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T cell immunoglobulin and mucin protein 3 (Tim-3) is an immune checkpoint and plays a
vital role in immune responses during acute myeloid leukemia (AML). Targeting Tim-3 kills
two birds with one stone by balancing the immune system and eliminating leukemia stem
cells (LSCs) in AML. These functions make Tim-3 a potential target for curing AML. This
review mainly discusses the roles of Tim-3 in the immune system in AML and as an AML
LSC marker, which sheds new light on the role of Tim-3 in AML immunotherapy.
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INTRODUCTION

T cell immunoglobulin and mucin protein 3 (Tim-3) was first discovered in 2002 and is a type I
membrane-bound glycoprotein (1). Tim-3 belongs to the Tim domain gene family of
immunoregulatory proteins and plays a role in biological responses in human immune cells. The
human gene HAVCR2 encodes Tim-3 and is located on chromosome 5q33.2 (2). The genomic
region where the HAVCR2 gene is located is correlated with asthma and allergies and is near the
centromeric end of the IL-4, IL-5, and IL-13 gene loci (2, 3). The structure of Tim-3 is composed of
an amino-terminal immunoglobulin variable domain (V domain) with five noncanonical cysteines,
a mucin stalk, a transmembrane domain, and a cytoplasmic tail (2). Targeting Tim-3 could balance
the immune system and kill LSCs, which may be a potential AML therapeutic strategy.
TIM-3 AND THE IMMUNE SYSTEM

Tim-3 plays a vital role in immune tolerance. Tim-3 was originally identified as being expressed on
IFN-g-producing CD4+ and CD8+ T cells, and Tim-3 is now known to be expressed on Treg cells
(4), macrophages (5), natural killer (NK) cells (6), dendritic cells (DCs) (7), mast cells (8) and other
lymphocyte subsets. Recent studies have shown that Tim-3 is involved in immune suppression in
both the innate and adaptive immune systems (9). Thus, targeting Tim-3 on multiple types of
immune cells might improve the efficacy of cancer immunotherapy.

Tim-3 Is a Marker of Dysfunctional T Cells
Tim-3 is used as an important surface marker for exhausted and dysfunctional T cells (9). Some
studies have shown that Tim-3 is part of a network that contains multiple checkpoint receptors that
are coexpressed and coregulated on dysfunctional or ‘exhausted’ T cells during chronic viral
org April 2021 | Volume 12 | Article 6187101
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infections and cancers (10, 11). Studies have indicated that Tim-
3-expressing CD4+ T cells in human tumors could define the
functional regulatory T cells that contribute to the
immunosuppressive tumor micromilieu (12). Tim-3 is also
involved in Th1-dependent immune responses and induces
immune tolerance (1).

Tim-3 Negatively Regulated
Macrophages Function
Studies have also shown that Tim-3 negatively regulates
macrophage function. Tim-3 blockade was shown to enhance
macrophage function in response to sepsis (13). Wang et al. (14)
demonstrated that Tim-3 inhibited macrophage phagocytosis of
Listeria monocytogenes by inhibiting the Nrf2-CD36 signaling
pathway. Recently, Wang et al. (15) also found a new mechanism
by which Tim-3 promoted L. monocytogenes immune evasion by
decreasing macrophage MHC-I antigen presentation. However,
the function of Tim-3 in macrophages is still unclear.

Tim-3 Is a Benchmark for NK
cell Dysfunction
Tim-3 has been identified as a benchmark for human NK cell
dysfunction (6). Downregulated Tim-3 expression in NK cells
showed that NK cell-mediated cytotoxicity was inhibited and
IFN-g production was decreased in tumors and leukemia (16–18).
IFN-g can impair NK cell-mediated cytotoxicity by inducing the
activation of indoleamine 2,3-dioxygenase (IDO1) in AML (17).
Tim-3 is involved in the dysfunction of both tumor-infiltrating
liver-resident and conventional NK cells by disrupting PI3K
signaling, thereby enhancing hepatocellular carcinoma growth (19).

Tim-3 Inhibits DCs Function
Tim-3 is highly expressed on tumor-associated DCs in mouse
tumors and patients with cancer (20). An anti-Tim-3 antibody
improved the response to chemotherapy in a mouse breast cancer
model and increased CXCR3 chemokine ligand CXCL9 expression
by tumor DCs. Nucleic acid-mediated innate immune responses
can be suppressed by DC-derived Tim-3 through Toll-like
receptors via a galectin-9-independent mechanism (21).
Moreover, Tim-3 can interact with high-mobility group protein
B1 (HMGB1) to interfere with the recruitment of nucleic acids into
DC endosomes and attenuate the therapeutic efficacy of DNA
vaccination and chemotherapy by diminishing the
immunogenicity of nucleic acids released from dying tumor cells.

