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Abstract
Purpose of Review The moderate glucose-lowering effect of sodium glucose co-transporter 2 (SGLT2) inhibitors is unlikely 
to explain SGLT2 inhibitor-mediated beneficial outcomes, and unravelling the underlying mechanisms is a high priority in 
the research community. Given the dominant pathophysiologic role of the sympathetic nervous system activation in condi-
tions such as hypertension and perturbed glucose homeostasis, it is pertinent to postulate that SGLT2 inhibitors may exert 
their beneficial effects at least in part via sympathetic inhibition.
Recent Findings SGLT2 inhibitors have shown enormous potential to improve cardiovascular outcomes in patients with 
type 2 diabetes, and their therapeutic potential is currently being investigated in a range of associated comorbidities such as 
heart failure and chronic kidney disease. Indeed, recent experimental data in relevant animal models highlight a bidirectional 
interaction between sympathetic nervous system activation and SGLT2 expression, and this facilitates several of the features 
associated with SGLT2 inhibition observed in clinical trials including improved glucose metabolism, weight loss, increased 
diuresis, and lowering of blood pressure.
Summary Currently available data highlight the various levels of interaction between the sympathetic nervous system and 
SGLT2 expression and explores the potential for SGLT2 inhibition as a therapeutic strategy in conditions commonly char-
acterised by sympathetic activation.

Keywords Hypertension · Metabolic syndrome · SGLT2 inhibition · Sympatho-inhibition · Sympathetic nervous system · 
Cardio-renal protection

Introduction

The sympathetic nervous system (SNS) is a crucial player in 
circulatory and metabolic control [1, 2]. Increased sympa-
thetic outflow to the heart results in increased cardiac output 
mediated by an increase in heart rate and stroke volume. 
Increased sympathetic outflow directed toward the kidneys 
causes sodium retention, increased renin release from the 
juxtaglomerular apparatus and alterations in renal blood 
flow. Furthermore, a systemic peripheral vasoconstric-
tor effect ensues sympathetic activation. It is obvious that 
these effects contribute substantially to blood pressure (BP) 
elevations, both acutely and in the long term, particularly if 
occurring simultaneously and/or if sympathetic activation is 
sustained over a longer period of time.

It is generally less well appreciated that SNS activa-
tion also has profound metabolic effects [1, 2]. An acute 
rise in sympathetic activity results in increased lipolysis 
and increased levels of fatty acids in plasma, increased 
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gluconeogenesis by the liver to provide substrate for the brain 
and moderate inhibition of insulin release by the pancreas to 
conserve glucose and to shift fuel metabolism of muscle in 
the direction of fatty acid oxidation, inflammation and others 
[3, 4]. If sympathetic activity is raised chronically due to an 
unfavourable lifestyle, however, the physiologic responses 
may take an unfavourable direction, including the develop-
ment of increased fasting glucose levels and insulin resist-
ance, as well as elevated BP and hypertension, both of which 
are critical features of the metabolic syndrome (MetS) [5–7].

The metabolic syndrome which is characterized by the 
concurrent occurrence of a cluster of metabolic abnormali-
ties such as central (abdominal) obesity, elevated fasting 
glucose, dyslipidaemia (elevated triglycerides and/or low 
high-density lipoproteins (HDL)-cholesterol) and elevated 
BP is directly associated with an increased risk of cardiovas-
cular (CV) disease, type 2 diabetes and all-cause mortality 
[8]. Furthermore, the MetS is highly prevalent in patients 
with various forms of hypertension [9, 10]. In hyperten-
sive subjects, the MetS amplifies CV risk associated with 
hypertension, independent of the effect of traditional CV 
risk factors such as lack of physical activity, smoking and 
the presence of susceptibility genes [9]. A wealth of evi-
dence suggests a bidirectional relationship between insulin 
resistance/hyperinsulinemia and SNS activation [11]. As a 
result of heightened SNS activity, a cascade of events is trig-
gered where the kidneys increase sodium reabsorption and 
release renin, the heart increases cardiac output and arteries 
respond with vasoconstriction, all contributing to a rise in 
BP and if sustained for prolonged periods of time establishes 
hypertension [12].

As shown by Grassi et al., sympathetic nerve activity was 
significantly greater in subjects with MetS both with and 
without hypertension than in control subjects and correlated 
directly and significantly with the HOMA (homeostasis 
model assessment) index, a variable reflecting insulin resist-
ance. These findings confirmed the notion that hyperten-
sion in the MetS initiates sympathetic activation to a greater 
magnitude than when hypertension is excluded [13]. Even 
in young subjects with mild obesity, there was evidence of 
substantial sympathetic activation when compared to age-
matched lean control subjects [14].

