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� Severe COVID-19 is characterised by a
combination of emergency myelopoiesis
and inflammation.

� These changes can be rapidly identified
in a diagnostic laboratory, facilitating
intervention.

� This disease signature was derived from
a cohort of patients with a wide range of
ages, frailty and COVID-19 severity.
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SARS-CoV-2 infection causes a wide spectrum of disease severity. Identifying the immunological characteristics of
severe disease and the risk factors for their development are important in the management of COVID-19. This
study aimed to identify and rank clinical and immunological features associated with progression to severe
COVID-19 in order to investigate an immunological signature of severe disease. One hundred and eight patients
with positive SARS-CoV-2 PCR were recruited. Routine clinical and laboratory markers were measured, as well as
myeloid and lymphoid whole-blood immunophenotyping and measurement of the pro-inflammatory cytokines IL-
6 and soluble CD25. All analysis was carried out in a routine hospital diagnostic laboratory. Univariate analysis
demonstrated that severe disease was most strongly associated with elevated CRP and IL-6, loss of DLA-DR
expression on monocytes and CD10 expression on neutrophils. Unbiased machine learning demonstrated that
these four features were strongly associated with severe disease, with an average prediction score for severe
disease of 0.925. These results demonstrate that these four markers could be used to identify patients developing
severe COVID-19 and allow timely delivery of therapeutics.
Table 1. Baseline demographics.

Characteristic

Total number of patients 108

Admitted to hospital, number of patients
(percentage of total)

91 (84%)

Mild disease 17 (16%)

Moderate disease 52 (48%)

Severe disease 39 (36%)

Date of first SARS-CoV-2 positive sample, range 10/3/2020-2/5/2020

Interval between symptom onset and peak oxygen
requirement, median (range), days

8 (2–15)

Requirement for supplemental oxygen, number of
patients (% of total)

65 (60%)

Peak CRP, median (range), mg/L 94 (1–407)

Chest X-ray changes, number of patients (% of total)

No CXR done (outpatients) 17 (16%)

No CXR changes: 30 (28%)

CXR changes consistent with COVID-19: 49 (45%)

Other/Indeterminate CXR changes: 12 (11%)

Requirement for ICU (% of total)

Not required: 69 (64%)

Admitted to ICU: 26 (24%)

Assessed for ICU, deemed unsuitable: 13 (12%)

Outcome

Full recovery 82 (76%)

Death 10 (9%)

Residual morbidity (including decreased independence) 9 (8%)

Outcome still unclear 7 (6%)
1. Introduction

COVID-19, caused by infection with the SARS-CoV-2 virus, is
responsible for the current global pandemic [1]. The significant
morbidity and mortality associated with this infection has placed un-
precedented pressures on healthcare systems worldwide [2]. Numerous
risk factors for severe disease have been identified in repeated
meta-analyses. These include; older age, male sex, obesity and the pres-
ence of comorbidities such as chronic cardiac and respiratory diseases,
cancer and primary and secondary immunodeficiency states [3, 4]. Even
in the presence of several risk factors, the clinical course of SARS-CoV-2
infection is remarkably variable.

COVID-19 appears to have a biphasic pattern of illness [5, 6, 7]. In the
early phase of infection, viral replication promotes an initial immune
response. This is characterised by an elevation in pro-inflammatory cy-
tokines and an influx of monocytes and T lymphocytes into the lungs [8,
9, 10, 11, 12]. A subsequent exuberant inflammatory phase develops in
approximately 20% of individuals 6–10 days post symptom onset [13].
This phase is characterised by a deterioration in clinical parameters with
increasing lung infiltrates and a rise in oxygen requirements [14, 15]. In
approximately 5% of cases, progressive dyspnoea occurs, resulting in
acute respiratory distress syndrome (ARDS) like picture and a require-
ment for mechanical ventilation [16]. Interestingly, the pathological
changes are not limited to the respiratory system. Extra-pulmonary
manifestations of COVID-19 are common and include gastrointestinal
symptoms, elevated liver enzymes, and altered coagulation parameters
and thrombotic events [17, 18, 19].

An important consideration in the evaluation of the pathophysiology
of COVID-19 is identifying signatures that are predictive of severe dis-
ease, as well as identifying patient characteristics that are associated with
more severe disease phenotypes. Careful assessment of temporally linked
clinical and laboratory parameters is required to identify such features.
Utilising multivariate analytic and machine learning approaches offers
an exciting way of integrating large and complex data sets to identify
important predictive features [26, 27, 28].

Recent reports have highlighted changes in myeloid and lymphoid
compartments that can be associated with severe disease [20, 22, 24, 25].
The relative importance of these findings in relation to other important
risk factors that can influence trajectories of disease progression is
underexplored. Finally, the rapid and early identification of those at risk
of severe disease is essential for the prompt administration of immuno-
therapies. Both dexamethasone and tocilizumab have been shown to
reduce mortality in patients requiring oxygen therapy [29, 30]. However,
administering this in a timely fashion has proven difficult [31].

Identification of patients at risk of severe disease and in need targeted
treatment is complex and requires the availability of prompt objective
laboratory indices. In order to be effective parameters identified in
research studies need to be readily measurable in diagnostic laboratories
so that results can be applied in prompt clinical decision making.
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This study aimed to assess the clinical and immunological features of
COVID-19 disease and identify the characteristics of severe disease. We
collected demographic data, immunophenotyping of myeloid and
lymphoid populations, measurement of pro-inflammatory cytokines, and
routine clinical laboratory parameters of patients with confirmed
polymerase-chain reaction (PCR) positive SARS-CoV-2 infection. A ma-
chine learning model was applied to this dataset to identify a predictive
disease signature of severe COVID-19.

2. Results

2.1. Participant characteristics

One-hundred and eight participants were recruited (42/108 (38.9%)
female). Baseline characteristics are shown in Table 1. Seventeen had
mild disease, 52 had moderate disease (of whom 30 required supple-
mental oxygen) and 39 had severe disease (Table 2). Of those with severe



Table 2. Disease characteristics.

Characteristic

Total number of patients 108

Admitted to hospital, number of patients (percentage of
total)

91 (84%)

Mild disease 17 (16%)

Moderate disease 51 (47%)

Severe disease 39 (36%)

Date of first SARS-CoV-2 positive sample, range 10/3/2020-2/5/2020

Interval between symptom onset and peak oxygen
requirement, median (standard deviation), days

8 (6.3)

Requirement for supplemental oxygen, number of patients
(percentage of total)

65 (60%)

Peak CRP, median (standard deviation), mg/L 94 (114)

Chest X-ray changes, number of patients (percentage of
total)

No CXR done (outpatients) 17 (16)

No CXR changes: 30 (28)

CXR changes consistent with COVID-19: 49 (45)

Other/Indeterminate CXR changes: 12 (11)

Requirement for ICU (percentage of total) 69 (64)26 (24)

Not required: 13 (12)

Admitted to ICU:

Assessed for ICU, deemed unsuitable:

Outcome (percentage of total)

Full recovery 82 (76%)

Death 10 (9%)

Residual morbidity (including decreased independence) 9 (8%)

Outcome still unclear 7 (6%)

Table 3. Laboratory parameters.

