convenience, some most relevant tensor operations are reviewed here. For a
complete introduction to them, please refer to [20–22].

Definition 1. (The PARAFAC decomposition): Let A ∈ CI1×···×IN be a Nth-order tensor, then the PARAFAC
decomposition of A is a weighted sum of rank-1 tensors, defined as
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A =
K

∑
k=1

cka(1)k ◦ a(2)k ◦ · · · ◦ a(N)
k (1)

where ck is a constant coefficient, a(n)k is a vector of size In (n = 1, 2, . . . , N).
The so-called “factor matrices” of the decomposition A(n) ∈ CIn×K for n = 1, 2, . . . , N are written as

A(n) = [a(n)1 , . . . , a(n)K ].

Definition 2. (The tensor contraction): Given A ∈ CI1×···×IN , B ∈ CJ1×···×JM , 1 ≤ p ≤ N, 1 ≤ q ≤ M,
and Ip = Iq, then the contraction between A and B in the pth and qth modes is denoted by C = 〈A,B〉(p,q) ∈
CI1×···×Ip−1×Ip+1×···×IN×J1···×Jq−1×Jq+1×···×JM with its element as

ci1,...,ip−1,ip+1,...,iN ,j1,...,jq−1,jq+1,...,jM =
Ip

∑
ip=1

ai1,...,iN bj1,...,jM (2)

Definition 3. (The matricization of the PARAFAC decomposition): For a N th-order PARAFAC model

A =
K
∑

k=1
cka(1)k ◦ · · · ◦ a(N)

k ∈ CI1×···×IN where ck is a constant coefficient and a(n)k ∈ CIn (n = 1, 2, . . . , N),

let the ordered sets A = {a1, . . . , aL} and B = {b1, . . . , bM} be a partitioning of the dimensions {1, . . . , N},
then the matricization of A, denoted by AA,B ∈ CN1×N2 with N1 = ∏

n∈A
In and N2 = ∏

n∈B
In, is defined as

AA,B =
K

∑
k=1

ckb(1)k ◦ b(2)k ∈ CN1×N2 (3)

where b(1)
k = a(aL) ⊗ a(aL−1) ⊗ · · · ⊗ a(a1) and b(2)

k = a(bM) ⊗ a(bM−1) ⊗ · · · ⊗ a(b1).

3. Tensor Model for a Nested Vector-Sensor Array

In this section, we will arrange the measurements and noise from all of the components of the
sensors in the nested vector-sensor array into a third-order tensor.

As shown in Figure 1, a 2-level nested vector-sensor array containing N1 vector-sensors in the
inner ULA and N2 vector sensors in the outer ULA is taken into consideration. Without loss of
generality, assume that all of the vector sensors in the array are located along z-axis, the total number
of sensors N = N1 + N2 is even, N1 = N2 = N/2, the inter-sensor spacing in the inner ULA is one half
of the signal wavelength, i.e., d = λ/2, and the one in the outer ULA is (N1 + 1)d. Each vector sensor
contains M components. There are K narrowband far-field uncorrelated signals impinge on the array
from the distinct directions with elevation and azimuth angles {(θk, φk)}K

k=1, where θk ∈ [−π/2, π/2]
and φk ∈ [−π, π). Let uk = [cos(θk) cos(φk), cos(θk) sin(φk), sin(θk)]

T be the direction cosine of the
kth source, and rn = [xn, yn, zn]

T be the position vector of the nth sensor. In this way, the measurement
matrix of the array at time t is given as [19]

Y(t) =
K

∑
k=1

(dk ◦ pk)xk(t) + E(t) ∈ CN×M, 1 ≤ t ≤ T, (4)

where dk = [ej2πuT
k r1/λ , . . . , ej2πuT

k rN /λ]
T

is the spatial steering vector, xk(t) is the kth source signal,
E(t) is the corresponding noise matrix, T (≥ K) is the number of snapshots, and pk ∈ CM is the spatial
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response vector of the vector sensor located at the origin. Note that for the acoustic vector sensors [1]
M = 4 and pk =