Tim-3 May Have Activating Function
in Mast Cells
Tim-3 mediates the activation of mast cells, in contrast to its
inhibitory effects in T cells. It was reported that mast cells
constitutively express Tim-3 on the cell surface and that Tim-3
could enhance cytokine production in IgE-sensitized and Ag-
stimulated BM-derived mast cells (BMMCs) and peritoneal mast
cells (pMCs) without affecting degranulation (22). The
production of IL-3, IL-4, IL-6, and IL-13 in mast cells is
enhanced by Tim-3 antibodies following antigen-dependent
activation and IgE (FcϵRI) sensitization in mast cells in vitro
Frontiers in Immunology | www.frontiersin.org 2
(8). Tim-3 can enhance FcϵRI-proximal signaling and increase
cytokine production downstream (23). Although previous data
have suggested that Tim-3 is a positive regulator of mast cell
activation, the molecular mechanisms by which Tim-3 affects
mast cell function are still unknown.
TIM-3 AND ITS LIGANDS

Four relevant ligands have been reported to interact with
different regions of the Tim-3 extracellular immunoglobulin V
domain (9). These include galectin 9 (Gal-9), phosphatidylserine
(PtdSer), HMGB1, and cell adhesion molecule bound to
carcinoembryonic antigen 1 (CEACAM1). How Tim-3
interacts with each of these ligands (Figure 1) and the
biological consequences of these interactions are described in
the following subsections.
GAL-9

Gal-9 was identified as a natural ligand of Tim-3. Gal-9 contains
two distinct carbohydrate receptor-binding domains (24) and
can form an autocrine loop with Tim-3, which is a positive
feedback interaction (25). Multiple lines of evidence highlight the
role of the Tim-3/Gal-9 interaction in mediating the inhibition of
immune responses in different cell types (9).
PHOSPHATIDYLSERINE

The second Tim-3 ligand identified is PtdSer, which is released
from apoptotic cells (26). PtdSer was shown to bind the FG–CC’
cleft site of Tim-3 (27). PtdSer and Tim-3 binding contributes to
the clearance of apoptotic bodies and antigen cross-presentation
by Tim-3+ DCs (7). Phosphorylation of Tim-3 is facilitated by
PtdSer engagement and results in the dysfunction of both tumor-
infiltrating liver-resident and conventional NK cells by
disrupting PI3K signaling (19).
HMGB1

HMGB1 is the ligand of Tim-3 (28) and can be secreted by dead
tumor cells (26). Tim-3 is highly expressed on tumor-infiltrating
DCs and may act as a molecular sink of the alarmin HMGB1,
with the recruitment of nucleic acids released from dying tumor
cells, but the binding site of the Tim-3/HMGB1 interaction has
not been identified (26, 29). Stimulation of the innate immune
response to nucleic acids can be suppressed due to the binding of
Tim-3 and HMGB1 on DCs in the tumor environment (19).
CEACAM1

A more recently identified ligand of Tim-3 is CEACAM1, which
is expressed on the surface of DCs, monocytes, macrophages (30),
April 2021 | Volume 12 | Article 618710
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and activated T cells (31). CEACAM1 can bind to the CC’ and FG
loops of Tim-3 and form a specific heterodimer in cis or in trans
(31–33). Both cis and trans interactions between CEACAM1 and
Tim-3 determine T cell immune tolerance. CEACAM1/Tim-3
complex formation has a crucial role in regulating autoimmunity
and antitumor immunity (31). However, CEACAM1 may also
have a tumor-suppressive function under some circumstances,
since it was found that CEACAM1−/− mice developed a higher
tumor burden than wild-type mice. Therefore, the Tim-3/
CEACAM1 interaction in the tumor microenvironment is very
complex and further exploration of the underlying molecular
mechanisms is needed to elucidate the regulatory
mechanism (31).
ROLES OF TIM-3 IN THE IMMUNE
RESPONSE IN AML