Parameter Reference Range Cohort Results
Median (IQR)

CRP mg/L 0–5 45.0 (7.4–101)

Haemoglobin g/dL 11.5–16.4 12.2 (10.4–13.7)

RDW 11–15 13.2 (12.5–15.2)

WBC x109/L 4–11 5.6 (4.4–8.2)

Neutrophils x109/L 2–7.5 3.5 (2.3–6.2)

Lymphocytes x109/L 1.5–3.5 1.2 (0.8–1.7)

D-dimer ng/mL 0–500 831 (361–1616)

Fibrinogen g/L 1.9–3.5 4.4 (3.7–6.5)

Creatinine μmol/L 45–84 73 (61–92)

ALT IU/L 0–33 29 (17–59)

AST IU/L 0–32 32.5 (21–49)

Albumin g/L 35–50 35 (31–41)

Ferritin μg/L 23–393 451 (194–1023)

LDH IU/L 135–250 228 (190–303)

Triglycerides mmol/L 0.5–1.7 1.32 (1–1.78)

Interleukin 6 pg/mL 0.09–7.26 19.5 (6.5–40.5)

Soluble CD25 pg/mL 101.8–2509.4 1749.7 (1371–3289)

T cell count (CD3þ) x106/l 797–2996 825 (563–1231)

% T cells (CD3þ) 66–85 69 (62–76)

Helper T cell count (CD3þCD4þ) x106/l 502–1749 505 (332–810)

% Helper T cells (CD3þCD4þ) 35–60 45 (37–54)

Cytotoxic T cell count (CD3þCD8þ) x106/l 263–1137 264 (180–396)

% Cytotoxic T cells (CD3þCD8þ) 18–49 21 (16–29)

B cell count (CD19þ) x106/l 99–618 161 (81–218)

% B cells (CD19þ) 5–19 13 (7–18)

NK cell count (CD16þCD56þ) x106/l 72–577 161 (94–275)

% NK cells (CD16þCD56þ) 4–24 12 (8–22)

L. Townsend et al. Heliyon 8 (2022) e09230
disease, 26/39 were admitted to ICU for intensive monitoring and me-
chanical ventilation and an additional 13/39 patients were assessed for
ICU admission for mechanical ventilation but were not admitted to ICU
due to high likelihood of non-survival. Ten patients with severe COVID-
19 died (2/26 admitted to ICU and 8/13 assessed but not admitted to
ICU). The median inpatient stay for those with moderate/severe disease
was 11.5 days (range 2–108). The median length of stay in ICU was 12
days (range 1–39). Disease characteristics are shown in Table 2, while
baseline laboratory parameters are shown in Table 3. As shown in Sup-
plemental table 2, clinical blood tests were conducted at a median of six
days post symptom onset and, for those requiring supplemental oxygen, a
median of 1.5 days prior to peak oxygen requirement, which was deemed
to be a marker of peak respiratory illness.
2.2. Severe SARS-CoV-2 infection is associated with evidence of profound
immune dysregulation

Analysis of routine laboratory tests revealed widespread changes in
leukocyte populations with a marked coagulopathy and increased
markers of cell turnover and inflammation (Figure 1). The degree of
lymphopenia significantly increased with disease severity, while marked
neutrophilia was seen particularly in those with severe disease. Anaemia
with a left shift, characterised by increased red cell distribution width,
was also noted with severe disease. Greater disease severity was associ-
ated with greater D-dimer and fibrinogen levels, as well as markers of
cellular inflammation (CRP, IL-6, ferritin) and cell turnover (LDH).

In order to further delineate the panlymphopenia seen on the full
blood count, detailed immunophenotyping of lymphoid cells was con-
ducted (Figure 2). This confirmed panlymphopenia, with reduction in
total CD3þ cells across all disease severities, most marked in those with
severe illness. There was reduction in both CD4þ and CD8þ T cell counts
in a similar pattern. On further subset analysis, there was global reduc-
tion of naïve CD4þ and CD8þ cells and increased activated CD4þ and
3

CD8þ cells, as well as increased effector CD8þ cells across all disease
states. The effect of disease severity was less marked in these subsets,
with similar numbers of activated and effector cells across all patients,
and similar naïve cell counts in both moderate and severe disease.

Detailed immunophenotyping of myeloid populations was also carried
out, given the profound neutrophilia noted on initial investigations
(Figure 3). Marked severity-associated neutrophilia was confirmed. There
was loss of CD10 and CD16 expression by neutrophils with increasing
disease severity. This finding was confirmed by looking at both CD10 and
CD16 expression on neutrophils as well as the median frequency intensity
(MFI) of these markers. In addition to these neutrophil changes, pertur-
bations amongst monocyte populations were found. While changes in the
absolute number of monocytes were not associated with infection, there
was progressive loss of HLA-DR expression by monocytes with increasing
disease severity. This was again confirmed by two methods, using per-
centage HLA-DR expression and MFI. There was an increase in proportion
of intermediate monocytes in SARS-CoV-2 patients when compared to
healthy controls. This increase was most marked in those with mild dis-
ease. While there were no significant differences in non-classical monocyte
proportions between infected and healthy patients, there were differences
across disease severities, with milder patients having a higher proportion
when compared to moderate and severe patients. The classical monocyte
proportions remained unchanged when compared to healthy controls and
when assessed across disease severities.

Between-group differences in those with severe COVID-19 in and
those with mild or moderate disease were assessed. Univariate analysis of
the 71 variables in our clinical and laboratory dataset identified a series
of 15 factors associated with severe COVID-19 that remained statistically
significant when corrected for false discovery rate (Figure 4A). These are
ranked by strength of association, with strong associations seen with
some of the differences noted in our earlier analysis. Specifically,
elevation of the acute phase reactants CRP and IL-6 were closely



Figure 1. Severity of acute COVID-19 and Markers of Inflammation, Cell Turnover and Coagulation. Severe COVID-19 is accompanied by (A) leukocytosis (B)
lymphopenia (C) neutrophil and (D) increased neutrophil: lymphocyte ratio in disease (N ¼ 108 total). Severe COVID-19 is also associated with (E) lower haemoglobin
(F) greater red cell distribution width (G) increased D-dimer (H) increased fibrinogen. Severe COVID-19 was associated with increasing (I) LDH (J) Ferritin (K) CRP
(L) IL-6, (M) lower albumin (N) increased AST (O) increased ALT. No change in (P) creatinine with severity.
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Figure 2. Analysis of Major Lymphoid Subsets Reveals a Widespread Lymphopenia in COVID-19 Disease. Peripheral blood immunophenotyping in those with
mild, moderate and severe coronavirus disease revealed significant decreases in (A) CD45 positive cells (leukocytes), most pronounced in moderate/severe disease;
significant decreases in (B) CD3, (C) CD4 and (D) CD8 cell counts, greatest in those with moderate/severe disease in comparison to controls; (E) naïve CD4 and (F)
CD8 cells both significantly decreased in COVID-19 with increasing disease severity; whilst (G) effector CD8 cells were non-significantly elevated, there was a sig-
nificant expansion in (H) activated CD4þ and (I) CD8þ T cells, which did not reflect disease severity. Both (J) B cells and (K) Natural Killer cells were significantly
decreased in number in COVID-19. Decreases in Natural Killer cell number reflected disease severity.