[
1, uT

k
]T , while for the electromagnetic vector sensors [2] M = 6 and

pk =



− sin(φk) − cos(φk) sin(θk)

cos(φk) − sin(φk) sin(θk)

0 cos(θk)

− cos(φk) sin(θk) sin(φk)

− sin(φk) sin(θk) − cos(φk)

cos(θk) 0


[

cos(γk)

sin(γk)ejηk

]
,

where γk ∈ [0, 2π] and ηk ∈ (−π, π] are the polarization auxiliary and phase difference angles of the
source, respectively.
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Figure 1. A 2-level nested vector-sensor array. 
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Figure 1. A 2-level nested vector-sensor array.

Based on Equation (4), let Y(t) ∈ CN×M (1 ≤ t ≤ T) be the tth frontal slice [20] of the tensor
Y ∈ CN×M×T , then Y can be expressed as

Y =
K

∑
k=1

dk ◦ pk ◦ xk + E ∈ CN×M×T (5)

where xk = [xk(1), . . . , xk(T)]
T is the kth signal vector, and E ∈ CN×M×T is the corresponding noise

tensor whose tth frontal slice is E(t) ∈ CN×M. Obviously, this tensor model is of an explicit diversity
structure. More precisely, the three dimensions of Y are respectively corresponding to the spatial,
polarized, and temporal diversity spaces of a nested vector-sensor array. Comparing the signal model
of Equation (10) in [19] with Equation (5) for the same nested vector-sensor array, one can see that
unlike the matrix model in [19] the tensor model Y in Equation (5) contains all the measurements of the
array, and more importantly it is of a natural PARAFAC decomposition form as Equation (1). It means
that the PARAFAC decomposition can be applied to Y for estimating the dk, pk, and xk if required.

4. New Model for the Difference Co-Array

Similar to Equation (5), here a PARAFAC model for the difference co-array constructed from the
array covariance of the nested vector-sensor array will be given.

Let Y (m) and E (m) be the mth lateral slices of Y and E [20], respectively, then Y (m) can be given by

Y (m) =
K

∑
k=1

(dk ◦ xk)p(m)
k + E (m) ∈ CN×T , 1 ≤ m ≤ M, (6)

where p(m)
k is the mth entry of pk.

Comparing Equation (5) with Equation (6), one can find that Y (m) for 1 ≤ m ≤ M can be viewed
as the measurement matrices of M independent nested scalar-sensor subarrays, each of which is
constructed from the components of the N vector sensors with the same orientation.
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Utilizing the Definition 2, one can get the second-order automoments, i.e., autocorrelation matrices,
of the M nested scalar-sensor subarrays as:

R(m, m) = E
[
Y (m) ◦ Y (m)∗

]
≈ 1

T

〈
Y (m) ◦ Y (m)∗

〉
(2,2)

=
K
∑

k=1
(dk ◦ d∗k )p(m)

k p(m)
k
∗σ2

k + σ2
e I

, 1 ≤ m ≤ M, (7)

where σ2
k and σ2

e are the signal and noise powers, respectively, and I is the M×M identity matrix.
Similarly, the second-order cross-moments, i.e., cross-correlation matrices, among the mth

subarray and the others are given as:

R(m, l) = E
[
Y (m) ◦ Y (l)∗

]
≈ 1

T

〈
Y (m) ◦ Y (l)∗

〉
(2,2)

=
K
∑

k=1
(dk ◦ d∗k )p(m)

k p(l)k
∗σ2

k

, 1 ≤ m, l ≤ M, m 6= l (8)

Based on Equations (7) and (8), let R(m, l) be the lth (1 ≤ l ≤ M) frontal slice of a tensor
R(m) ∈ CN×N×M, thenR(m) can be written as:

R(m) =
K

∑
k=1

(dk ◦ d∗k ◦ p∗k )p(m)
k σ2

k + σ2
e I (m), 1 ≤ m ≤ M (9)

where I (m) ∈ CN×N×M with the elements

i(m)
j1,j2,j3

=

{
1 i f j1 = j2 and j3 = m

0 else
.