AML is a malignant disorder of hemopoietic stem cells (34).
Scientists have found that AML cells can evade immune attack
after exposure to immune cells (35, 36). Several important
biochemical mechanisms allow AML cells to escape from
immunological synapses of cytotoxic lymphoid cells and
comprehensively inactivate anticancer immunity from a
distance. AML cells are capable of escaping immune attack,
even though these cells are frequently exposed to host immune
cells. In this context, AML cells not only “fight back” against
immune cells but also effectively prevent the process of cytotoxic
Frontiers in Immunology | www.frontiersin.org 3
immune attack (37, 38). IL-2 expression is significantly lower in
blood samples from AML patients than in blood samples from
healthy individuals (36). Soluble Tim-3 in AML could inactivate
cytotoxic lymphoid cells by downregulating IL-2 expression (37).
Tim-3 is a coinhibitory receptor that is expressed on IFN-g-
producing T cells, FoxP3+ Treg cells, and innate immune cells,
where Tim-3 has been shown to suppress immune cell responses
via ligand interactions. Tim-3 has gained prominence as a
potential candidate for cancer immunotherapy, and in vivo
blockade of Tim-3 with other checkpoint receptors enhances
antitumor immunity and suppresses tumor growth in several
preclinical tumor models (39).

Gal-9 in cytotoxic lymphoid cells is capable of impairing
anticancer activities (25). The Gal-9/Tim-3 interaction is capable
of activating downstream signaling pathways such as the
transcription factor NF-kB (40) to support the survival of
AML cells. Mammalian target of rapamycin (mTOR) controls
translation-related pathways, which are also downstream
signaling pathways of Tim-3 (41, 42). Prokhorov et al. (42)
showed that Gal-9/Tim-3 can activate the phosphatidylinositol 3
kinase (PI3K)/mTOR signaling pathway to support growth
factor responses in AML. Moreover, Gal-9/Tim-3 can activate
hypoxic signaling, which can increase glycolysis and strengthen
the proangiogenic response. Hypoxic signaling pathways are
generally essential for AML cells to adapt to stressful
conditions for survival (36, 42).

Gal-9 can bind to the extracellular domain of the Tim-3
receptor in humans, and Gal-9 levels are increased in AML
FIGURE 1 | Schematic diagram of Tim-3 roles in AML.
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patient serum (43). Silva et al. (25) first showed that Tim-3 was
essential for the secretion of Gal-9 in some human AML cell
types. This team proposed that there was a positive feedback
interaction between Gal-9 secretion and Tim-3 expression (25).
Cytotoxic lymphoid cells in AML could be suppressed from a
distance by AML cells after the formation of a Tim-3 and Gal-9
autocrine loop. This indirect interaction could contribute to
AML cell self-renewal, resulting in the rapid development of
AML (25). Additionally, the exocytosis of Tim-3 and Gal-9 can
be facilitated by the neuronal receptor latrophilin 1 (LPHN1),
which contributes to cell survival. LPHN1 still appears in AML
but generally disappears after maturation in hematopoietic stem
cells (HSCs) (25).

Stem cell factor (SCF) is a key cytokine that contributes to the
development of AML, and it is important to understand the
mechanism underlying the interactions of Tim-3-mediated
responses with SCF-induced signaling networks (44–46).
Prokhorov et al. (42) first showed that the effects of high-
affinity antibody-mediated activation of Tim-3 were similar to
those of SCF activation, while SCF-dependent responses were
not found to be effectively potentiated by any of the investigated
ligands. It is important that SCF-dependent signaling pathways
can induce proinflammatory responses to change the expression
of Tim-3.

Studies relating to Tim-3 function in AML are limited, and
some studies have also shown a correlation between Tim-3 and
AML. Tim-3 levels were higher in AML than in other AML
cytogenetic subgroups and associated with core-binding factor
translocations or mutations in CEBPA (47). Researchers found
that the activation of monocyte-associated genes was correlated
with Tim-3 expression in AML. Other studies have shown that
miRNAs are capable of affecting AML suppression or
progression through gene expression. For example, Tim-3
expression could be inhibited by miR-330-5p (48), miR-125a-
3p (49) and miR-498 (50). However, the underlying mechanism
by which Tim-3 is involved in immune responses in AML is not
fully understood.
TIM-3 AS AN LSC MARKER IN AML

Immature leukemic blast cells are largely produced by leukemic
progenitors, which are generated by self-renewing LSCs in the
bone marrow (51–53). Approximately 90% of AML patients
achieve complete remission after intensive chemotherapy, but
approximately 60% of those patients eventually relapse (28).
Relapse and refractoriness in AML are mainly due to residual
LSCs that are capable of regrowth. Thus, the eradication of LSCs
might be a therapeutic strategy (54). Little is known about the
signaling mechanisms underlying LSC self-renewal (40).
Hematopoietic tissues in AML patients contain both LSCs and
residual normal HSCs (47).