L. Townsend et al. Heliyon 8 (2022) e09230
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Figure 3. Analysis of Myeloid Cells Reveals a
Widespread Immune Dysregulation in COVID-19
Disease. Peripheral blood immunophenotyping in
those with mild, moderate and severe coronavirus
disease revealed significant changes in neutrophil
markers with (A) neutrophilia, (B, E) reduced
neutrophil CD10 expression and (C) reduced neutro-
phil CD16 expression as well (D, F) reduced Mean
Fluorescence Index (MFI) of these markers, most pro-
nounced in those with severe COVID-19 disease. (G)
Monocyte numbers were not significantly altered, but
there were significant changes in monocyte subsets,
with (H) reduced HLA-DR þmonocytes, (J) no change
in classical monocytes.lower number of non-classical
monocytes, (K) increased intermediate monocytes
(L) no change in classical monocytes. The MFI changes
are shown in (M-O). Monocyte subpopulations are
shown as proportions of total monocyte population,
while neutrophil CD10þ and CD16 þ populations are
shown as a proportion of total neutrophil population,
based on flow cytometry gating.
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associated with severe disease, with increased soluble CD25 also seen
with severe disease. Furthermore, reduced expression of the neutrophil
marker CD10 and monocyte marker HLA-DR were strongly associated
with severe disease. No lymphocyte marker approached significance.
Chi-squared testing of categorical variables ranked homelessness, male
gender, higher clinical frailty scores and being a current smoker as the
categorical variables most strongly associated with severe COVID-19,
although no association met the threshold for statistical significance
(Figure 4B).

2.3. Machine learning identifies and ranks markers of severity

Having identified strong associations between specific individual
immunological features and severity, multivariate analysis was used to
6

establish the relative importance of the clinical and immunological pa-
rameters. A logistic regression model with elastic net penalty was applied
to the data. The model demonstrated a high sensitivity and specificity for
identification of severe disease. The area under the receiving operating
characteristic (AUROC) curve was 0.93 on both training and test sets,
indicating excellent model predictive performance and absence of over-
fitting (Figure 5B). These results were confirmed with a permutation test
resulting in statistically significant output (Supplemental Figure 3A; p <

0.01). A precision-recall curve was also applied to estimate the model's
predictive discriminating performance due to the class imbalance in the
ICU outcome measure (39 versus 69 cases). The average precision (AP)
score was 0.89 on the training set and 0.88 on the test set (Figure 5B).
Both scores indicate excellent generalisation properties for this model.
The model's true positive and true negative rates were assessed on



Figure 4. Univariate analysis of numerical demographic, clinical and immunological variables associated with severe COVID-19. (A). t-test scores for dif-
ferences in means between patients with severe and non-severe COVID-19 are indicated in the bar graph, corrected for false discovery rate using Benjamini–Yekutieli
procedure The scores were derived from p-values by calculating -log10 (p-value). The red line indicates threshold of statistically significance (p < 0.05). Univariate
analysis of categorical variables associated with severe COVID-19 (B) Sorted Chi-squared test scores were used to test for significant associations between categorical
variables and severe COVID-19. The red line indicates threshold of statistically significance (p < 0.05).
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training and test sets, visualized by confusion matrices (Supplemental
Figure 3B), which indicate the model's excellent discrimination between
classes and absence of overfitting.

When applied to the integrated dataset, the machine learning multi-
variate approach identified 12 variables associated with severe COVID-
19 (i.e., with associated weights of non-zero values) when considered
in interaction with all 71 variables. Normalised weight values associated
with the top features of the model are shown in Figure 5A. The top four
features stand out as most important with normalised weight values
between 1.0 and 0.56 (Figure 5C). The normalised weight values of
subsequent features were lower (0.28–0.01). The top feature indicative
of severe COVID-19 was a reduced proportion of HLA-DRþ monocytes.
The next most important features were higher CRP and IL-6 levels, and a
lower percentage of CD10þ neutrophils (Figure 5A). Strikingly, a com-
bination of these four features alone could identify severe COVID-19with
an average precision score of 0.925. Additional immunological features
associated with severe COVID-19 with lower weight values included
lower CD16 expression by neutrophils, lower percentages of non-classical
(CD14�CD16þ) and intermediate (CD14þCD16þ) monocytes and lower
numbers of NK cells (Figure 5A and Supplemental Figure 4A, 4B, 4H).
Other parameters associated with severe COVID-19 were a high clinical
frailty score of 6, higher AST levels, higher B cell counts and higher
sCD25 levels (Figure 5A and Supplemental Figures 4C–G). Importantly,
introducing additional variables to the four highest-ranked features did
not improve the ability of the model to recognise severe COVID-19
(Figure 5D).

Potential relationships between each variable identified in the ma-
chine learning analysis were also investigated using a clustered
Spearman correlation matrix (Figure 5E). Unsurprisingly, there was a
positive correlation between levels of CRP and IL-6, with both markers
negatively correlated with levels of HLA-DRþ monocytes and CD10þ
7

neutrophils. Levels of HLA-DRþ monocytes and CD10þ neutrophils
correlated positively with each other. There was a positive correlation
between IL-6 and CRP with AST and sCD25. Proportional changes in non-
classical and intermediate monocytes were also strongly associated with
each other.

3. Discussion

COVID-19 has presented an enormous challenge to human health
and society. Pre-morbid risk factors for the development of severe
COVID-19 include older age, male gender, obesity, and co-morbidities
cardiovascular disease, respiratory disease, diabetes, cancer and im-
munodeficiency are well recognised [32]. However, even amongst pa-
tients with several concurrent risk factors, severe disease is not
ubiquitous. This heterogeneity in clinical outcomes of SARS-CoV-2
infection is likely to be driven by variation in immune responses
[12]. There is emerging evidence, for instance, that host immune de-
fects, including blunted antiviral type 1 interferon responses, are
associated with poor outcomes [33, 34]. Identification and character-
isation of the immune dysregulation in the subset of patients that
develop severe disease is considered increasingly important. The nature
of the early stages of immune dysregulation in COVID-19, and how this
relates to other risk factors to affect disease severity, is an area that
requires further investigation.

The data presented here on 108 patients with SARS-CoV-2 infection
confirms experimental and research laboratory work on the character-
istics of severe infection [35, 36, 37]. It includes patients across the
spectrum of disease severities, from mildly symptomatic to those
requiring mechanical ventilation; 69 (60%) patients required supple-
mental oxygen therapy, 39 (36%) progressed to severe COVID-19, and 17
(16%) had mild disease managed in ambulatory care. This disease



Figure 5. Machine learning modelling of variables identifies immunological features as the strongest independent associations with severe COVID-19. (A)
Sorted normalised feature weight values of variables identified by the model as signatures of progression to severe COVID-19 (B) Model performance for training and
test sets assessed using receiver operating characteristic (ROC) curves and precision-recall curves. (C) Violin plots representing the difference of values between severe
and non-severe COVID for the four features with the highest weight values in the model (D) Diagnostic power of top four variables (E) Correlation matric of variables
within the model, analysed using Spearman correlation. Blue indicates negative correlation between variables, red indicates positive correlation. Darker colour in-
dicates a stronger association. Data was fitted to a logistic regression model with elastic net penalty. For the training set, the hyperparameters were optimized using a
10-fold cross-validation procedure and an exhaustive grid search on a training subset comprising 80% of the data. The remaining 20% of the data was used for the
test set.
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spectrum is vital in drawing strong conclusions in terms of the role of
severity indices.

Our cohort is broadly reflective of those reported elsewhere, with a
median age of 61, more males than females requiring admission and a
mortality rate of 9%, which was higher for men [38, 39, 40]. The simi-
larities to cohorts reported elsewhere are important, given that early
8

attempts to describe the immunopathological signatures of COVID-19
have been poorly applicable across populations [41, 42, 43].

