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Abstract. cDNA clones encoding the « chain of the
murine lymphocyte-Peyer’s patch adhesion molecule
(LPAM), which is associated with lymphocyte hom-
ing, have been isolated by screening with the human
VLA-4 (oun) probe. Several o, antigenic determinants
were identified on COS-7 cells after transfection. From
overlapping clones, ~5 kb of contiguous nucleotide
sequence have been determined, encoding a protein
sequence of 1039 amino acids for the LPAM o chain
(otum). LPAM is a member of the integrin family of
cell-surface heterodimers, and .y is the murine homo-
logue of the human a4 chain. The two proteins have a
total sequence similarity of 84 %, with an almost per-
fect conservation (31/32 amino acids) in the cytoplas-
mic domain. Like aun, aun is distinct from other integ-
rin o chains because it has neither an I-domain nor a
COOH-terminal cleavage site. The positions of the

characteristic Cysteine residues are conserved, and a
putative protease cleavage site is located near the mid-
dle of the protein sequence. The NH;-terminal part of
the protein contains seven homologous repeats, and three
of them include putative divalent cation-binding sites.
These sites are among the most conserved between the
oun sequence and other o chains, and may therefore
be involved in the binding of integrin o and 8 chains.
An additional cDNA clone was isolated which shares
a sequence of perfect homology with the aum encoding
cDNAs, but has a unique 3’ poly-A end. This observa-
tion correlates with the fact that three discrete murine
RNA bands are observed in Northern blot experiments
using oum as a probe, whereas only two human RNA
species are described for aa, indicating a higher com-
plexity for murine than for human sequences.

sides in the ability of lymphocytes to cross blood

vascular endothelium in order to enter various lym-
phoid organs, thus, recirculating between blood and lymph.
The interaction between circulating lymphocytes and endo-
thelium occurs at specialized sites in the postcapillary ven-
ules which display unusually high-walled endothelia and
have therefore been termed high endothelial venules (HEVs;
Stamper and Woodruff, 1976). This interaction is organ-
specific. Lymphocytes from peripheral nodes will preferen-
tially bind to peripheral node HEVs, and binding to HEVs
in Peyer’s patches occurs preferentially with lymphocytes
from Peyer’s patches (Kraal et al., 1983).

Several murine lymphomas specifically bind to Peyer’s
patch HEV only, and home to Peyer’s patches in vivo
(Butcher and Weissman, 1980). One of them, TK1, was used
to raise a rat mAb, R1-2, which completely and selectively
inhibits lymphocyte adhesion to Peyer’s patch HEV (Holz-

a critical step for the onset of an immune reaction re-
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mann et al., 1989). This antibody immunoprecipitates two
molecular structures, lymphocyte-Peyer’s patch adhesion
molecules 1 and 2 (LPAM-1 and LPAM-2). Both are hetero-
dimers composed of an « chain of ~200 kD, associated
to either one of two 3 chains of ~150 kD (LPAM-1) and
~130 kD (LPAM-2), respectively (Holzmann and Weiss-
man, 1989a). RI-2 inhibits lymphocyte adhesion to Peyer’s
patches by binding an epitope on the LPAM « chain, which
is therefore likely to be directly involved in the binding of
the cell surface homing receptors to their ligands on endo-
thelial cells.

The LPAM « chain is antigenically related to the human
VLA-4 o chain (Holzmann et al., 1989). VLA-4 is a member
of the integrin family of cell-surface molecules, a family of
o heterodimers involved in cell-matrix and cell-cell inter-
actions (Hynes, 1987, 1988). The « chain of the human
VLA-4 () is associated to the integrin 8; chain (Hemler et
al., 1987). The murine homologue to a3 is the LPAM-2
molecule (onB:1), Whereas association of aun to B,, a dis-
tinct and previously unknown § chain, forms LPAM-1 (Holz-
mann and Weissman, 19894). Anti-ay, antibodies success-
fully blocked adhesion of human lymphocytes to Peyer’s
patch HEV (Holzmann and Weissman, 1989b), indicating
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that either there is a functioning human equivalent to the
mouse LPAM-1 (a,3,) molecule, or that the human VLA-4
(o)) can play a role in lymphocyte homing to Peyer’s
patches. If the latter possibility is true, it is unlikely that
VLA-4 would be a specific Peyer’s patch homing receptor,
since VLA-4 already has several adhesive functions (Hemler
et al., 1990) which are not targeted towards a single lym-
phoid organ. For example, VLA-4 mediates adhesion to one
or more domains within the alternatively spliced CS-1 region
of fibronectin (Wayner et al., 1989; Guan and Hynes, 1990).
VLA-4 recognizes the cellular ligand VCAM-1 on activated
endothelial cells (Elices et al., 1990). VL A-4 triggers homo-
typic aggregation for most VLA~4-positive leukocyte cell
lines (Bednarczyk and Mclntyre, 1990; Campanero et al.,
1990). VL.A-4 may also participate in cytolytic T-cell inter-
actions with target cells (Claybergerer et al., 1987; Takada
et al., 1989).