In addition, Mahfoud et al. reported that reduction of 
sympathetic activity by renal denervation in patients with 
resistant hypertension substantially improved glucose 
metabolism and insulin sensitivity, in addition to markedly 
reducing BP [15]. These findings significantly added to the 
concept that sympathetic activation underlies the origin of 
both hypertension and MetS. Therefore, in this review, we 
discuss the beneficial sympatholytic effects that the novel 
drug class, sodium glucose co-transporter 2 (SGLT2) inhibi-
tors have on hypertension in the MetS.

SGLT2 Inhibitors: Glucose Lowering 
and Beyond

The renal mechanisms and the essential involvement of 
the kidneys in glucose metabolism are well documented. 
Typically, ∼ 180 g/day of glucose is filtered by the glomer-
uli of the kidneys, and almost all of this is subsequently 
reabsorbed in the renal proximal convoluted tubule. This 
reabsorption is predominantly (~ 90–95%) affected by the 
high-capacity, low-affinity glucose co-transporter known 
as SGLT2 which is expressed in the S1 segment of the 
renal proximal tubular epithelial cells [16]. In patients 
with diabetes mellitus, SGLT2 inhibitors increase glucosu-
ria by blocking glucose reabsorption in the renal proximal 
tubule, and hence lower plasma glucose levels, independ-
ent of insulin stimulation [17]. When compared to other 
glucose-lowering medications, the glycaemic efficacy of 
SGLT2 inhibitors is considered to be relatively modest 
with 0.4 to 1.1% reduction in haemoglobin A1c (HbA1c) 
levels [18, 19]. According to regulatory approvals, the ini-
tiation of SGLT2 inhibitors is currently not recommended 
to individuals presenting with an estimated glomerular 
filtration (eGFR) of < 45 mL/min/1.73  m2.

In patients with diabetes mellitus, treatment with 
SGLT2 inhibitors has been shown to be associated with 
cardiometabolic benefits such as weight loss, [20, 21] BP 
reduction [22] and improvements in lipid profiles [23, 
24]. In studies involving ApoE − / − mice, three of the 
currently available SGLT2 inhibitors including empagli-
flozin (EMPA), dapagliflozin (DAPA) and canagliflozin 
(CANA) all significantly reduced triglyceride levels, and 
EMPA also raised HDL levels [25, 26••, 27].

Additionally, studies have shown that inflammation pro-
motes the development of atherosclerosis, by increasing 
endothelial dysfunction, lipid oxidation and plaque destabi-
lisation/rupture, another important pathophysiologic mecha-
nism that ideally should be targeted therapeutically [26••]. 
Indeed, three of the most well-known SGLT2 inhibitors 
(EMPA, DAPA and CANA) have all been shown to play vital 
roles in decreasing inflammation in Apo E − / − mice. Empa-
gliflozin has been shown to significantly reduce IL-1β, IL-6 
and IL-10 levels [26••], while DAPA significantly reduces 
NLRP3, IL-1β and IL-18 [27], and CANA significantly 
reduces the adhesion molecule, VCAM-1 and decreases 
MCP-1, while increasing the TIMP-1 inhibitor [25].

Furthermore, beyond and independent of glycaemic con-
trol, clinical trials using SGLT2 inhibitors have demonstrated 
unprecedented cardio-renal benefits such as significantly 
reduced CV morbidity and mortality, lower rates of hospital-
ized heart failure, improved renal function and reduced pro-
gression of diabetic nephropathy [20, 28, 29••, 30, 31] (Fig. 1). 
These interesting findings will later be discussed in detail.
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Underlying Mechanisms Pertaining 
To the Benefits of SGLT2 Inhibition 
on Hypertension

Although the precise mechanisms of BP reduction initiated 
by SGLT2 inhibitors are not fully understood, a large num-
ber of randomised controlled trials in patients with type 2 
diabetes have documented reductions in BP when treated 
with SGLT2 inhibitors [32]. Observations from various 
groups including ours confirmed a significant BP-lower-
ing effect of SGLT2 inhibition in various animal models 
including one of neurogenic hypertension, in this instance 
treated with DAPA (Fig. 2). Several underlying pathophysi-
ologic mechanisms have been proposed in current literature 
including osmotic diuresis, mild natriuresis, weight loss and 
reduced sympathetic tone [33].