Another strength of this study is the use of a whole blood flow pro-
tocol, with minimal handling, no PBMC isolation step and analysis within
4 h of blood draw. This minimized artefactual alterations in myeloid
populations. Patients presented to hospital and had their bloods drawn a
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median of 2 days prior to peak COVID-19 as defined by peak oxygen
requirement, giving us insight into the immune mechanisms leading to
severe respiratory distress. In addition, all of our laboratory parameters
were generated within a diagnostic laboratory. This means that results
were generated in a clinically-relevant timeframe.

Severe disease in this cohort is characterised by elevated inflamma-
tory markers and a shift towards emergency myelopoiesis. Those with
severe illness demonstrate increases in the inflammatory cytokine IL-6,
CRP and soluble CD25. This hypercytokinaemia was reported in some
of the very early work from China, and confirmed with later studies [8,
44, 45]. A strong association with immature myeloid cells, both neu-
trophils and monocytes, was seen with severe disease. This shift in
myelopoiesis has been highlighted previously [35], with left-shift of
myeloid cells along with increased cytokine production has been seen in
early infection [46]. The emergence of anaemia and increased RDW in
severe disease is observed, suggestive of emergency haematopoiesis.
Indeed, increased RDW over the course of inpatient stay has been asso-
ciated with increased COVID-19 mortality [47]. A combination of these
features have been reported across several studies [48].

The machine learning model demonstrated evidence of inflammation
and immune perturbation early in progression to severe COVID-19, with
the emergence of a quartet of markers strongly associated with severe
disease. These markers are seen before the onset of peak clinical illness in
this cohort andwere predictive of impending deterioration. The strongest
single feature associated with severe disease on multivariate analysis was
a reduced proportion of HLA-DRþ monocytes. Increasing data have
emerged showing reduced monocyte HLA-DR expression is associated
with critical illness in COVID-19 [21, 25, 53, 54]. Reductions in HLA-DRþ

monocytes and reduced HLA-DR expression are appear to be an early
predictor of poor outcome in other infectious states [49, 50, 51, 52].
Furthermore longitudinal studies indicate that ongoing decline in
monocyte HLA-DR expression is associated with poor outcomes in all
cause sepsis [55]. The reduction of HLA-DR positive monocytes in severe
disease may be indicative of immunoparesis during this stage of the
disease in severely affected individuals.

The second member of the quartet identified by this study as being
strongly associated with severe disease is a proportional reduction in
CD10þ neutrophils, another marker of emergency myelopoiesis. CD10 is
a cell membrane metalloprotein that serves as a marker of neutrophil
maturity [56]. Reduced neutrophil CD10 expression is suggestive of an
immature and proinflammatory population. Immature neutrophils,
characterised by lower or absent CD10, are immunostimulatory by pro-
moting T-cell proliferation, survival and IFNγ production and have been
associated with poor prognosis in sepsis [57, 58]. Loss of HLA-DR
expression in conjunction with reduced neutrophil CD10 expression
has been reported in severe COVID-19 by Schulte-Schrepping et al. [23,
55] This left shift in neutrophil populations with severe disease has
subsequently been identified in other centres [59, 60]. The emergence of
immature myeloid populations in severe COVID-19may be in response to
monocyte pyroptosis following inflammasome activation by SARS-CoV-2
[61].

The final two members of the quartet characterising severe disease
are the acute phase reactants IL-6 and CRP. Elevated levels of IL-6 (and
downstream protein CRP) are well-described as signs of poor outcome in
COVID-19 [62, 63, 64, 65]. Elegant studies have highlighted a potent
pro-inflammatory cytokine response, with prominent IL-6 elaboration,
accompanied by a blunted type I and III interferon response that seems
unique to SARS-CoV-2 infection [32, 66]. IL-6 also appears to be an
important driver of monocyte HLA-DR loss, placing this cytokine at the
centre of the immunopathological signature of COVID-19 [21].

Surprisingly, only a single categorical clinical variable, higher clinical
frailty scores, emerged on multivariate analyses as associated with
severity. The clinical frailty score captures biological, rather than
9

chronological age and is a predictor of mortality in a wide-range of
conditions [67, 68]. Remarkably, a large number of other expected
variables, including age and gender, failed to emerge as risk factors for
severity in this cohort – however, this must be qualified by the fact that
this cohort included relatively few individuals withmild disease and does
not rule out a role for these factors as risk factors for hospitalisation, for
example.

This is a single centre study in a largely white Irish cohort of pre-
dominantly hospitalised patients. Validation of these findings in other
centres and with larger samples earlier in the course of disease is
desirable.

Understanding the mechanisms causing some individuals with SARS-
COV-2 infection to progress to severe disease is required to inform
therapeutic design. Through robust analysis of extensive demographic,
clinical and immunological parameters captured early in disease trajec-
tory, these parameters are ranked and adjusted for high-dimensional
interactions and report a signature of severity which is characterised
by inflammation (elevated IL-6 and CRP) and emergency myelopoiesis
(reduced neutrophil maturity and monocyte HLA-DR expression). Our
machine learning model allowed us to effectively integrate temporally
linked clinical and laboratory data collected prior to peak severity to
generate risk factors predictive of deterioration [69]. Other researchers
have used similar approaches in the context of COVID-19. Some in-
vestigators have focussed on clinical parameters to predict deterioration.
Other groups have carefully parsed detailed immunophenotyping and
transcriptomic datasets to risk stratify COVID 19 patients [70, 71]. We
were able to focus on complex data that was available from an accredited
diagnostic immunology laboratory. These laboratory data could be used
to inform clinical decision making in real time scenarios.

This study builds on prior work describing severe COVID-19 infec-
tion, demonstrating that these features of emergency myelopoiesis
develop prior to the point of peak illness and are of central importance
in progression to severe COVID-19. Patients with mild disease who did
not require hospitalisation are included; these patients represent an
understudied cohort. Furthermore, these approaches can be delivered
in an accredited clinical laboratory as routine tests. This is of particular
importance given the need for early identification of individuals who
may benefit from therapeutic interventions [29]. This work emphasises
the central role of expanded immature neutrophil and monocyte pop-
ulations in the setting of COVID-19 and supports the measurement of
these populations as part of severity assessments. Furthermore, it
demonstrates that these investigations can be performed rapidly in a
diagnostic laboratory, providing results in a timeframe that can impact
clinical decisions. The use of targeted measurement of this signature of
severe disease can help streamline the investigation of patients
admitted with COVID-19 infection and identify those with severe
disease.
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Subject Details

This study was carried out in accordance with the Code of Ethics of theWorld Medical Association [73]. Ethical approval was granted by the Tallaght
University Hospital/St. James's Hospital Joint Research Ethics Committee (reference REC 2020-03). Informed consent was obtained from all partici-
pants. Patients with a positive real-time PCR test for SARS-CoV-2 on nasopharyngeal aspirates (cobas© SARS-CoV-2 test, Roche Diagnostics, Rotkreuz,
Switzerland) at our institution were recruited over a two-month period (Supplemental figure 1). 71 demographic, clinical and immunological measures
were recorded for participants enrolled in this study (Supplemental table 1). These included social and medical history (smoking status, alcohol and
drug use, housing status, co-morbidities, medication use and self-reported date of symptom onset), and clinical frailty scores (adjudicated by the
admitting physician) [74]. Routine haematological and biochemical laboratory results at the earliest time point after the first positive SARS-CoV-2 test,
radiologist-reported chest X-ray results, and clinical parameters including peak oxygen requirement and peak CRP value (within fourteen days of
positive SARS-CoV-2 test), assessment for ICU admission, admission to ICU and outcome were extracted from the electronic patient record. Mild
COVID-19 was defined as no requirement for hospital admission (WHO scale 1 and 2), moderate COVID-19 as requirement for hospital admission (WHO
scale 3 and 4) and severe COVID-19 as requirement for high-level respiratory support (high flow oxygen, invasive ventilation (WHO scale 5 and 6) [75].