Two molecular species have been described which have
lymphoid organ homing characteristics in mouse —the lymph
node homing receptor (LHR), a 90-kD glycoprotein detected
by mAb MEL-14 (Gallatin et al., 1983), and o4,3,, which
is displayed on the cell surface of Peyer’s patch-homing lym-
phocytes, either alone or in combination with o,8:. Other
molecules may play an accessory role in homing, as for ex-
ample, LFAl (Hamann et al., 1988). In man, however, it has
been reported that different epitopes of a single 90-kD glyco-
protein (gp90HERMES) | defined by mAbs, mediate adhesion of
lymphocytes to HEV in peripheral lymph nodes, appendix
or Peyer’s patches, and inflamed synovium (Jalkanen et al.,
1987). gp9OHERMES s identical to CD44, but unrelated to the
murine LHR molecule and its human homologue (Siegelman
et al., 1989; Lasky et al., 1989; Stamenkovic et al., 1989;
Goldstein et al., 1989; Siegelman and Weissman, 1989).
PGP-1, the murine homologue of CD44, shows no correla-
tion in its expression with the homing characteristics of lym-
phocytes to lymph nodes (unpublished data). There is no
evidence so far that the CD44 glycoprotein is involved in
homing of murine lymphocytes to Peyer’s patches.

To begin an analysis of molecules involved directly or as
accessory molecules in homing and other lymphocyte adhe-
sion processes, the molecular species for all that are thought
to play a role must be identified in a species, mouse, where
both homing in vivo and adhesion in vitro can be tested.
Here we describe the structure of the mouse o, molecule
which was isolated by o cDNA selection. It correlates in
its expression to Peyer’s patch homing cells, transfects sev-
eral o determinants to COS-7 cells, shows a high degree
of homology to o, and, together with o, forms a unique
subgroup of integrin « chains that are not disulfide-linked
and have no I-domain.

Materials and Methods

c¢DNA Cloning

5 ug total poly-A* RNA from cell line TKI1 were reverse transcribed using
AMY reverse transcriptase (Molecular Genetic Resources, Tampa, FL),
either with oligo-dT or random hexamer primers. For second strand synthe-
sis, the RNaseH/Polymerasel method was applied (Gubler and Hoffman,
1983), and Notl/EcoRI linker-adaptors (Invitrogen, San Diego, CA) were
ligated to the double stranded cDNA. The DNA was size selected on
Agarose gels for molecules over 2 kb in size (oligo-dT primed), or over 1 kb
(random primed), respectively. After electroelution, cDNA was ligated to
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EcoRI-cut and phosphatase treated A ZAP vector DNA (Stratagene, La
Jolla, CA), packaged in vitro, and phage particles were used to infect E.
coli host cells. Complexity of the libraries was 075 x 10° (oligo-dT
primed) and 4.5 X 10° (random primed). The libraries were screened in
a first round using pGEM4.10, a cDNA clone encoding human o (Takada
etal., 1989), and in a second round using a fragment isolated from a mouse
a4 cDNA clone. Labeled probes for hybridizations were made using hex-
amer primers and Klenow enzyme (Feinberg and Vogelstein, 1983). Clones
screened as positive were plaque purified twice, and the insert excised in
vivo into the pBluescript vector by infection with the helper phage R408,
according to the supplier’s instructions (Stratagene).