Applying the Definition 1 with A = {1, 2} and B = {3} toR(m) we have

R(m)
{1,2}{3} =

K

∑
k=1

(ak ◦ p∗k )p(m)
k σ2

k + σ2
e I

(m)
{1,2}{3}, 1 ≤ m ≤ M, (10)

where ak = d∗k ⊗ dk. Note that dk is the spatial steering vector of the original nested array with N
sensors, hence by removing the repeated rows and sorting the remaining ones in ak, one can obtain the
spatial steering vector of a virtual ULA with N2/2 + N − 1 sensors [9]. Similarly, according to ak in
Equation (10) we remove the repeated rows and sort the remaining ones inR(m)

{1,2}{3}, then we have:

R(m)
{1,2}{3} =

K

∑
k=1

(ak ◦ p∗k )p(m)
k σ2

k + σ2
e I

(m)
{1,2}{3}, 1 ≤ m ≤ M, (11)

where:

¯
ak = [e−j(N2/4+N/2−1)π sin(θk), . . . , e−jπ sin(θk), 1, ejπ sin(θk), . . . , ej(N2/4+N/2−1)π sin(θk)]

T
. (12)

LetR(m)
{1,2}{3} = Y ′

(m), p∗k σ2
k = x′k and σ2

e I
(m)
{1,2}{3} = E ′

(m), thenR(m)
{1,2}{3} can be rewritten as

Y ′(m)
=

K

∑
k=1

(ak ◦ x′k)p(m)
k + E ′(m) ∈ C(N2/2+N−1)×M, 1 ≤ m ≤ M. (13)
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Comparing Equation (6) with Equation (13), one can see that if x′k is taken as the equivalent signal

vector, then Y ′(m) can be viewed as the measurement matrix of a virtual ULA with N2/2+ N− 1 scalar
sensors. Note that R(m)

{1,2}{3} contains M equivalent snapshots. Hence, from the M nested subarrays
with N scalar sensors as shown in Equation (6), one can construct M virtual ULAs with N2/2 + N − 1
scalar sensors as shown in Equation (13).

Since the M scalar-sensor ULAs contain the same spatial (
¯
ak) and equivalent temporal (x′k) diversity

spaces as shown in Equation (13), Y ′(m) for 1 ≤ m ≤ M can be arranged into a three-way tensor
denoted by Y ′, where Y ′(m) is the mth (1 ≤ m ≤ M) lateral slices of Y ′. Let E ′(m) be the mth
(1 ≤ m ≤ M) lateral slices of E ′, then Y ′ can be expressed as

Y ′ =
K

∑
k=1

ak ◦ pk ◦ x′k + E
′ ∈ C(N2/2+N−1)×M×M. (14)

Comparing Equation (14) with Equation (5), one can find that the proposed PARAFAC model Y ′
corresponds to a virtual ULA with N2/2 + N − 1 vector sensors and M snapshots. From Equations
(7) and (8), it is easy to verify that Y ′ consists of all the measurements of the difference co-array
constructed from the original nested vector-sensor array. Hence, we call Y ′ in Equation (14) as the
PARAFAC model for the difference co-array of a nested vector-sensor array, which will be used to
improve the performance of the nested vector-sensor array.

Remark 1. As shown in Equation (14), a virtual ULA with N2/2 + N − 1 vector sensors and M snapshots
has been constructed from the original nested array with N vector sensors. It should be noted that such a
virtual vector-sensor ULA can be considered as the complete difference co-array of the nested vector-sensor
array, because Y ′ contains all of the data in the array covariance of the original nested array. In contrast, 1/M
data, corresponding to a single snapshot, from the array covariance of the original nested array are only used
for constructing the virtual vector-sensor ULA as given in [19]. Furthermore, the virtual vector-sensor ULA
constructed by [19] was modeled as a matrix, whereas our virtual vector-sensor ULA is modeled as a tensor
with a PARAFAC decomposition form. Based on the proposed model in Equation (14), a significant performance
improvement can, hence, be expected.