Methods Details

Immunophenotyping was carried out on fresh whole EDTA treated blood and samples were analysed on a FACS Canto II Flow Cytometer (BD San
Jose USA), using BD DIVA v8 and FLO Jo v10 software. BD FACSCantoTM clinical software was used for acquisition of BD MultiTestTM 6-colour TBNK
and TruCount tubes. All other immunophenotyping samples were analysed using BD DIVA v8 and FLO Jo v10 software. T cell (CD4þ and CD8þ), B cell
(CD19þ) and Natural Killer cell (CD16þCD56þ) percentages and absolute counts were generated by standard methods (BD TruCount). Naive (CD27þ)
and Effector (CD27-) T cells were characterised using CD27, CD45RA and CD197 antibodies. T cell activation was assessed by CD38 and HLA-DR
expression. These assays were previously validated and accredited in line with ISO15189 standards. Classical, intermediate and non-classical mono-
cytes were characterised by CD14 and CD16 expression. Proportions of these subpopulations were reported as percentages of the total monocyte
population. Neutrophil functional maturity was interrogated by evaluating CD10 and CD16 expression. Proportions of these populations were reported
as percentages of the total neutrophil population. Cell phenotyping assays were validated and accredited in line with ISO15189 standards. Results were
compared to a cohort of 40 pre-pandemic healthy controls (22/40 (55%) female; median age 48 (IQR 33–61), 20 of whom had extensive analysis
performed for lymphoid and myeloid cell subsets, with 20 controls having extensive lymphoid analysis only. IL-6 and soluble CD25 (sCD25) levels were
measured in serum by Quantikine™ ELISA kit (R&D Systems, Minneapolis, USA). 100μl of assay diluent and 100μl sample or control were added to each
well. The assay was validated using 30 healthy volunteer serum samples to establish a normal range mean þ3 SD. For validation, 25 samoles were also
tested at another accredited site, Sheffield Immunology Laboratory, UK. Five NEQAS EQA controls were also included. All comparisons passed for
accreditation.

Statistical Analysis

Between group differences were examined in the first instance using standard univariate statistics (t-tests, Wilcoxon rank-sum and chi-square tests as
appropriate based on normality testing). In order to compare differences across the three groups of increasing COVID-19 severity, Kruskal-Wallis testing
with a Dunn's post-hoc test was used to estimate p-values. An alpha level of p < 0.05 was considered statistically significant.

A total of 71 demographic, clinical, laboratory and immunophenotyping parameters were analysed to assess associations with severe COVID-19
(Supplemental table 1). All data analysis, visualizations and modelling were performed using open source packages available in Python 3.7 [76,
77]. For univariate analysis, a FDR corrected t-test was applied on power transformed numerical variables. The power transformation was implemented
using Yeo-Johnson transformation to ensure normal distribution of variables. FDR-correction was implemented using Benjamini-Yekuteli procedure
[78]. Categorical variables were tested using Chi [2]-test. An elastic net regularized logistic regression model was used for multivariate analysis and
implemented for simultaneous feature selection and ICU status prediction [79]. To train each model, the hyperparameters were optimized using a
10-fold cross-validation procedure and an exhaustive grid search on a training subset comprising 80% of the data. Generalization of the trained model
was then assessed using the remaining 20% of the data as a test set.
Supplemental Table 1. 71 parameters included in analysis

Category Parameter

Demographics Age
Ethnicity (Caucasian, Asia, African, Hispanic)
Smoking (current/ex/never)
Comorbidity Count
Gender
Clinical Frailty Score (1–7)
Housing Status (homeless/renting/homeowner)
Comedication count

Serum Measures Haemoglobin, red cell distribution width (RDW)
White blood cell count, neutrophil count, lymphocyte count
Creatinine
ALT, AST
Albumin
Ferritin
IL6, sCD25
Neutrophil: Lymphocyte ratio

(continued on next page)

11



Supplemental Table 1 (continued )

Category Parameter

Flow Measurements
-Lymphoid Population

-Myeloid Population

% naïve CD4þ

% naïve CD8þ

% effector CD8þ

% activated CD4þ

% activated CD8þ

Naïve CD4þ count
Naïve CD8þ count
Effector CD8þ count
Activated CD4þ count
Activated CD8þ count
% CD3þ

% CD4þ

% CD8þ

% B cells
% Natural Killer cells
CD3þ count
CD4þ count
CD8þ count
B cell count
Natural Killer cell count
CD45þ Lymphocyte count
% CD10þCD16þ

%CD10-CD16-% CD10þ

CD10% MFI
% CD16þ

CD16þ MFI
Neutrophil count
% HLA DRþ

HLA DR MFI
% CD14-CD16þ non classical monocytes
% CD14þCD16þ intermediate monocytes
% CD14þCD16- classical monocytes
HLA DRþ non classical monocytes MFI
HLA DRþ intermediate monocytes MFI
HLA DRþ classical monocytes MFI
Monocyte count
HLA DRþ gate MFI

Supplemental Table 2. Timing of samples

Time period Median days (range)

Symptom onset to first blood draw 6 (1–15)

First blood draw to peak oxygen requirement (n 69) 2 (0–14)

Blood draw for immunophenotyping to peak oxygen requirement (n 69) 1 (13 pre to 33 post)

L. Townsend et al. Heliyon 8 (2022) e09230
Supplemental Figure 1: Patient enrolment flow chart
Supplemental Figure 2: Flow cytometry gating strategy. (A) Naïve and effector T lymphocytes (B) activated T lymphocytes (C) neutrophils (D)

monocytes
Supplemental Figure 3: Performance of machine learning model. (A) Permutation test of model (B) Confusion matrices, showing performance of

model on training and test sets
Supplemental Figure 4: Violin plots of predictive features 5–12. (A) CD16 MFI (B) Proportion of non-classical monocytes (C) Clinical Frailty Score

(D) Aspartate transaminase (E) Proportion of natural killer cells (F) proportion of B cells (G) Soluble CD25 (H) Proportion of intermediate monocytes.
MFI ¼ median frequency intensity
References

[1] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, et al., Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective
cohort study, Lancet (2020).

[2] B. Armocida, B. Formenti, S. Ussai, F. Palestra, E. Missoni, The Italian health system
and the COVID-19 challenge, Lancet Public Health 5 (5) (2020) e253.

[3] M.J. Ponsford, T.J. Ward, S. Stoneham, C.M. Dallimore, D. Sham, K. Osman, et al.,
A systematic review and meta-analysis of inpatient mortality associated with
nosocomial and community COVID-19 exposes the vulnerability of
immunosuppressed adults, Front. Immunol. (2021) 4030.
12
[4] Z.G. Dessie, T. Zewotir, Mortality-related risk factors of COVID-19: a systematic
review and meta-analysis of 42 studies and 423,117 patients, BMC Infect. Dis. 21
(1) (2021) 1–28.