Transient Expression of a.., cDNA in COS-7 Cells

The aum ¢DNA clone of pZ5/6 plasmid was inserted into the mammalian
expression vector pME18S (K. Maruyama, unpublished data), which pri-
marily contains the promoter of the SRa vector (Takobe et al., 1988), in
either sense or antisense orientation. COS-7 cells were grown to semi-
confluence on 100-mm petri dishes in a CO; incubator at 37°C for 48 h,
then transfected with either sense or antisense cum/pME18S plasmid DNA
by the standard electroporation technique (Chu et al., 1987). 20 ug of plas-
mid DNA were used for each transfection. After electroporation, trans-
fected COS-7 cells were incubated on ice for 10 min and then grown in
DME containing 10% FBS for another 48 h at 37°C before harvesting. Cell
surface expression of the aum-specific antigens was examined by specific
antibody staining and fluorescence-activated cytometric analysis (FACS).
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Figure 1. Comparison of RNA blot hybridization with human and
murine cDNA probes. 2.5 ug of poly-A* RNA from cell lines
TK1, RAW112, and TKS5 were electrophoresed in formaldehyde-
containing agarose gels and transferred to nylon membranes. These
Northern blots were hybridized with a human oy cDNA clone (4)
and a clone isolated from a TK1 ¢cDNA library (B). Hybridization
and washing in A was performed under reduced stringency (40%
Formamide, SX SSC, SX Denhardt, 0.1% Na-Pyrophosphat, 0.1%
SDS, 100 ug/ml salmon sperm DNA at 42°C; washes with 2Xx
SSC, 0.1% SDS at room temperature and 42°C). Blot B was hybrid-
ized as A except that salt concentration was decreased to 4x SSC.
Washes for blot B were at high stringency (2X SSC, 0.1% SDS at
room temperature, followed by 0.1x SSC, 0.1% SDS at 65°C). Posi-
tions of 28S and 188 RNAs are shown on the left margins.
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Figure 2. Schematic representation of four cDNA clones, analyzed
in detail. The scale on top of the figure is in kilobase. Non-coding
regions are represented by solid bars, coding regions by diagonally
hatched boxes, and the shared exon in clones pZ5, pZ6, and pK64
by vertically hatched boxes. Recognition sites for restriction en-
zymes and locations of poly-A tails are as indicated.

These antigenic determinants were assayed with the following antibodies:
R1-2, a mAbD that detects an cum determinant on LPAM-1 and LPAM-2
(Holzmann and Weissman, 1989a; Holzmann et al., 1989); PS/2, an inde-
pendent mAb detecting ouum, generously provided by P. Kincade (Okla-
homa Medical Research Foundation, Oklahoma City, OK) (Miyake et al.,
1991); and a polyclonal rabbit antiserum raised in this laboratory against
RI-2 immunoisolated LPAM-1 molecules from TK-1 cells. FACS analysis
was carried out as previously described (Holzmann et al., 1989).
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RNA and DNA Extractions, Northern
and Southern Blots

Total RNA from frozen cells previously grown in vitro or from tissues was
isolated by homogenizing in 7 M Guanidinium Isothiocyanate and cen-
trifuging over a cushion of CsCl (5.7 M) at 35 krpm for 18 h in a Beckman
SW41 rotor. For selection of poly-A* RNA, total RNA was passed twice
over an oligo(dT)-cellulose column. Cytoplasmic RNA was isolated by lys-
ing the cells in 0.5% NP-40 and removing the nuclei by centrifugation. For
DNA isolation, the cells or carefully homogenized tissues were lysed in
0.5% SDS/1 mg/ml proteinase K at 65°C, extracted with phenol/chloro-
form, and treated with DNAse-free RNAse. RNA was electrophoresed in
MOPS buffer on formaldehyde-agarose gels and transferred on nylon mem-
branes using standard laboratory techniques (Davis et al., 1986). Probes
were labeled as described for library screening.

DNA Sequencing

Ends of complete clones or of subcloned restriction fragments in
pBluescript were sequenced using a double-stranded DNA sequencing
method as described (Neuhaus et al., 1987), or after isolation of single-
stranded template DNA by infection of a logarithmically growing culture
with a helper phage according to the supplier’s instructions (Stratagene).
For the sequencing of the complete clones, overlapping 300-bp deletions
were made using the Exolll’Mung Bean Nuclease method (Henikoff, 1984),
the resulting fragments cut back with EcoRl, size selected on Agarose gels,
and ligated into EcoRI/Smal cut M13 mpl8 vector DNA. Single-stranded
DNA was isolated from resulting clones and sequenced using a Sequenase
kit according to the manufacturer’s instructions (USB, Cleveland, OH).
Each strand of the cDNA clones was sequenced at least once. Sequencing
data were interpreted with the help of the sequence analysis software pack-
age of the University of Wisconsin (Devereux et al., 1984). Homology
search to the EMBL/NBRF databases was also done using the PC/GENE
sequence analysis software (IntelliGenetics/Genofit).