5. 2-D DOA and Polarization Parameter Estimation

5.1. Tensor-Based Spatial Smoothing

In Equation (14), x′k = p∗k σ2
k can be viewed as the kth equivalent signal vector with M samples.

Hence, before estimating 2-D DOAs and polarization parameters of sources, one can employ the
tensor-based spatial smoothing technique [23] to increase the equivalent snapshots so that the
identifiability of the virtual vector-sensor ULA can be increased. To this end, we divide the
(N2/2 + N − 1)×M matrix y′(m) (13) into Ns overlapping sub-matrices of size N0 = N2/2 + N − Ns,
where the nsth (1 ≤ ns ≤ Ns) sub-matrix corresponding to the nsth to (ns + N0 − 1)th rows of y′(m) is
expressed as:

Y ′(m,ns) =
K

∑
k=1

(ak,ns ◦ x′k)p(m)
k + E ′(m,ns) ∈ CN0×M, 1 ≤ m ≤ M, 1 ≤ ns ≤ Ns, (15)

where
¯
ak,ns is corresponding to the nsth to (ns + N0− 1)th elements of

¯
ak. Since

¯
ak is the spatial steering

vector of the virtual ULA expressed as (12), one can denote
¯
ak,ns as:

¯
ak,ns =

¯
ak,1ej(ns−1)π sin(θk), 1 ≤ ns ≤ Ns, (16)
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where
¯
ak,1 is corresponding to the first to N0th elements of

¯
ak.

Now, we rewrite Y ′(m,ns) as:

Y ′(m,ns) =
K

∑
k=1

(ak,1 ◦ x′k)e
j(ns−1)π sin(θk)p(m)

k + E ′(m,ns) ∈ CN0×M. (17)

Let Y ′(m,ns) and E ′(m,ns) be the nsth (1 ≤ ns ≤ Ns) frontal slices of the N0 ×M× Ns tensors Z (m)

andW (m), respectively, then Z (m) can be given by

Z (m) =
K

∑
k=1

(ak,1 ◦ x′k ◦ bk)p(m)
k +W (m) ∈ CN0×M×Ns , 1 ≤ m ≤ M, (18)

where bk = [1, ejπ sin(θk), . . . , ej(Ns−1)π sin(θk)]
T

.
Applying the Definition 3 with A = {1} and B = {2, 3} to Z (m) we have

Z (m)
{1}{2,3} =

K

∑
k=1

(ak,1 ◦ sk)p(m)
k +W (m)

{1}{2,3} ∈ CN0×Ns M, 1 ≤ m ≤ M, (19)

where sk = bk ⊗ x′k ∈ CNs M.

Note that Z (m)
{1}{2,3} for 1 ≤ m ≤ M can be arranged into a three-way tensor denoted by Z ∈

CN0×M×Ns M. Assuming Z ∈ CN0×M×Ns M and W ∈ CN0×M×Ns M whose mth (1 ≤ m ≤ M) lateral
slices are Z (m)

{1}{2,3} andW (m)
{1}{2,3}, respectively, we have

Z =
K

∑
k=1

ak,1 ◦ pk ◦ sk +W ∈ CN0×M×Ns M. (20)

Comparing Equation (14) with Equation (20), one can see that a longer ULA with N2/2 + N − 1
vector sensors and M snapshots is transformed into the short one with N0(= N2/2 + N − Ns) vector
sensors and Ns M snapshots. Its purpose is to overcome the problems that may occur when the source
matrix is rank deficient. Hence, similar to the traditional spatial smoothing technique, the goal of this
way here is to obtain a new full rank source signal matrix at the expense of a reduced effective aperture.