[5] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, et al., Epidemiological and
clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan,
China: a descriptive study, Lancet 395 (10223) (2020) 507–513.

[6] F.-X. Lescure, L. Bouadma, D. Nguyen, M. Parisey, P.-H. Wicky, S. Behillil, et al.,
Clinical and Virological Data of the First Cases of COVID-19 in Europe: a Case
Series, The Lancet Infectious Diseases, 2020.

[7] Y. Shi, Y. Wang, C. Shao, J. Huang, J. Gan, X. Huang, et al., COVID-19 Infection: the
Perspectives on Immune Responses, Nature Publishing Group, 2020.

http://refhub.elsevier.com/S2405-8440(22)00518-7/sref1
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref1
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref1
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref2
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref2
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref3
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref3
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref3
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref3
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref4
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref4
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref4
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref4
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref5
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref5
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref5
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref5
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref6
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref6
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref6
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref7
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref7


L. Townsend et al. Heliyon 8 (2022) e09230
[8] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223) (2020)
497–506.

[9] Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, et al., Pathological findings of
COVID-19 associated with acute respiratory distress syndrome, Lancet Respir. Med.
8 (4) (2020) 420–422.

[10] S. Tian, W. Hu, L. Niu, H. Liu, H. Xu, S.-Y. Xiao, Pulmonary pathology of early phase
2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer,
J. Thorac. Oncol. (2020).

[11] H.K. Siddiqi, M.R. Mehra, COVID-19 illness in native and immunosuppressed states:
a clinical-therapeutic staging proposal, J. Heart Lung Transplant. (2020).

[12] S.R. Bonam, S.V. Kaveri, A. Sakuntabhai, L. Gilardin, J. Bayry, Adjunct
immunotherapies for the management of severely ill COVID-19 patients, Cell Rep.
Med. 1 (2) (2020) 100016.

[13] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, et al., Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan,
China, JAMA 323 (11) (2020) 1061–1069.

[14] M. Hosseiny, S. Kooraki, A. Gholamrezanezhad, S. Reddy, L. Myers, Radiology
perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute
respiratory syndrome and Middle East respiratory syndrome, Am. J. Roentgenol.
214 (5) (2020) 1078–1082.

[15] H. Fogarty, L. Townsend, C. Ni Cheallaigh, C. Bergin, I. Martin-Loeches, P. Browne,
et al., COVID19 coagulopathy in Caucasian patients, Br. J. Haematol. 189 (6)
(2020) 1044–1049.

[16] J. Phua, L. Weng, L. Ling, M. Egi, C.-M. Lim, J.V. Divatia, et al., Intensive care
management of coronavirus disease 2019 (COVID-19): challenges and
recommendations, Lancet Respir. Med. (2020).

[17] P. Zhong, J. Xu, D. Yang, Y. Shen, L. Wang, Y. Feng, et al., COVID-19-associated
gastrointestinal and liver injury: clinical features and potential mechanisms, Signal
Transduct. Targeted Ther. 5 (1) (2020) 1–8.

[18] S.E. Ward, G.F. Curley, M. Lavin, H. Fogarty, E. Karampini, N.L. McEvoy, et al., Von
Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19):
evidence of acute and sustained endothelial cell activation, Br. J. Haematol. 192 (4)
(2021) 714–719.

[19] D. McGonagle, C. Bridgewood, J.F. Meaney, A tricompartmental model of lung
oxygenation disruption to explain pulmonary and systemic pathology in severe
COVID-19, Lancet Respir. Med. 9 (6) (2021) 665–672.

[20] Y. Zhou, B. Fu, X. Zheng, D. Wang, C. Zhao, Pathogenic T cells and inflammatory
monocytes incite inflammatory storm in severe COVID-19 patients, Natl. Sci. Rev.
(2020).

[21] E.J. Giamarellos-Bourboulis, M.G. Netea, N. Rovina, K. Akinosoglou,
A. Antoniadou, N. Antonakos, et al., Complex immune dysregulation in COVID-19
patients with severe respiratory failure, Cell Host Microbe (2020).

[22] H.-Y. Zheng, M. Zhang, C.-X. Yang, N. Zhang, X.-C. Wang, X.-P. Yang, et al.,
Elevated exhaustion levels and reduced functional diversity of T cells in peripheral
blood may predict severe progression in COVID-19 patients, Cell. Mol. Immunol.
(2020) 1–3.

[23] J. Schulte-Schrepping, N. Reusch, D. Paclik, K. Baßler, S. Schlickeiser, B. Zhang, et
al., Severe COVID-19 is marked by a dysregulated myeloid cell compartment, Cell
182 (6) (2020) 1419–1440, e23.

[24] A.G. Laing, A. Lorenc, I. del Molino del Barrio, A. Das, M. Fish, L. Monin, et al.,
A dynamic COVID-19 immune signature includes associations with poor prognosis,
Nat. Med. 26 (10) (2020) 1623–1635.

[25] A. Silvin, N. Chapuis, G. Dunsmore, A.-G. Goubet, A. Dubuisson, L. Derosa, et al.,
Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from
mild COVID-19, Cell 182 (6) (2020) 1401–1418, e18.

[26] J. Liu, S. Li, J. Liu, B. Liang, X. Wang, H. Wang, et al., Longitudinal characteristics of
lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2
infected patients, EBioMedicine (2020) 102763.

[27] Y. Xiong, Y. Ma, L. Ruan, D. Li, C. Lu, L. Huang, Comparing different machine
learning techniques for predicting COVID-19 severity, Infect. Dis. Povert. 11 (1)
(2022) 1–9.

[28] Z. Chang, Z. Zhan, Z. Zhao, Z. You, Y. Liu, Z. Yan, et al., Application of artificial
intelligence in COVID-19 medical area: a systematic review, J. Thorac. Dis. 13 (12)
(2021) 7034.

[29] P. Horby, W.S. Lim, J.R. Emberson, M. Mafham, J.L. Bell, L. Linsell, et al.,
Dexamethasone in hospitalized patients with covid-19-preliminary report, N. Engl.
J. Med. (2020).

[30] C. Salama, J. Han, L. Yau, W.G. Reiss, B. Kramer, J.D. Neidhart, et al., Tocilizumab
in patients hospitalized with Covid-19 pneumonia, N. Engl. J. Med. 384 (1) (2021)
20–30.

[31] R.M. Johnson, J.M. Vinetz, Dexamethasone in the Management of Covid-19, British
Medical Journal Publishing Group, 2020.

[32] D. Blanco-Melo, B.E. Nilsson-Payant, W.-C. Liu, S. Uhl, D. Hoagland, R. Møller, et
al., Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19,
Cell, 2020.

[33] P. Bastard, L.B. Rosen, Q. Zhang, E. Michailidis, H.-H. Hoffmann, Y. Zhang, et al.,
Autoantibodies against type I IFNs in patients with life-threatening COVID-19,
Science 370 (6515) (2020).

[34] Q. Zhang, P. Bastard, Z. Liu, J. Le Pen, M. Moncada-Velez, J. Chen, et al., Inborn
errors of type I IFN immunity in patients with life-threatening COVID-19, Science
(6515) (2020) 370.

[35] E.R. Mann, M. Menon, S.B. Knight, J.E. Konkel, C. Jagger, T.N. Shaw, et al.,
Longitudinal immune profiling reveals key myeloid signatures associated with
COVID-19, Sci. Immunol. 5 (51) (2020).
13
[36] S. Chevrier, Y. Zurbuchen, C. Cervia, S. Adamo, M.E. Raeber, N. de Souza, et al.,
A distinct innate immune signature marks progression from mild to severe COVID-
19, Cell Rep. Med. 2 (1) (2021) 100166.