Results

c¢DNA Cloning
Unamplified cDNA libraries were screened with the human

o
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Figure 4. (A) Combined nucleotide se-
quence of clones pZ5, pZ6, and pZ2-5, and
the deduced amino acid sequence (single
letter code) of aun. Cysteines in the protein
sequence are marked by asterisks, putative
N-glycosylation sites are typed in italics
and underlined. The signal peptide and
transmembrane domain are also underlined.
Ca-binding domains are underlined by an
interrupted line. End = translation stop
codon. The underlined nucleotide sequence
in the 3’ non-coding region shows 60-80%
homology to “R” repetitive elements (see
text for further details). The nucleotide se-
quence from residue 478 to 714 matches a
sequence found in clone pK64. This sequence
is bordered by GT at the 5’ end, and AG at
the 3" end (indicated by ! above the sequence).
42 adenine residues form the poly-A tail in
clone pZ2-5. The sequence data reported
have been deposited in the EMBL, GenBank
and Nucleotide/Protein Sequence Databases
and will appear under the accession num-
bers X53176 (cum) and X53177 (clone
pK64). (B) Nucleotide sequence of clone
pK64. The underlined sequence (residues
82-318) is identical to a sequence in the
coding region of the csm cDNAs. This se-
quence is bound by consensus splicing sites,
including GT on the 5" end and AG on the
3’ end (typed in bold). The 3' end of the
pK64 cDNA sequence is formed by 37 ade-
nine residues.



GARTCAGGGTCTAGCTTTAACTACTCTATGCCTTTAGAAAAATTTTGCAACAARACTGATGAGATTTTCCCAMATACTGCAGRIAGGCCCAGTGGAGAGE
LITGTIGGGAAGACATGCCTGGAGGAGAGGGATAACCAGTGGCTIGGGGGTCACCITTCCAGACAGCCTGGAGAAMATGGCTCTATCGTGACTIGTGGGCAC
Al I LGAAAAA A » AL BALA ALAALAARD \! ey y e ALl e A A - oyt G GOACALAR . AAAAGLA
IGGCCCCGTGTTACAAMGG TAAGTGGGACTTGACCGAAC TAGAGGAAGAGAAGCARAGGAAGGAGTCCACTCGTTTGCATTTGCAGT TTTGCCTGCTCAA
AGACGAAGAATATCCTTCATAAGGGCATTGTTAACTAACAGTATCCTTCCTT IGTTTACTT TG TGCAGTATCGATAC TTTATACAAACATGCCATGGTTT
TGARAAGCAATTCTTCATTTTCAT TTGAATAATTGTGGAAGCTAGTTGGCAACTATCCAACTTTGTAC TAAATTTATAT TTTCAAATCAGTC TAAGCATG
TCTAATGTCAGGGAAACCATAGGATCCTCAAAGTCATGAAATTACATACAAAATTCTTATTAGAAAAAARATGACCATAATTCTTGTTT TCCTAGAAACT
TGTAGGGGTC TTCAAAAGGAT TCAAGGCACTAGTCAGAGCAAAGCC T TCCCACTTCCTGTTCCCCAAGATATTICC TTGAAGATGTAAGGAATTACTGTTT
ATAGCAACACTTGGTTCTCAGCCTGTGTATCACATCTCCTTTGGGGC TCAGATAACAATTTGCCTGGGG TCACCTAAGACCATCAGAARGCACAGATATT
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GCACTGGTTCTGATCATTTTAGGATCTTTCATATCTGGATYCTGATGTCCTGGAGAAGTCCATTTAATAACTGTTTATATTTTACCTTARATGCAAGAAG 1400

ATAAAATATGCATATTAAATTTTCAATTGCAATAAAAA (37)

Figure 4.