The two most commonly used markers to distinguish and
select LSCs are CD34 and CD38, which have different expression
levels in different fractions, making it difficult to select LSCs.
CD44, CD25, CLL-1, CD32, CD96, CD47, CD70 and CD123 were
Frontiers in Immunology | www.frontiersin.org 4
found to be preferentially expressed on AML LSCs. However, the
expression levels of some of them are insufficient for selection (5).
Recent studies have found that CD70 and CD47 antibodies have
therapeutic functions in AML in clinical trials. Riether et al. (55)
found that targeting CD70-expressing LSCs with the antibody
cusatuzumab with enhanced antibody-dependent cellular
cytotoxicity (ADCC) activity can eliminate LSCs in vitro and
in vivo. A phase 1/2 trial in previously untreated older patients
with AML investigated a single dose of cusatuzumabmonotherapy
with azacitidine (NCT03030612). The hematological responses in
the 12 patients enrolled included 8 complete remission, 2 complete
remission with incomplete blood count recovery and 2 partial
remission, with 4 patients achieving minimal residual disease
negativity. No dose-limiting toxicities were reported. Treatment
with the CD70 antibody cusatuzumab substantially reduced the
number of LSCs and triggered gene signatures related to myeloid
differentiation and apoptosis. Sallman et al. (56) found that the
CD47 antibody magolimab (Hu5F9-G4) with azacytidine
(NCT03248479) therapy achieved hematological responses in 16
of the 25 enrolled patients, including 10 patients with complete
remission, 4 patients complete remission with incomplete blood
count recovery and 1 patient with partial remission.

Tim-3 is a potential therapeutic marker of LSCs in AML.
Tim-3 is a target for selectively killing LSCs but not HSCs in most
human AML cells. A study by Hope et al. (52) revealed a
significant association between the aggressiveness of acute
myeloid leukemia and Tim-3 levels in the Kasumi-1 and KG-
1a cell lines. Jan et al. (57) reported that multistep
leukemogenesis occurs from self-renewing HSCs by analyzing
somatic mutations and found that Tim-3 is a possible and useful
target for eradicating LSCs and sparing residual HSCs. Kikushige
et al. (51) revealed that LSCs in CD34+CD38- AML could
functionally express the Tim-3 protein, while this expression
did not occur in normal HSCs or myeloerythroid or lymphoid
progenitor populations. Jan et al. (47) reported a finding similar
to that of Kikushige et al. Tim-3 could be used to separate LSCs
from normal HSCs and is a potential marker for LSC-targeted
monoclonal antibodies in AML patients. Recently, Haubner et al.
(58) found that LSCs in 78.5% of 302 AML patients were positive
for Tim-3 at initial diagnosis. These studies indicated that
normal hematopoiesis might not be seriously affected by the
use of Tim-3 as a marker to target LSCs in AML.

Tim-3 plays a vital role in AML LSCs in AML. As cytokines or
growth factors can be produced by myeloid leukemia cells, AML
cells are capable of stimulating their own expansion for survival
(59). The Tim-3/Gal-9 autocrine loop plays a key role in the self-
renewal of LSCs and the maintenance of AML (40). Elevated
levels of Gal-9 have been detected in the serum of AML patients
and the serum of xenografted models reconstituted with human
AML samples. The NF-kB pathway is constitutively active in
LSCs, which is not the case in normal HSCs (59). The
mechanisms underlying the activation of NF-kB in myeloid
leukemias might partly be caused by the formation of the Tim-
3/Gal-9 autocrine loop (40). b-Catenin is an important protein in
the self-renewing organization of both normal and malignant
hematopoietic stem cells (60). Gal-9 could stimulate Tim-3 and
April 2021 | Volume 12 | Article 618710
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then coactivate the b-catenin pathway, which plays a role in
supporting the self-renewal of LSCs (40). Therefore, it is
important to draw attention to the therapeutic strategies
associated with the Tim-3/Gal-9 autocrine loop (40).
Additionally, the survival and proliferation of LSCs can be
promoted by tumor-associated macrophages (TAMs), which
differentiate from myeloid-derived suppressor cells (MDSCs).
Expanded MDSCs could induce Tim-3 expression on T cells to
suppress immunity. Understanding the correlation between
TAMs in AML and the Tim-3/Gal-9 interaction could be
useful for eradicating LSCs (5).