[37] Y. Zhou, B. Fu, X. Zheng, D. Wang, C. Zhao, Y. Qi, et al., Pathogenic T-cells and
inflammatory monocytes incite inflammatory storms in severe COVID-19 patients,
Natl. Sci. Rev. 7 (6) (2020) 998–1002.

[38] L. Wedderburn, H. Peckham, N. De Gruijter, C. Raine, A. Radziszewska, C. Ciurtin,
et al., Male sex identified by global COVIS-19 meta-analysis as a risk factor for
death and ITU admission, Nat. Commun. (2020).

[39] S. Qi, C. Ngwa, D.A. Morales Scheihing, A. Al Mamun, H.W. Ahnstedt, C.E. Finger,
et al., Sex differences in the immune response to acute COVID-19 respiratory tract
infection, Biol. Sex Differ. 12 (1) (2021) 1–10.

[40] F.S. Vahidy, A.P. Pan, H. Ahnstedt, Y. Munshi, H.A. Choi, Y. Tiruneh, et al., Sex
differences in susceptibility, severity, and outcomes of coronavirus disease 2019:
cross-sectional analysis from a diverse US metropolitan area, PLoS One 16 (1)
(2021), e0245556.

[41] L. Yan, H.-T. Zhang, J. Goncalves, Y. Xiao, M. Wang, Y. Guo, et al., An interpretable
mortality prediction model for COVID-19 patients, Nat. Mach. Intell. (2020) 1–6.

[42] M. Barish, S. Bolourani, L.F. Lau, S. Shah, T.P. Zanos, External validation
demonstrates limited clinical utility of the interpretable mortality prediction model
for patients with COVID-19, Nat. Mach. Intell. (2020) 1–3.

[43] M.J. Quanjel, T.C. van Holten, P.C. Gunst-van der Vliet, J. Wielaard, B. Karakaya,
M. S€ohne, et al., Replication of a mortality prediction model in Dutch patients with
COVID-19, Nat. Mach. Intell. (2020) 1–2.

[44] K.A. Overmyer, E. Shishkova, I.J. Miller, J. Balnis, M.N. Bernstein, T.M. Peters-
Clarke, et al., Large-scale multi-omic analysis of COVID-19 severity, Cell Syst.
(2020).

[45] D. Ragab, H. Salah Eldin, M. Taeimah, R. Khattab, R. Salem, The COVID-19
cytokine storm; what we know so far, Front. Immunol. 11 (2020) 1446.

[46] Y. Su, D. Chen, D. Yuan, C. Lausted, J. Choi, C.L. Dai, et al., Multi-omics resolves a
sharp disease-state shift between mild and moderate COVID-19, Cell (2020).

[47] B.H. Foy, J.C. Carlson, E. Reinertsen, R.P.I. Valls, R.P. Lopez, E. Palanques-Tost, et
al., Association of red blood cell distribution width with mortality risk in
hospitalized adults with SARS-CoV-2 infection, JAMA Netw. Open 3 (9) (2020)
e2022058-e.

[48] Yd Gao, M. Ding, X. Dong, Jj Zhang, A. Kursat Azkur, D. Azkur, et al., Risk factors
for severe and critically ill COVID-19 patients: a review, Allergy 76 (2) (2021)
428–455.

[49] C. Landelle, A. Lepape, N. Voirin, E. Tognet, F. Venet, J. Boh�e, et al., Low monocyte
human leukocyte antigen-DR is independently associated with nosocomial
infections after septic shock, Intensive Care Med. 36 (11) (2010) 1859–1866.

[50] Y. Le Tulzo, C. Pangault, L. Amiot, V. Guilloux, O. Tribut, C. Arvieux, et al.,
Monocyte human leukocyte antigen–DR transcriptional downregulation by cortisol
during septic shock, Am. J. Respir. Crit. Care Med. 169 (10) (2004) 1144–1151.

[51] A. Cheron, B. Floccard, B. Allaouchiche, C. Guignant, F. Poitevin, C. Malcus, et al.,
Lack of recovery in monocyte human leukocyte antigen-DR expression is
independently associated with the development of sepsis after major trauma, Crit.
Care 14 (6) (2010) R208.

[52] A. Lekkou, M. Karakantza, A. Mouzaki, F. Kalfarentzos, C. Gogos, Cytokine
production and monocyte HLA-DR expression as predictors of outcome for patients
with community-acquired severe infections, Clin. Diagn. Lab. Immunol. 11 (1)
(2004) 161–167.

[53] T. Spinetti, C. Hirzel, M. Fux, L.N. Walti, P. Schober, F. Stueber, et al., Reduced
Monocytic HLA-DR Expression Indicates Immunosuppression in Critically Ill
COVID-19 Patients, Anesthesia & Analgesia, 2020.

[54] Otto Walter L, Cardoso CC, Santos-Pirath �IM, Costa HZ, Gartner R, Werle I, et al.
The Relationship between Peripheral Immune Response and Disease Severity in
SARS-CoV-2-infected Subjects: A Cross-sectional Study. Immunology.

[55] G.P. Leijte, T. Rimmel�e, M. Kox, N. Bruse, C. Monard, M. Gossez, et al., Monocytic
HLA-DR expression kinetics in septic shock patients with different pathogens, sites
of infection and adverse outcomes, Crit. Care 24 (1) (2020) 1–9.

[56] S. Brandau, D. Hartl, Lost in neutrophil heterogeneity? CD10! Blood, J. Am. Soc.
Hematol. 129 (10) (2017) 1240–1241.

[57] L. Yan, H.-T. Zhang, J. Goncalves, Y. Xiao, M. Wang, Y. Guo, et al., An Interpretable
Mortality Prediction Model for COVID-19 Patients, Nature Machine Intelligence,
2020.

[58] O. Marini, S. Costa, D. Bevilacqua, F. Calzetti, N. Tamassia, C. Spina, et al., Mature
CD10þ and immature CD10� neutrophils present in G-CSF–treated donors display
opposite effects on T cells. Blood, J. Am. Soc. Hematol. 129 (10) (2017) 1343–1356.

[59] R. Spijkerman, S.H. Bongers, B.J. Bindels, G.H. Tinnevelt, G. Giustarini,
N.K. Jorritsma, et al., Flow cytometric evaluation of the neutrophil compartment in
COVID-19 at hospital presentation: a normal response to an abnormal situation,
J. Leukoc. Biol. 109 (1) (2021) 99–114.

[60] E. Eksioglu-Demiralp, S. Alan, U. Sili, D. Bakan, I. Ocak, R. Yurekli, et al., Peripheral
innate and adaptive immune cells during COVID-19: functional neutrophils, pro-
inflammatory monocytes and half-dead lymphocytes, medRxiv (2020).

[61] A.C. Ferreira, V.C. Soares, I.G. de Azevedo-Quintanilha, SdSG. Dias, N. Fintelman-
Rodrigues, C.Q. Sacramento, et al., SARS-CoV-2 engages inflammasome and
pyroptosis in human primary monocytes, Cell Death Disc. 7 (1) (2021) 1–12.

[62] H. Han, Q. Ma, C. Li, R. Liu, L. Zhao, W. Wang, et al., Profiling serum cytokines in
COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors, Emerg.
Microb. Infect. 9 (1) (2020) 1123–1130.