A study conducted in people with normal kidney func-
tion demonstrated that the BP reduction earlier in the 

SGLT2 inhibitor treatment regime is potentially associated 
with plasma volume depletion caused by osmotic diuresis. 
However, the BP-lowering effect at the latter phase of this 
study was due to natriuresis or urinary sodium excretion 
[34].

Studies have observed a reduction of 2–3 kg of body 
weight with the treatment of SGLT inhibitors. This 
reduction has been associated with the increased loss 
of calories via urinary glucose excretion and osmotic 
diuresis of this drug class [35]. A meta-analysis of 25 
randomised controlled trials has shown that, on average, 
a − 1.05 mmHg reduction of systolic BP and − 0.92 mmHg 
reduction of diastolic BP can be achieved per kilogram of 
body weight loss [36]. The SGLT2 inhibitor CANA pro-
vided clinically meaningful body-weight reductions, and 
each 1% reduction in body weight was associated with a 
0.62-mmHg reduction in systolic BP in patients with type 
2 diabetes [37].

Renoprotection 
Kidney disease 

Glucosuria Interglomerular pressure

Natriuresis Hyperfiltration

Osmotic diuresis Albuminuria

Vascular function End-stage renal disease

Inflammation
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Fig. 1  Beneficial effects of sodium glucose co-transporter 2 (SGLT2) 
inhibition on metabolism which are mediated by sympathoinhibition. 
Administration of SGLT2 inhibitors decreases obesity-induced meta-

bolic dysfunction as evidenced by decreased activation of the sym-
pathetic nervous system which promotes improvements in glucose 
homeostasis and cardiorenal protection

Fig. 2  Sodium glucose co-transporter 2 inhibition with dapagliflo-
zin (DAPA) reduces blood pressure in hypertensive mice. Effects of 
DAPA on A systolic blood pressure, B diastolic blood pressure and 

C mean arterial blood pressure using tail-cuff apparatus, n = 10–12 
mice/group; *p = 0.006; **p = 0.0003; ***p = 0.007; mean ± SEM 
[43••]
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Both natriuretic and osmotic diuresis leads to decreased 
extracellular volume, combined with further long-term 
body weight reduction, and it is thought to contribute in 
part to the decreased systolic BP (~ 5 mmHg) and dias-
tolic BP (~ 2 mmHg) which is observed with all SGLT2 
inhibitors [22, 38]. The anti-hyperglycaemic effects of 
SGLT2 inhibitors are reduced in type 2 diabetic patients 
with reduced GFR. However, body weight reduction, BP 
lowering, and heart failure protective effects are preserved 
in patients with chronic kidney disease and reduced eGFR 
(eGFR ≥ 30 ml/min/1.73m2) [39, 40]. This finding suggests 
that SGLT2 inhibition in patients with type 2 diabetes and 
chronic kidney disease or reduced total GFR potentially 
preserves lasting natriuretic and diuretic effects. From a 
clinical perspective, the diuretic action of SGLT2 inhibi-
tors must be taken into consideration when prescribing this 
drug class, particularly in patients already on diuretics for 
hypertension, heart failure or chronic kidney disease. Vol-
ume depletion is a potential side effect of SGLT2 inhibition 
and may lead to adverse health outcomes in susceptible 
cohorts such as the elderly and those with impaired kidney 
function.

Furthermore, SGLT2 inhibition may also reduce BP by 
mechanisms unrelated to glucose lowering such as improved 
arterial stiffness [41] and endothelial dysfunction suggest-
ing direct vascular effects [42, 43••], improved renal renin-
angiotensin system activity [44] and reduced oxidative 
stress [45]. It is noteworthy that SGLT2 inhibitors reduce 
BP despite an absence of an increase in heart rate [46••, 
47]. This indirectly suggests that the use of these agents 
may indeed be associated with a reduction in SNS activity.

SGLT2 Inhibitor Mediated 
Sympathoinhibition to Improve Metabolic 
Control

Given the central role sympathetic overactivity plays in 
metabolic abnormalities such as hypertension, inhibition 
of the SNS is a logical and attractive therapeutic approach 
to treat hypertension in the MetS, and this could poten-
tially improve the metabolic profile and reduce CV disease 
risk. Excessive central sympathetic activation has been 
shown to be reduced by lifestyle modifications such as 
aerobic exercise training, weight loss and stress reduction 
[48]. A multitude of studies suggest that pharmacological 
interventions with SGLT2 inhibitors may target the exces-
sive central sympathetic activation and therefore result in 
concomitant metabolic benefits.

