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ABSTRACT We report the genome sequence of Ulva prolifera, which originated from
the Yoshinogawa River in Japan, using Oxford Nanopore Technologies MinlON and lllumina
sequencing reads. The genome assembly size is 103.8 Mbp, consisting of 142 scaffolds with
an N, value of 4.11 Mbp.

Iva prolifera (Sujiaonori in Japanese) is one of the most important edible green alga in

Japan. It grows in brackish river mouths; however, natural populations of U. prolifera in
Japan have been decreasing, and a tank cultivation system has been developed for sustainable
production (1). U. prolifera is also one of the sources of troublesome green tide (2). The genome
sequence of U. prolifera collected from the Yellow Sea was recently reported (3); however,
it is known that brackish strains and bloom-forming marine habitat strains show different
characteristics, and new subspecies for the latter strains have been proposed (4, 5).

An U. prolifera sample for genome sequencing was collected from a land culture at
Hashirijima Island (Hiroshima, Japan) that was originally derived from the Yoshinogawa
River (Tokushima, Japan). The thallus, with a length of >20 ¢cm, was cut into small pieces,
frozen in liquid nitrogen, and finely powdered using a Micro Smash MS-100 cell disruptor
(Tomy Seiko). Genomic DNA (gDNA) was extracted using the NucleoBond high-molecular-
weight (HMW) DNA kit (Macherey-Nagel), and we did not perform either DNA shearing or
size selection. A Nanopore sequencing library was prepared from 1 wg of gDNA using a ligation
sequencing kit (SQK-LSK110; Oxford Nanopore Technologies [ONT]). Nanopore sequencing was
performed on an ONT MinlON sequencer using a R9.4.1 flow cell (FLO-MIN106D). One-half
volume of the library was sequenced for 24 h, and the other one-half volume of the library
was sequenced for 22 h after a flow cell wash step. The raw FASTS5 files obtained for the two
sequencing runs were base called using Guppy v6.0.1 (ONT) with a high-accuracy model
(Table 1). An lllumina sequencing library was prepared using the NEBNext Ultra DNA library
preparation kit for lllumina (New England Biolabs) and sequenced on an lllumina NovaSeq
6000 system in the 150-bp paired-end mode (Table 1).

The base-called Nanopore reads were trimmed by fastp v0.23.2 (6) to remove low-quality
head reads, and reads longer than 1,000 bp were collected (15,851 Mbp after trimming) for
subsequent analysis. The Nanopore reads were assembled using NECAT v0.0.1_update20200803
(7) following a modified method (8). First the draft assembly by NECAT was polished with
Medaka v1.6.0 (https://github.com/nanoporetech/medaka) using Nanopore reads, and then
redundant haplotypes were removed with Purge Haplotigs v1.1.2 (9) using the Nanopore
reads mapped with minimap2 v2.23 (10). Finally, a NECAT bridging step was performed
using the primary contigs generated by Purge Haplotigs as a replacement for the draft as-
sembly by NECAT. The bridged contigs from NECAT were polished three times with HyPo
v1.0.3 (11) using the lllumina reads (after trimming with fastp v0.23.2) mapped with BWA-
MEM v0.7.17 (12). Contigs that showed >90% identity and coverage against mitochondrial
or chloroplast RefSeq sequences of Ulva species by BLASTn v2.12.0 were removed as organ-
ellar contigs. BESST v2.2.8 (13, 14) was used for scaffolding of the contigs using the lllumina
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TABLE 1 Summary of the sequence read and genome assembly data

Parameter Finding
Nanopore sequencing
No. of reads 5,280,010
No. of bases 17,282,510,862
Avg read length (bp) 3,273.2
Read N, (bp) 9,388
lllumina sequencing
Total no. of reads 74,904,442
Total no. of bases 11,235,666,300
Genome assembly
Total length (bp) 103,843,212
No. of scaffolds 142
Scaffold Ny, (bp) 4,106,524
Scaffold L, 8
Largest scaffold (bp) 9,543,602
No. of contigs 143
Contig Ny, (bp) 4,106,524
Contig Ls, 9
Largest contig (bp) 9,355,488
GC content (%) 55.57

reads mapped with BWA-MEM v0.7.17, and the final assembly was obtained (Table 1). Only
two contigs were scaffolded with a 1-bp gap by BESST. The largest sequence (9,543,602 bp)
(Table 1) was generated by this step.

Genome completeness analysis with BUSCO v5.2.2 (15) using the chlorophyta_odb10
data set (5 August 2020) and default settings showed 80.5% completeness (71.8% single-copy
and 8.7% duplicated). Our BUSCO analysis of previously published U. prolifera (3) and Ulva
mutabilis (16) genomes with the same settings showed relatively lower completeness scores
(77.2% and 79.2%, respectively). Future studies will annotate genes to analyze this genome
in more detail.

Data availability. This whole-genome shotgun project has been deposited in DDBJ
under the accession numbers BRCE01000001 to BRCE0O1000142. The raw Nanopore and
lllumina reads have been deposited in DDBJ under the accession numbers DRR361634
and DRR361635, respectively. Additional information on the parameter settings and draft
assembly results with tested assemblers can be found at figshare (https://doi.org/10.6084/
m9.figshare.19728862).
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