[63] Y. Dong, H. Zhou, M. Li, Z. Zhang, W. Guo, T. Yu, et al., A Novel Simple Scoring
Model for Predicting Severity of Patients with SARS-CoV-2 Infection,
Transboundary and Emerging Diseases, 2020.

http://refhub.elsevier.com/S2405-8440(22)00518-7/sref8
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref8
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref8
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref8
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref9
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref9
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref9
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref9
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref10
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref10
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref10
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref11
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref11
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref12
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref12
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref12
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref13
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref13
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref13
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref13
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref13
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref14
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref14
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref14
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref14
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref14
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref15
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref15
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref15
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref15
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref16
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref16
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref16
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref17
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref17
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref17
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref17
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref18
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref18
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref18
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref18
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref18
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref19
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref19
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref19
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref19
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref20
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref20
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref20
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref21
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref21
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref21
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref22
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref22
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref22
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref22
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref22
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref23
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref23
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref23
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref23
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref24
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref24
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref24
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref24
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref25
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref25
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref25
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref25
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref26
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref26
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref26
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref27
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref27
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref27
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref27
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref28
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref28
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref28
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref29
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref29
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref29
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref30
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref30
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref30
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref30
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref31
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref31
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref32
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref32
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref32
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref33
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref33
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref33
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref34
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref34
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref34
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref35
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref35
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref35
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref36
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref36
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref36
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref37
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref37
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref37
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref37
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref38
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref38
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref38
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref39
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref39
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref39
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref39
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref40
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref40
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref40
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref40
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref41
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref41
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref41
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref42
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref42
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref42
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref42
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref43
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref43
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref43
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref43
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref43
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref44
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref44
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref44
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref45
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref45
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref46
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref46
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref47
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref47
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref47
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref47
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref48
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref48
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref48
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref48
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref49
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref49
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref49
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref49
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref49
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref50
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref50
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref50
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref50
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref50
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref51
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref51
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref51
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref51
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref52
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref52
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref52
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref52
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref52
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref53
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref53
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref53
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref53
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref55
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref55
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref55
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref55
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref55
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref56
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref56
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref56
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref57
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref57
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref57
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref58
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref59
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref59
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref59
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref59
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref59
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref60
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref60
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref60
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref61
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref61
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref61
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref61
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref62
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref62
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref62
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref62
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref63
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref63
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref63


L. Townsend et al. Heliyon 8 (2022) e09230
[64] Q. Ruan, K. Yang, W. Wang, L. Jiang, J. Song, Clinical predictors of mortality due to
COVID-19 based on an analysis of data of 150 patients from Wuhan, China,
Intensive Care Med. (2020) 1–3.

[65] T. Herold, V. Jurinovic, C. Arnreich, B.J. Lipworth, J.C. Hellmuth, M. von Bergwelt-
Baildon, et al., Elevated levels of interleukin-6 and CRP predict the need for
mechanical ventilation in COVID-19, J. Allergy Clin. Immunol. (2020).

[66] C. Lucas, P. Wong, J. Klein, T.B. Castro, J. Silva, M. Sundaram, et al., Longitudinal
analyses reveal immunological misfiring in severe COVID-19, Nature 584 (7821)
(2020) 463–469.

[67] T.A. Alfaadhel, S.D. Soroka, B.A. Kiberd, D. Landry, P. Moorhouse,
K.K. Tennankore, Frailty and mortality in dialysis: evaluation of a clinical frailty
scale, Clin. J. Am. Soc. Nephrol. 10 (5) (2015) 832–840.

[68] G. Galizia, F. Cacciatore, G. Testa, D. Della-Morte, F. Mazzella, A. Langellotto, et al.,
Role of clinical frailty on long-term mortality of elderly subjects with and without
chronic obstructive pulmonary disease, Aging Clin. Exp. Res. 23 (2) (2011)
118–125.

[69] O. Noy, D. Coster, M. Metzger, I. Atar, S. Shenhar-Tsarfaty, S. Berliner, et al.,
A machine learning model for predicting deterioration of COVID-19 inpatients, Sci.
Rep. 12 (1) (2022) 1–9.

[70] J.M. Amrute, A.M. Perry, G. Anand, C. Cruchaga, K.G. Hock, C.W. Farnsworth, et
al., Cell specific peripheral immune responses predict survival in critical COVID-19
patients, Nat. Commun. 13 (1) (2022) 1–11.
14
[71] Y.M. Mueller, T.J. Schrama, R. Ruijten, M.W. Schreurs, D.G. Grashof, H.J. van de
Werken, et al., Stratification of hospitalized COVID-19 patients into clinical severity
progression groups by immuno-phenotyping and machine learning, Nat. Commun.
13 (1) (2022) 1–13.

[73] W.M. Association, World Medical Association Declaration of Helsinki. Ethical
principles for medical research involving human subjects, Bull. World Health
Organ. 79 (4) (2001) 373.

[74] K. Rockwood, X. Song, C. MacKnight, H. Bergman, D.B. Hogan, I. McDowell, et al.,
A global clinical measure of fitness and frailty in elderly people, CMAJ (Can. Med.
Assoc. J.) 173 (5) (2005) 489–495.

[75] COVID W. Therapeutic Trial Synopsis.
[76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al.,

Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011)
2825–2830.

[77] R. Vallat, Pingouin: statistics in Python, J. Open Source Software 3 (31) (2018)
1026.

[78] Y. Benjamini, D. Yekutieli, The control of the false discovery rate in multiple testing
under dependency, Ann. Stat. (2001) 1165–1188.

[79] H. Zou, T. Hastie, Regularization and variable selection via the elastic net, J. Roy.
Stat. Soc. B 67 (2) (2005) 301–320.

http://refhub.elsevier.com/S2405-8440(22)00518-7/sref64
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref64
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref64
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref64
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref65
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref65
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref65
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref66
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref66
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref66
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref66
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref67
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref67
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref67
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref67
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref68
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref68
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref68
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref68
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref68
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref69
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref69
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref69
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref69
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref70
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref70
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref70
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref70
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref71
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref71
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref71
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref71
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref71
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref73
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref73
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref73
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref74
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref74
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref74
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref74
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref76
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref76
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref76
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref76
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref77
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref77
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref78
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref78
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref78
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref79
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref79
http://refhub.elsevier.com/S2405-8440(22)00518-7/sref79

	Severe COVID-19 is characterised by inflammation and immature myeloid cells early in disease progression
	1. Introduction
	2. Results
	2.1. Participant characteristics
	2.2. Severe SARS-CoV-2 infection is associated with evidence of profound immune dysregulation
	2.3. Machine learning identifies and ranks markers of severity

	3. Discussion
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	AppendixAcknowledgements
	Subject Details
	Methods Details
	Statistical Analysis

	References