In our high-fat diet (HFD)–fed murine studies (mice 
with glucose intolerance and obesity), DAPA-treated mice 
displayed reduced BP, experienced weight loss, possessed 
decreased hyperglycaemia and increased glucose tolerance. 
Furthermore, untreated HFD-fed mice displayed increased 
expression of tyrosine hydroxylase and noradrenaline in 
the kidney and the heart, which was indicative of increased 
SNS innervation and activation, respectively. Interestingly, 
DAPA treatment in HFD-fed mice diminished both renal 
tyrosine hydroxylase and noradrenaline levels in mice pre-
senting with the MetS (Fig. 3). For the first time, we showed 
that SGLT2 inhibition with DAPA was imparting metabolic 
benefits in our mouse model of MetS via sympathoinhibition 
[49]. These findings strongly suggest that SGLT2 inhibition 
is associated with sympathoinhibition [49, 50].

Fig. 3  Tyrosine hydroxylase 
expression is reduced in kidney 
from mice fed a high-fat diet 
and dapagliflozin (DAPA). Rep-
resentative immunohistochemis-
try images of tyrosine hydroxy-
lase expression in kidney from 
mice fed chow (A), high fat diet 
(HFD) (B) or HFD + DAPA 
treatment (C). Tyrosine hydrox-
ylase staining is indicated with 
arrows. Magnification 200 × . D 
Kidney from high-fat diet fed 
mice had significantly greater 
tyrosine hydroxylase compared 
with HFD + DAPA-treated 
mice, n = 3–5 mice per group; 
*p < 0.0012; mean + SEM. E 
Noradrenaline content in kidney 
from HFD and HFD + DAPA 
mice, n = 4–13 mice/group; 
**p < 0.05; mean + SEM [49]
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In our studies where the SNS has been downregulated 
via either chemical denervation or SGLT2 inhibition in the 
neurogenic hypertensive Schlager (BPH/2 J) mouse model, 
we have highlighted the following. Firstly, chemical dener-
vation of the SNS promotes BP lowering, improved glucose 
homeostasis and decreased renal SGLT2 expression. Sec-
ondly, treatment with the SGLT2 inhibitor DAPA leads to 
significantly less weight gain, promotes BP lowering, pro-
tects against endothelial dysfunction, stimulates beneficial 
changes in the gut microbiome and decreases markers of 
SNS innervation and activity (Fig. 4). In conclusion, our 
innovative study highlights that sympathoinhibition with 
SGLT2 inhibitors promotes numerous metabolic benefits in 
the context of hypertension [43••].

It is evident that the regulation of adipose tissue is medi-
ated by the SNS. The neurotransmitter noradrenaline is 
predominantly responsible for exerting fat metabolism via 
the SNS [51]. A recent murine study investigated the effect 
of CANA on HFD-induced obesity and its metabolic con-
sequences. Treatment with CANA decreased fat mass and 
increased energy expenditure via increased thermogenesis 
and lipolysis in adipose tissue. Mechanistically, SGLT2 
inhibition by CANA elevated adipose sympathetic innerva-
tion and fat mobilization via a β3-adrenoceptor-cAMP-PKA 
signalling pathway. Also, HFD fed mice treated with CANA 
showed improved insulin sensitivity and decreased hepatic 

steatosis. Taken together, it can be suggested that inhibi-
tion of SGLT2 increases energy consumption by increas-
ing intra-adipose sympathetic innervation to counter diet-
induced obesity and reveals a new therapeutic strategy by 
which SGLT2 inhibitors positively regulate energy homeo-
stasis [52].

Excitingly, we report that although SGLT2 inhibition con-
fers sympathoinhibition in many of the critical target organs, 
such as the heart and the kidneys [43••, 49], we have shown 
that DAPA may promote sympatho-excitation in white adi-
pose tissue [53]. This leads to the beneficial phenomenon 
of beiging which was confirmed by elevated mRNA levels 
of the brown adipose tissue-selective gene Ucp1 and the 
upstream mediator of Ucp1, Pgc-1 [53]. It has been sug-
gested that beiging of white adipose tissue enhances energy 
expenditure by reducing lipids stored within white adipose 
tissue. The phenomenon of beiging is considered a possible 
mechanism to counter obesity [54].