5.2. Uniqueness

In Equation (20) sk = bk ⊗ x′k ∈ CNs M is the kth equivalent signal vector with Ns M samples, and
its corresponding factor matrix (i.e., the new source signal matrix) is:

S = [s1, . . . , sK] ∈ CNs M×K. (21)

Let
¯

A1 = [
¯
a1,1, . . . ,

¯
aK,1] ∈ CN0×K, P = [p1, . . . , pK] ∈ CM×K, X

′
= [x′1, . . . , x′K] ∈ CM×K, and

B = [b1, . . . , bK] ∈ CNs×K be the factor matrices corresponding to
¯
ak,1, pK, x

′
and bk, respectively.

From sk = bk ⊗ x′k we have:
S = B� X

′ ∈ CNs M×K. (22)

Similar to [24–26], we also assume here that the K sources are uncorrelated and the source DOA
pairs are restricted to satisfy the condition given by Theorem 4 in [12] so that the signal matrix
X = [x1, . . . , xK] ∈ CT×K (T ≥ K) with a full column rank is guaranteed. Under these assumptions

and considering the Vandermonde structures of
¯

A1 and B, we have k(
¯

A1) = min(N0, K) and k(B) =
min(Ns, K), where k(A) represents the Kruskal rank [20] of the matrix A, which equals to the largest
integer such that any set of k(A) columns of A is linearly independent.



Sensors 2018, 18, 3708 8 of 15

Since x′k = p∗k σ2
k and its corresponding factor matrix is X

′
= [x′1, . . . , x′K], we can rewrite X

′
as:

X
′
= P∗

 σ2
1

. . .
σ2

K

. (23)

Obviously, the Kruskal rank of X
′

is depending on the P∗ (or P). So we have k(X
′
) = k(P) ≥

min(4, K) in general for electromagnetic vector sensors [27] and k(X
′
) = k(P) ≥ min(2, K) for acoustic

vector sensors [28].
Using the Lemma 3.1 in [29], we have:

k(S) = k(B� X
′
) ≥ min(k(B) + k(X

′
)− 1, K) = min(Ns + k(P)− 1, K). (24)

The PARAFAC model Z is essentially unique, if [20]

k(
¯

A1) + k(P) + k(S) ≥ 2K + 2⇒ k(
¯

A1) + k(S) ≥ K + (K− k(P) + 2). (25)

According to Equation (25), for the case where k(
¯

A1) = K (corresponding to N0 ≥ K) and
k(S) = Ns + k(P)− 1 = K− k(P) + 2 (corresponding to Ns + k(P)− 1 ≤ K), the uniqueness result of
the proposed model can be given as follows

K + k(P) + Ns + k(P)− 1 ≥ 2K + 2⇒ K ≤ Ns + 2k(P)− 3. (26)

Taking N0 ≥ K into consideration and using Equation (26), we have

2K ≤ Ns + N0 + 2k(P)− 3. (27)

Note that Ns + N0 − 1 is equal to the vector sensor number of the longer vector-sensor ULA, i.e.,
N2/2 + N − 1. Hence, Equation (27) can be rewritten as

K ≤ N2/4 + N/2 + k(P)− 1.5⇒ K ≤ N2/4 + N/2 + k(P)− 2. (28)

Based on Equations (26) and (28), we have{
Ns = N2/4 + N/2− k(P) + 1
N0 = N2/2 + N − Ns = N2/4 + N/2 + k(P)− 1

. (29)

Thus, applying the PARAFAC decomposition to the proposed Z under the conditions Equations
(28) and (29), one can identify up to N2/4 + N/2 + 2 sources (corresponding to N2/4 + N/2 + 3
DOF) for the nested array with N electromagnetic vector sensors, and up to N2/4 + N/2 sources
(corresponding to N2/4 + N/2 + 1 DOF) for the one with N acoustic vector sensors. In contrast, the
method in [19] could resolve N2/4+ N/2− 1 sources (corresponding to N2/4+ N/2 DOF) regardless
of the electromagnetic vector sensors or acoustic ones.