VLA-4a cDNA clone pGEM4.10 (Takada et al., 1989).
Selected plaque-purified clones were identified by hybridiza-
tion with Northern blots of RNA isolated from murine T cell
lines known to express either LPAM-1 (TK1), LPAM-2
(RAW112), or none (TKS5), and compared to the hybridiza-
tion pattern of the VLA-4o cDNA, as shown in Fig. 1. A sec-
ond round of screening was performed using the insert from
an isolated murine cDNA clone. Isolates were tested as de-
scribed above, and the ends of some clones were sequenced.
Based upon cross-hybridization and preliminary sequencing
data, four clones were chosen for further characterization:
PZ5 and pZ6 from the first round of screening and pZ2-5
from the second round, respectively, as well as pK64, a
clone obtained in an independent screening of an oligo-dT
primed cDNA library in Agtl0 (see Fig. 2 for a schematic
representation of the clones). All four clones were com-
pletely sequenced.

An o cDNA Clone Transfects at Least Three LPAM-1
Determinants to COS-7 Cells

An au, cDNA clone was inserted into the vector pME18S
to create the plasmid ou./pMEI8S (see Materials and
Methods). Because the plasmid, derived from SRa, contains
SV40 elements that allow it to respond to transcription fac-
tors in COS-7 cells, transient transfection experiments were
performed, assaying for cell-surface expression of LPAM-1
determinants. Two mAbs specific for o, determinants, R1-2
(Holzmann et al., 1989) and PS/2 (Miyake et al., 1991), and
a polyclonal rabbit antiserum raised against immunoisolated
ounf, and which detects both ., and 3, antigens, were used
to screen transfectants using the FACS. In Fig. 3, transfec-
tants stained with the antiserum (Fig. 3 B), R1-2 (Fig. 3 E),
and PS/2 (Fig. 3 H) showed small numbers of cells staining
well above background (Fig. 3, A, D, and G). The positive
subsets from cells shown in Fig. 3 (B, E, and H) were sorted
by the FACS, and reanalyzed, respectively, in C, F, and I.
The antisense form of ou./pMEIL8S did not transfect deter-
minants detected by the anti-LPAM-1 antiserum (Fig. 3 X).

Sequence Analysis of the o, CDNAs

The full complementary DNA sequence (noncoding strand),
from the 3’ end (poly-A tail in the mRNA) to a region ~5
kb upstream which includes the ATG codon for the initiation
of translation, and the deduced amino acid sequence for the
murine «, protein (a.m) are shown in Fig. 4 A. Comparison
to clone pK64 (Fig. 4 B) shows that a fragment of 236 bp
(underlined in Fig. 4 B) is identical to the oum cDNA se-
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quence from residue 478 to 714. This fragment is in both
cases bordered by the splice donor and acceptor sites, GT
and AG, respectively. Introns of higher eukaryotic pre-
mRNAs are bordered by the consensus sequence (C/U);,
NCAG'’ at the 3’ end and (C/A)AG'GU(G/A)AGU at the 5’
end (Aebi et al., 1986, 1987; Green, 1986). The first motif
is found immediately preceding the o, homologous domain
in pK64, and the second motif directly following this do-
main. A deficient or alternative splicing mechanism may
therefore be at the origin of the structure observed in clone
pK64.

The 3’ poly-A tails as cloned consist of 42 adenine residues
in the aun cDNA clone pZ2-5, and of 37 residues in clone
pK64. In Northern blot experiments, the size of the most
abundant RNA species is 9.5 kb (see below). Therefore, the
5-kb cDNA sequence as shown in Fig. 4 A either does not
include a large 5' untranslated region of 4.5 kb, or the true
o MRNA is shorter and less abundant.

At the 3’ end of the cun cDNA an untranslated sequence
of ~v1,600 bp is found. This untranslated region includes a
repetitive element, underlined in Fig. 4 A, which shows ex-
tensive homology to the “R” repetitive element associated
with mouse immunoglobulin genes, the mouse alpha inter-
feron pseudogene, and mouse thymocyte extrachromosomal
circular DNA (data not shown). Southern blot hybridization
of mouse genomic DNA with a probe covering this region
shows the high degree of repetition of this sequence in the
mouse genome. Probes covering the other regions of all four
cDNAs give a hybridization pattern on Southern blots con-
sistent with a single or very low copy gene in the mouse ge-
nome. Furthermore, no rearrangement can be observed be-
tween DNAs from cell lines or tissues expressing or not
expressing the LPAM « chain mRNA (data not shown).