Also, in hypertensive atherosclerosis-prone mice (BPH/
ApoE − / −), sympathetic activation accelerates the pro-
gression of atherosclerosis. In contrast, pharmacologically 
blocking sympathetic signalling resulted in decreased BP 
and atherosclerosis in these mice [55]. A recent study 
conducted in non-diabetic ApoE − / − mice highlighted 
that EMPA inhibited the progression of atherosclerosis 
by lipid lowering, reducing the inflammatory profile and 

Fig. 4  Inhibition of sodium 
glucose co-transporter 2 reduces 
activation of sympathetic 
nervous system in hypertensive 
mice. Representative immuno-
histochemistry images of tyros-
ine hydroxylase expression in 
kidney from mice fed a high-fat 
diet (HFD) (A) or HFD + DAPA 
treatment (B). Tyrosine hydrox-
ylase staining is indicated with 
arrows. Magnification 200 × . C 
Tyrosine hydroxylase quan-
titation, n = 4–6 mice/group, 
*p = 0.04; mean ± SEM. D Nor-
epinephrine content in kidney 
from HFD and HFD + DAPA 
mice, n = 15–19 mice/group; 
**p = 0.01; mean ± SEM [43••]
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downregulation of sympathetic activity as evidenced by 
decreases in markers of the SNS such as norepinephrine 
and neuropeptide Y [26••].

After consolidating these pre-clinical findings and con-
cluding that the SGLT2 inhibition may result in sympath-
oinhibition, our group is now conducting a clinical trial to 
determine whether EMPA also exerts direct sympathoinhibi-
tory effects on the heart and kidneys in human subjects with 
the MetS.

Getting to the Heart of the Matter 
with SGLT2 Inhibition

Although SGLT2 inhibitors are effective glucose-lowering 
agents, the effectiveness of this drug class in patients with 
heart failure is unlikely related to improvements in glucose 
lowering per se [56]. Based on the available data summa-
rized above, it appears likely that SGLT2 inhibitor-induced 
reduction in sympathetic activity may represent an important 
mediator of the beneficial effects of this drug class in heart 
failure.

The effect of SGLT2 inhibition on heart failure in patients 
with type 2 diabetes has been evaluated in several landmark 
clinical trials, including EMPA-REG (empagliflozin) [28], 
DELCARE-TIMI (dapagliflozin) [57••], CANVAS (cana-
gliflozin) [30] and VERITAS CV (ertugliflozin; ERT) [58]. 
The widely used SGLT2 inhibitors have also been shown to 
greatly reduce the percentage of hospitalisations due to heart 
failure. For example, EMPA, DAPA, CANA and ERT have 
resulted in reductions of 35%, 27%, 33% and 30%, respec-
tively [59]. To explain these findings, a critical mechanistic 
case report by Kiuchi et al. has highlighted that the SGLT2 
inhibitor ipragliflozin, in a patient with chronic heart fail-
ure and diabetes mellitus, resulted in reduced cardiac sym-
pathetic nerve hyperactivity. Of clinical importance, this 
patient was not re-hospitalized due to heart failure 2 years 
after administration of ipragliflozin started [60••].

Not all SGLT2 inhibitors are equally effective in reducing 
major adverse cardiac events (MACE). EMPA, DAPA and 
CANA had significant reductions in MACE (14%, 17% and 
14%, respectively); however, ERT did not show a significant 
reduction. Recently, the DAPA-HF study was conducted to 
determine effects of SGLT2 inhibitors in patients with estab-
lished heart failure and a reduced ejection fraction, regard-
less of the presence or absence of type 2 diabetes [61••]. In 
addition, DAPA was shown to reduce the risk of CV death 
and a first episode of worsening heart failure. The CV ben-
efits imposed by SGLT2 inhibition in non-diabetics provide 
support for the notion that treatments such as SGLT2 inhi-
bition have beneficial actions other than glucose lowering 
[61••].

Conclusion

Our research team and others have demonstrated that SGLT2 
inhibition is associated with a reduction in SNS activity, 
inhibition of norepinephrine turnover in brown adipose tis-
sue and a reduction of tyrosine hydroxylase. These sym-
pathoinhibitory effects appear to be observed in a diverse 
range of animal models, including models with and without 
diabetes/obesity [26••, 43••, 49, 55, 62, 63].

We are now focusing our research endeavours to also 
explore inhibition of the more widely expressed SGLT1 pro-
tein, as we have discovered that SGLT2 inhibition results 
in a compensatory increase in SGLT1 expression (unpub-
lished data). The exciting novel dual inhibitor of SGLT1 and 
2 (Sotagliflozin) has shown many metabolic benefits [64]. 
Therefore, further investigations involving dual SGLT1/2 
inhibition during the MetS are warranted. It remains to be 
determined if dual inhibition results in more pronounced 
sympathoinhibition and thereby further improvements in BP 
and other metabolic parameters when compared to SGLT2 
inhibition alone.
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