Utilizing the MATLAB function “cp3_alsls” provided by [30] to carry out the PARAFAC

decomposition for Z , one can get the estimations
ˆ̄
A1, P̂ and Ŝ. Then, the estimations {θ̂k} can

be obtained from
ˆ̄
A1, and {φ̂k}, {γ̂k}, and {η̂k} can be obtained from P̂ as done in [8].

Moreover, from Equation (20), it can be seen that both the PARAFAC decomposition and the
classical subspace methods can be employed to get the expected estimates. Let Z(t) (1 ≤ t ≤ Ns M)
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be the tth frontal slice of Z , which can be viewed as the tth measurement matrix of the vector-sensor
ULA, then the array covariance tensor is

R =
1

Ns M

Ns M

∑
t=1

Z(t) ◦ Z∗(t) (30)

Based on Equation (29), one can apply the SORTE method [31] to detect the source number,
and use the Tensor-MUSIC method described in detail in [19], to achieve 2-D DOA and polarization
parameter estimation. In short, for the source localization and polarization estimation, the proposed
model can be employed to do those with both the PARAFAC decomposition and Tensor-MUSIC.
It should, however, be noted that, using the PARAFAC decomposition to do estimates, one cannot only
avoid the multidimensional spectrum peak search but also improve the estimate performance because
the data structure (e.g., Vandermonde) of Z is capitalized on enhancing the estimation accuracy
further [23,32].

Remark 2. Compared to the method in [19], the identifiability of the proposed one is slightly improved. It should
be emphasized that, since the proposed Z is a PARAFAC model, one can employ the PARAFAC decomposition to
achieve the 2-D DOA and polarization parameter estimation. It implies that the 2-way spectral peak searching,
maybe up to four-way when necessary, for the method in [19], can at least be avoided. Furthermore, the data
structure (e.g., Vandermonde) in Z can be used by our model to improve the estimate performance further.

5.3. Summary of the Proposed Method

The overall procedure of the proposed method is summarized in Table 1.

Table 1. The overall procedure of the proposed method.

The Proposed Method

Input: Y of the form (5).
1. Extract Y (m) from Y .
2. ComputeR(m, m) andR(m, l), and builtR(m).
3. Compute Y ′(m) and built Y ′.
4. Extract Y ′(m,ns) from Y ′ according to (29), and built Z (m).

5. Compute Z (m)
{1}{2,3} and built Z .

6. Obtain
ˆ̄
A1, P̂ and Ŝ from Z .

7. Obtain {θ̂k} from
¯

A1.
8. Obtain {φ̂k}, {γ̂k} and {η̂k} from P̂.
Output: {θ̂k}, {φ̂k}, {γ̂k} and {η̂k}.

6. Numerical Examples

In this section, we will use numerical examples to show the effectiveness of our PARAFAC model
and its analytical results. In all the simulations, except for the examples 6.5 and 6.6, the two-level
nested array containing N = 6 EM vector sensors, with N1 = N2 = 3, is considered. Based on this
nested vector-sensor array, we set N0 = 15 and Ns = 9 according to Equation (29) so that the proposed
model can yield 15 DOF. In contrast, the model in [19] can yield 12 DOF. Moreover, the performance
of a physical ULA with N = 12 EM vector sensors whose DOF is 12 as well is taken as a benchmark.
Notice that for the proposed model the PARAFAC decomposition is employed. For the model in [19]
and the benchmark, the Tensor-MUSIC is used, where the angular resolution is fixed to 0.01

◦
.
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6.1. Identifiability of the Proposed Model

In order to verify that the proposed model can handle 15 DOF, 14 sources with the impinging
directions θk = φk = −65◦ + (k − 1) × 10◦, polarization parameters γk = 30