Amino Acid Sequence of o, and Comparison
to Other Integrins

The amino acid sequence as deduced from the open reading
frame in Fig. 4 4 encodes a protein of a total length of 1,039
amino acids. This includes a presumed signal peptide of 40
amino acids (underlined in Fig. 4 A). The mature protein,
starting with the sequence YNLD, is therefore composed of
999 amino acids. The putative transmembrane domain is 24
amino acids long, followed by a short cytoplasmic region of
32 amino acids. The extracellular domain contains 13 poten-
tial N-glycosylation sites, 9 of them in the transmembrane-
proximal half of the protein. Furthermore, the sequence
contains 25 Cysteine residues, all but one of them in the ex-
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tracellular portion. Seven homologous repeats (I to VII in
Fig. 5) are found in the NH,-terminal part of the protein.
Repeats V-VII include metal binding loops, as is shown by
the presence of the consensus sequence Dx(D/N)x(D/N)GxxD
(underlined in Fig. 4 A). Since the association of au, with
either 8, or B, requires Ca** (Holzmann et al., 1989), the
interaction between the two chains of the receptor molecule
probably involves these divalent cation-binding sites.

The amino acid sequence of aum was compared to other
members of the integrin family (Fig. 5). As expected, the
highest degree of homology is obtained with the oun se-
quence. Of a total of 999 amino acids in the mature protein,
843, corresponding to 84.4%, are identical. There is an al-
most perfect homology between the two proteins, especially
in the transmembrane (20 out of 24 amino acids conserved)
and cytoplasmic domains (all except 1 out of 32 conserved).
At the nucleic acid sequence level, the homology is 84 % for
the coding regions of the two proteins, but drops to 52.3%
for the part of the 3’ noncoding sequence that could be com-
pared (data not shown).

The integrin o subunits have originally been subdivided
into two categories, those with I-domains, and those with pro-
teolytically cleaved disulfide-linked COOH-terminal frag-
ments (Takada and Hemler, 1989). It was shown, however,
that o, does not belong to either of these (Takada et al.,
1989). All the features in the protein sequence which dis-
tinguish it from other integrin « chains are conserved in
aum. It has neither an I-domain, nor a cleaved, disulfide-
linked COOH-terminal fragment. Furthermore, the cysteine
residues at positions 165, 278, and 462 are conserved, as well
as the potential protease cleavage site formed by the se-
quence KKEK (residues 573-576) immediately followed by
an o,-specific insert of five amino acids.

The overall homology between o, and the other integrin
o chains (with the exception of au) is <30%, but some
regions are rather well conserved. For the repeated domains
IV-VII, the homologies to o, are 30-60%. The pentapep-
tide GFFKR in the cytoplasmic domain (residues 970-974
in aun) is 100% identical in all the o chains. Moreover, the
positions of Cysteine residues are well conserved. Of the 25
Cysteines found in the protein sequence, 13 are conserved
in all 9 proteins (52%). If the 3 which are conserved in all
but one of the « chains are included, this number increases
to 16, or 64%.

No sequence homology was found between the lymph
node homing receptor (Siegelman et al., 1989) and cun
(data not shown). o, was also compared to all protein se-
quences available in the NBRF/EMBL sequence libraries.
No significant homology to nonintegrin proteins was found.

Expression of the Different mRNAs in Tissues
and Cell Lines

Expression of cun mRNA was analyzed in lymphoid tissues
(total RNA) and cell line TK1 (poly-A* selected cytoplas-
mic and total RNA), using probes from clones pZ6é and
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Figure 6. Comparison of Northern blot hybridization of clones pZ6
(A) and pK64 (B). 10 ug of total RNA from spleen (Sp), thymus
(Th), bone marrow (BM), peripheral lymph nodes (PLN), and
mesenteric lymph nodes (MLN), and 2.5 pg of cytoplasmic (cy?)
or total (o) TK1 poly-A* RNA, were electrophoresed and blotted
as in Fig. 1. Positions of RNA molecular weight standards (RNA
ladder, BRL) are shown. Both blots were hybridized and washed
at high stringency, as described in Fig. 1.