Tim-3 is a potential therapeutic marker of LSCs in AML. The
role of Tim-3 in maintaining LSCs and contributing to the
suppression of the antitumor immune response is still poorly
understood. The potential therapeutic function and mechanism
of Tim-3 in LSCs in AML remain to be explored.
TIM-3 AS A THERAPEUTIC TARGET

Preclinical Research
Some studies have shown the therapeutic potential of Tim-3 in
AML preclinical research. Tan et al. (61) revealed that the
leukemic immunosuppressive microenvironment was affected
by the upregulation of PD-1 and Tim-3 in exhausted CD4+

and CD8+ T cells in the bone marrow in 15 AML patients. Wu
et al. (62) showed that Vd2 T cell production of TNF-a and
IFN-g was increased by Tim-3 inhibition in combination with
PD-1 inhibition but was insufficiently affected by PD-1 inhibition
alone in AML patients. These findings revealed that Tim-3
expression could be significantly upregulated in Vd2 T cells
after the administration of anti-PD-1 antibodies, which indicates
that PD-1 inhibition alone is not able to activate Vd2 T cells (62).
Proliferation and effector functions can be impaired by
combining the Tim-3 and PD-1 signaling pathways in
exhausted T cells (63). PD-1 is expressed on the surface of
these exhausted T cells. Blocking the PD-1/PD-L1 checkpoints
can contribute to the functional revival of T cells in mice (64). In
preclinical models, Tim-3 blockade in combination with PD-1 is
capable of improving antitumor immunity and contributes to
tumor regression. Additionally, some studies have revealed that
anti-cancer response-related vaccines and chemotherapy are
negatively affected by the upregulation of Tim-3 on tumor-
associated DCs and macrophages (65). Cancer vaccines in
combination with anti-Tim-3 mAbs could be used as an
effective therapeutic strategy, which suggests an interesting new
strategy for AML immunotherapy (66, 67).

Anti-Tim-3 antibodies can reduce the effect of LSCs, which
may be a practical approach to curing human AML (65). Jan
et al. (47) used xenograft mouse models infused with
CD34+CD38-Tim-3- and CD34+CD38-Tim-3+ cells from AML
patients, and only CD34+CD38-Tim-3+ cells could support
reconstitution and transplant leukemic engraftment, which
indicated that Tim-3 could be used as a marker to distinguish
residual HSCs from LSCs in AML. Kikushige et al. (51, 68) used
xenograft models and found that ATIK2a, an anti-Tim-3
Frontiers in Immunology | www.frontiersin.org 5
antibody, reduced CD34+CD38– LSC numbers and eliminated
functional LSCs in primary recipients. ATIK2a successfully killed
Tim-3-expressing cell lines via both complement-dependent
cytotoxicity and antibody-dependent cellular cytotoxicity
effects (51). Notably, ATIK2a did not harm reconstituted
human HSCs or human hematopoiesis in vivo. The researchers
identified ATIK2a as a potential target in AML therapy.

CD13 is preferentially expressed on AML cells, LSC colon
epithelial cells and kidney tubular epithelial cells. Targeting
CD13 alone could lead to CAR T-mediated on-target/off-
tumor toxicity toward human HSCs and other normal cells. A
recent study showed that CAR-T cells that were bispecific for
CD13 and Tim-3 exhibited reduced toxicity to human bone
marrow stem cells and peripheral myeloid cells in mouse models,
which highlights a promising approach for the development of
effective AML CAR-T cell therapy (69). Thus, anti-human Tim-3
was identified as a potential strategy for curing AML by
targeting LSCs.

Clinical Research
Clinical trials related to Tim-3 are still limited, and the
underlying mechanisms of Tim-3 in humans are still unclear.
Tim-3 is highly expressed in non-M3 AML patients and might be
associated with clinical characteristics and the response to
induction chemotherapy in de novo non-M3 AML (70).
Haubner et al. (58) found that Tim-3 was not only expressed
on AML LSCs (78.5%) but also had 87.3% positive expression
based on flow cytometry of primary AML (n = 302) samples.
Dama et al. showed that patients who underwent successful
treatment with selinexor and high-dose cytarabine and
mitoxantrone (NCT02573363) had higher frequencies of Gal-
9+CD34− cells than patients with unsuccessful remission, with
increased Tim-3 expression in these failure cases. Tim-3
expression is higher in the bone marrow than in the peripheral
blood. Additionally, Gal-9/Tim-3 interaction-based treatment
combined with induction chemotherapy was suggested to
support complete remission for AML patients (71).