◦
and ηk = 30

◦
, for

k = 1, . . . , 14 are taken into consideration. The signal-to-noise ratio (SNR) and the number of snapshots
are set to 30 dB and 1000, respectively. The simulation results obtained via 100 Monte Carlo trials are
shown in Figure 2. It can be seen from Figure 2 that the proposed model can effectively handle the
14 sources, which cannot be done by both the model in [19] and the benchmark.Sensors 2018, 18, x FOR PEER REVIEW  10 of 15 
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6.2. Resolution Performance

Assume that there are two close sources in a surveillance region. The two sources with
the 2D DOAs as (θ1, φ1) = (15

◦
, 18

◦
) and (θ2, φ2) = (13

◦
, 20

◦
) and polarization parameters as(

γ1, η1) = (γ2, η2) = (30
◦
, 30

◦
) impinge on our nested vector-sensor array. For the purpose of intuitive

demonstration, the polarization parameters are assumed to be known. The estimation results with the
SNR = 20 dB and T = 500 are shown in Figures 3–5, respectively. From these figures, one can see that
the method in [19] cannot distinguish the two close sources, while both the proposed method and the
benchmark can resolve them. It must be emphasized that 12 physical vector sensors are used by the
benchmark, whereas six are used by the proposed method.
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6.3. RMSE vs. SNR and Snapshots

A source with the impinging direction (θ, φ) = (37
◦
, 138

◦
) and polarization parameters (γ, η) =

(42
◦
, 25

◦
) is taken as an estimated example. Figure 6 plots the RMSE of the DOA estimates as the function

of SNR with T = 500 and T = 100. Figure 7 plots the RMSE of the polarization parameter estimates
versus the SNR with T = 500 and T = 100. From Figures 6 and 7, one can find that in all cases the
proposed model with N = 6 outperforms the one in [19] and is very close to the benchmark with N = 12.Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 
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6.4. Detection Performance

In the following simulation, the source number detection performance of the models is
investigated. Two sources with (θ1, φ1) = (10

◦
, 17

◦
), (θ2, φ2) = (16

◦
, 32

◦
), and (γk, ηk) = (30

◦
, 30

◦
)

(k = 1, 2) are taken into consideration. The detection accuracy is defined as FK/F, where F is the trial
number, and FK is the number of times when the detected source is true. In this example, F = 1000.
The probability of detection versus SNR with T = 100 and T = 500 are plotted in Figure 8. One can see
from Figure 8 that the detection performance is improved when the SNR and snapshots are increased.
In addition, it can also be seen that the proposed method considerably outperforms the one in [19] and
performs very close to the benchmark.
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6.5. RMSE vs. N

What follows, we will compare the three methods by studying the relationships between the
RMSEs and the number of physical vector sensors (i.e., N). The simulation conditions are the same as
the example 6.3 except that SNR = 15 dB and N ranges from 4 to 12. The DOFs of the three models
versus N are shown in Figure 9. Figure 10 shows the RMSEs of the angle estimates versus N. Figure 11
gives the RMSEs of the polarization parameter estimates versus N. From Figures 9–11, one can find
that in all cases the method in [19] can provide more DOF than the benchmark while the estimation
performance of the benchmark is better than that of the method in [19]. It can also be seen that the
proposed method surpasses both of them on the DOF and estimation performance.
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6.6. Runtime vs. N

As mentioned in [24,26], the computation complexity of the PARAFAC decomposition–based
method involves many iterations and largely depends on the received data. Hence, the CPU running
time of the proposed method is provided as a reference in this example. All of the compared methods
here are implemented in MATLAB R2011a using a PC with Inter(R) Core(TM) i7-6500U CPU @2.50 GHz
and 8 G RAM. The simulation conditions are the same as those of example 6.5. All of the simulation
results are obtained via 100 Monte Carlo trials. Note that the angular resolution of the benchmark and
the method in [19] is fixed to 0.01

◦
. The running time for all of the compared methods with respect to

N is presented in Figure 12. From Figure 12, we can see that for each method the number of snapshots
(i.e., T) does not have much affect on the running time. It can also be seen that the proposed method
takes the least time for all of the cases.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 15 

 

simulation results are obtained via 100 Monte Carlo trials. Note that the angular resolution of the 
benchmark and the method in [19] is fixed to o0.01 . The running time for all of the compared 
methods with respect to N is presented in Figure 12. From Figure 12, we can see that for each method 
the number of snapshots (i.e., T) does not have much affect on the running time. It can also be seen 
that the proposed method takes the least time for all of the cases. 