pK64, respectively (Fig. 6, A and B). The most prominent
RNA species is always ~9.5 kb long, but two other discrete
bands, corresponding to RNA lengths of ~5.5 and 6.5 kb,
are also observed. This contrasts to the situation found in hu-
man cells, where au, hybridizes only to two RNAs of ~5
and 6 kb (Takada et al., 1989). Assuming that these are the
mRNAs encoding o, both in human and mouse tissues, the
observed 9.5-kb-long RNA may be pK64 specific and its hy-
bridization to ou. cDNAs due to cross-hybridization of ho-
mologous sequences. To test this hypothesis, total tissue
RNA and poly-A*-selected TK1 RNA was hybridized to
nonoverlapping probes covering various regions of clones
PZ5, pZ6, pZ2-5, and pKé4, respectively (Fig. 7).

A 9.5-kb-long RNA form is the most prominent in each
of the hybridizations with the 5’ Apal fragment from pZ5
(Fig. 7 A), an internal fragment of clone pZ6 covering part
of the coding region (Fig. 7 B), and the 3’ HindIIT fragment
from the noncoding region in pZ2-5 (Fig. 7 C). Shorter
RNA forms are present with unequal distribution. The 5.5-
kb-long RNA is not visible in the blot probed with the pZ2-5
fragment. The pZS5 and pZ6 fragments (5’ and intermediate,
respectively), which correspond to the coding region, give
the canonical hybridization pattern (5.5, 6.5, and 9.5 kb),
which was also observed with the human clone pGEM4.10
(see Fig. 1). The two bands visible at ~5 kb in the lanes
loaded with tissue RNAs are probably due to cross-

Figure 5. Comparison of amino acid sequences of integrin o chains. a4 (LPAM) is compared to the o chains of the following proteins:
VLA-4 (Takada et al., 1989), VLA-2 (Takada and Hemler, 1989), fibronectin receptor FNR (Argraves et al., 1987), Glycoprotein IIb
(Poucz et al., 1987), vitronectin receptor VNR (Suzuki et al., 1987), murine (m), and human (k) MACI (Pytela, 1988; Corbi et al., 1988),
and protein pl50 (Corbi et al., 1987). All sequences are of human origin, except for LPAM and mMACI. Amino acid homologies with
LPAM are typed in bold and underlined. The seven homologous repeats (I-VII) are indicated.

Neuhaus et al. Lymphocyte-Peyer's Patch Adhesion Molecule cDNAs

1155



188 —

—— Th

Sp

—— MIL.N

TK1 A

188 —

< <
. . %3 L%
fEazk £ ¢
- -
z
288 — 288 —
ias — ias —
A B

c D

Figure 7. Comparison of mRNA expression by hybridization with various cDNA probes. 10 ug total RNA from thymus (7h), spleen (Sp),
and mesenteric lymph nodes (MLN), and 2.5 ug poly-A* selected total TKI RNA were electrophoresed and transferred as described.
Northern blots were hybridized with the 5’ Apal fragment from clone pZ5 (4), an internal restriction fragment from the coding region
of clone pZ6 (B), the 3’ HindIII fragment from clone pZ2-5 (C), and the 3' BamHI fragment from clone pK64 (D). All hybridizations
and washes were done at high stringency. Positions of 28S and 18S RNAs are given on the left margins, and calculated RNA molecular

masses of 9.5, 6.5, and 5.5 kb on the right margins.

hybridization of a contaminant to 28S rRNA, since the posi-
tion of these bands corresponds to 28S rRNA on the ethid-
ium bromide-stained gel before transfer (data not shown).

Hybridization of the Northern blot with a fragment from
the 3’ end of the clone pK64 shows a strikingly different pat-
tern (Fig. 7 D). Indeed, the most prominent RNA is longer
than 9.5 kb. The 9.5-kb RNA as well as some other RNAs
between 7 and 9 kb give a very faint signal only, whereas the
two shortest forms observed with all other probes are miss-
ing. This RNA, whose size is estimated to be ~12 kb, is ab-
sent in hybridizations with probes that do not contain se-
quences cross-hybridizing with pK64 (see Figs. 7, B and C
and 1, 4 and B). It seems to be an RNA that shares at least
one exon with the a., encoding mRNA (outlined in Fig. 4,
A and B), but with a specific 3’ end, as is shown by sequenc-
ing and hybridization data. The exact role of this RNA in the
cell is as of yet undetermined.