Novartis Pharmaceuticals began a clinical trial of PDR001
(a PD-1 antibody) and/or MBG453 in combination with
decitabine (a DNA hypomethylating agent) in patients with
AML or high-risk MDS in 2017 (NCT03066648). MBG453 is a
high-affinity, humanized anti-Tim-3 IgG4 monoclonal antibody
that blocks the binding of Tim-3 to PtdSer. In 2019, Novartis
Pharmaceuticals began another clinical trial in which HDM201
(an MDM2 inhibitor) was combined with MBG453 or
venetoclax (a BCL2 inhibitor) in patients with AML or high-
risk MDS (NCT03940352). Although these clinical trials have
not yet published data, the continuation of these clinical trials
indicates that the Tim-3 antibody strategy for AML is attractive.
There will be promising results soon.
FUTURE PERSPECTIVES

Tim-3 is a negative regulator of anticancer responses to vaccines
and chemotherapy. Tim-3 antibodies could be a good adjuvant
April 2021 | Volume 12 | Article 618710
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for vaccines, and cancer vaccines in combination with anti-Tim-
3 mAbs have been identified as a novel strategy for AML therapy
(65). Baghdadi et al. (67) found that combined blockade of Tim-3
and Tim-4 could augment cancer vaccine efficacy in a mouse
melanoma model. Tim-3 blockade mainly stimulates antitumor
effector activities via NK cell-dependent mechanisms. Ma et al.
(66) found that Tim-3 blockade enhanced virus-specific CD8+ T
cell responses in L. monocytogenes-HCV vaccine-infected DCs,
and blocking Tim-3 signaling significantly improved innate and
adaptive immune responses in chronic HCV-infected patients.
In a previous study, Wang et al. (15) found that Tim-3 blockade
could increase macrophage MHC-I expression and macrophage-
mediated antigen presentation, which led to enhanced CD8+ T
cell activation. These studies indicate that Tim-3 blockade could
boost immunity and aid vaccine inoculation.

Targeting Tim-3 is similar to using one stone to kill two birds
and balances the immune system in AML while killing LSCs
(Figure 1). AML cells can escape immune surveillance (35, 36).
However, little is known about the signaling mechanisms by
which AML cells are exposed to immune cells and escape
surveillance. On the one hand, Tim-3 is constitutively
expressed on many innate and adaptive immune cells and is
involved in multiple checkpoint inhibitor immunoregulatory
processes (43). Targeting Tim-3 can revive the immune system
in AML. On the other hand, Tim-3 is a potential functional
molecule on the surface of LSCs and might shed light on how to
eradicate LSCs without harming hematopoiesis (43). These
findings make a Tim-3-targeted therapeutic strategy potentially
beneficial for AML therapy, and such therapeutic strategies have
been applied in preclinical or clinical trials.

There are still some unresolved problems. There are two
possible solutions to the design of a Tim-3-targeted therapy. One
is FC-dead or IgG4 monoclonal antibodies, which could inhibit
Tim-3 signaling in the immune system and LSCs. The other is
the use of Tim-3 CAR-T or IgG1 Tim-3 antibodies with
complement-dependent cytotoxicity (CDC) and ADCC
function, which could kill AML LSCs, dysfunctional immune
cells with Tim-3 expression and differentiated monocytes.
Elimination of dysfunctional Tim-3-expressing immune cells
Frontiers in Immunology | www.frontiersin.org 6
could be a new way to address immune tolerance. Although
Tim-3 CAR-T and IgG1 antibodies could kill differentiated
monocytes, they are not more toxic than chemotherapy in
AML patients, and HSCs remain viable, supporting
reconstitution of the immune system. Tim-3 CAR-T cells
could be followed by hematopoietic stem cell transplantation
(HSCT) and provide an opportunity for AML (relapse/
refractory) treatment with HSCT. Due to the importance of
Tim-3 in AML, the underlying mechanisms require
further investigation.

Thus, it is important to examine the mechanisms of Tim-3 in
types of multiple immune cells, which might be a valid
therapeutic strategy for cancer immunotherapy. However,
there are more studies relating to the role of Tim-3 in solid
tumors than in AML (70). The mechanism of Tim-3 in AML is
still not clear and needs to be further explored.
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