 
Figure 12. Runtime versus N. 

7. Conclusions 

In this paper, a novel PARAFAC model for processing the nested array with N vector sensors, 
each of which contains M components, has been proposed. By dividing the nested vector-sensor array 
into a series of nested scalar-sensor subarrays and using the autocorrelation matrices of their 
measurements and cross-correlation matrices among them, the difference co-array of the original 
nested vector-sensor array is described as a PARAFAC model corresponding to a virtual ULA with 

2 / 2 1N N   vector sensors and M snapshots. Hence, the proposed model can fully exploit all the 
measurements of the difference co-array, and allows one using the PARAFAC decomposition to 
achieve the source localization and polarization estimation efficiently. As demonstrated by 
simulation results, the proposed model can achieve a better estimate performance efficiently and 
resolve slightly more sources than the reported ones in the literature. 

Author Contributions: Investigation, W.R. and D.L.; Writing—original draft, W.R.; Writing—review & editing, 
J.Q.Z. 

Funding: This research was funded by the National Natural Science Foundation of China (61571131, 61741405 
and 61401188), Natural Science Foundation of Jiangxi Provincial Department of Education, China (GJJ170975), 
and Natural Science Foundation of Jiangxi, China (20171BAB212004). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Nehorai, A.; Paldi, E. Acoustic vector-sensor array-processing. IEEE Trans. Signal Process. 1994, 42, 2481–
2491. 

2. Nehorai, A.; Paldi, E. Vector-sensor array-processing for electromagnetic source localization. IEEE Trans. 
Signal Process. 1994, 42, 376–398. 

3. Yuan, X. Estimating the doa and the polarization of a polynomial-phase signal using a single polarized 
vector-sensor. IEEE Trans. Signal Process. 2012, 60, 1270–1282. 

4. Zhong, X.H.; Premkumar, A.B. Multiple wideband source detection and tracking using a distributed 
acoustic vector sensor array: A random finite set approach. Signal Process. 2014, 94, 583–594. 

5. Zhao, A.; Bi, X.; Hui, J.; Zeng, C.; Ma, L. An improved aerial target localization method with a single vector 
sensor. Sensors 2017, 17, 2619. 

6. Gu, C.; He, J.; Li, H.T.; Zhu, X.H. Target localization using mimo electromagnetic vector array systems. 
Signal Process. 2013, 93, 2103–2107. 

7. Le Bihan, N.; Miron, S.; Mars, J.I. Music algorithm for vector-sensors array using biquaternions. IEEE Trans. 
Signal Process. 2007, 55, 4523–4533. 

Figure 12. Runtime versus N.

7. Conclusions

In this paper, a novel PARAFAC model for processing the nested array with N vector sensors,
each of which contains M components, has been proposed. By dividing the nested vector-sensor
array into a series of nested scalar-sensor subarrays and using the autocorrelation matrices of their
measurements and cross-correlation matrices among them, the difference co-array of the original
nested vector-sensor array is described as a PARAFAC model corresponding to a virtual ULA with
N2/2 + N − 1 vector sensors and M snapshots. Hence, the proposed model can fully exploit all the
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measurements of the difference co-array, and allows one using the PARAFAC decomposition to achieve
the source localization and polarization estimation efficiently. As demonstrated by simulation results,
the proposed model can achieve a better estimate performance efficiently and resolve slightly more
sources than the reported ones in the literature.
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