Discussion

The murine T cell line TK1 expresses LPAM-1, a Peyer’s
Patch-homing-~associated cell surface molecule, at high lev-
els, as defined by binding of the blocking antibody R1-2. This
mAb detects an epitope on the o chain of both LPAM-1
(CtamBp) and LPAM-2 (camB1). uam is antigenically related to
the human VLLA4 « chain (aa), since the respective anti-
bodies and/or antisera are crossreactive (Holzmann et al.,
1989). A cDNA clone encoding o, was used to isolate
c¢DNA clones from libraries made by reverse transcribing
poly-A* selected RNA from the murine T-cell lymphoma
TK1. An aun cDNA clone inserted into the expression vec-
tor pME/18S transfects the coding information for several
Ol antigenic determinants to COS-7 cells. This confirms
that the o homologue in mice, aum, encodes all known
LPAM o molecules.

The Journal of Cell Biology, Volume 115, 1991

Comparison of the newly isolated murine sequences with
the human sequence show that the two are 84 % homologous
in the coding region. The same degree of homology is ob-
served at the amino acid sequence level. In the murine sys-
tem, LPAM molecules expressed at the cell surface of lym-
phocytes mediate the organ-specific binding to endothelial
cells in Peyer’s patches or other mucosal sites. Based on the
high degree of homology both on DNA and protein levels be-
tween the « chains of LPAM-1/2 and LVA4, it is reasonable
to assume that at least one of the murine molecules (probably
LPAM-1) would have a human homologue that serves the
same function. Supporting this, anti-os, antibodies were
able to block Peyer’s patch HEV adhesion by human lympho-
cytes (Holzmann and Weissman, 19895). It is also reason-
able to assume that one of the mouse heterodimers (probably
LPAM-2) will have several different cell-cell and cell-ma-
trix adhesive functions, analogous to those seen for VLA4
in the human. In fact, R1-2 and PS/2 antibody blocking
studies reveal that aun-bearing early hematolymphoid cells
utilize this molecule to mediate binding to the hematopoi-
esis-regulating bone marrow stromal cells with which they
interact (Miyake et al., 1991).

The sequence of the LPAM « chain was compared to other
members of the integrin family for which protein sequences
were available. Interestingly, four of the seven homologous
repeats in the NH,-terminal half of the protein are rather
well conserved, suggesting a common function for this do-
main in all the molecules. A possible hypothesis is that the
interaction between the « and 3 chains of the integrin hetero-
dimers occurs in this region. This assumption is supported
by the fact that these domains include divalent cation-binding
sites, and the binding of the 8 by the « chain is known to be
dependent on divalent cations (Holzmann et al., 1989). Ac-
cordingly, the other less homologous regions of the proteins
would be responsible for the functional specificity. An qum
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exon-homologous domain in an independent clone, pK64, is
bordered on both ends by intron splice donor and acceptor
sequences. Such a structure may have arisen by an alterna-
tive splicing mechanism. This hypothesis is currently being
investigated by using genomic clones from a mouse DNA li-
brary.

The described cDNA clones contain the sequence encod-
ing the a chain for the two different LPAM heterodimers.
The interaction of the rat mAb R1-2 with an epitope on this
protein completely inhibited binding of lymphocytes to
Peyer’s patch HEV; the R1-2 antibody also blocks cell-cell
adhesion between hematopoietic and bone marrow stromal
cells. The cloned cDNAs, along with the recently cloned
murine 8, gene (M. Hu, unpublished data), now make it
possible to study sequence/function relationships for both of
the LPAM heterodimers, cumBp and ous8:. It should be pos-
sible to investigate if expression of this « chain alone, or in
combination with one of the two described 8 chains, is
sufficient to transform lymphocytes from a Peyer’s patch
non-binding state into binding cells, thus inducing a true
“homing” activity to mucosal sites. Also, it should now be
possible to determine the precise biochemical relationship
between Peyer’s patch homing and the several other functions
of VLA-4/LPAM-2, including adhesion to activated endo-
thelium (Elices et al., 1990), binding to fibronectin (Wayner
et al., 1989; Guan and Hynes, 1990), triggering of homo-
typic aggregation (Bednarczyk and Mclntyre, 1990; Campa-
nelo et al., 1990), and participation in T cell-mediated cy-
tolysis of target cells (Clayberger et al., 1987; Takada et al.,
1989).
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