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Fibrostenotic strictures are an important complication in patients with Crohn’s disease 
(CD), very often necessitating surgery. This fibrotic process develops in a genetically 
susceptible individual and is influenced by an interplay with environmental, immunolog-
ical, and disease-related factors. A deeper understanding of the genetic factors driving 
this fibrostenotic process might help to unravel the pathogenesis, and ultimately lead to 
development of new, anti-fibrotic therapy. Here, we review the genetic factors that have 
been associated with the development of fibrosis in patients with CD, as well as their 
potential pathophysiological mechanism(s). We also hypothesize on clinical implications, 
if any, and future research directions.
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iNTRODUCTiON

Crohn’s disease (CD) is a chronic, inflammatory disease of the gastrointestinal tract, which predomi-
nantly affects the distal ileum and right colon. Although many patients express an inflammatory phe-
notype at diagnosis, the natural evolution of CD is commonly a progression toward a fibrostenotic 
or penetrating disease in 60% of patients (1, 2). The pathogenesis of CD is multifactorial, including a 
genetic background (3). Genome-wide association studies and meta-analysis have identified a total 
of 200 inflammatory bowel disease (IBD) risk loci thus far (4, 5).

Transmural inflammation as seen in CD can cause irreversible changes in the intestinal archi-
tecture, over time leading to fibrotic strictures necessitating surgery in 30–50% of patients (1, 2, 6). 
Recurrence of these fibrotic lesions occurs in 23–41% of CD patients, requiring additional resec-
tions (7), which in turn reinforce the recurrence rate (8). These fibrostenotic strictures are the 
result of a failure of physiological wound healing. The activation of mesenchymal cells by cytokines, 
growth factors, and other mediators released by immune cells, epithelial cells, and mesenchymal 
cells themselves are believed to play an important role (9–11). The development of fibrosis in CD is 
influenced by various genetic, environmental, immunological, and disease-related factors (12–15). 
So far, the relative contribution of each component in the pathogenesis is not clear. This review 
aims to clarify the genetic contribution in developing fibrosis in patients with CD.
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TABLe 1 | Key gene polymorphisms and their significance in intestinal fibrosis in CD.

Gene Polymorphism Association Studied population Sample sizee Reference

NOD2 rs2066844, R702W Discussed separately  
in Table 2rs2066845, G908R

rs2066847, Leu1007fsinC

ATG16L1 rs2241880, T300A Ileal disease location Australian 669–154 Fowler et al. (58)
Fibrostenotic diseasea

IL-23R rs1004819 Ileal disease locationb German 833 Glas et al. (65)
Fibrostenotic diseasea,b

CX3CR1 rs3732379, V249I/rs3732378,  
T280M

Ileocolonic disease location German 206 Brand et al. (74)
Fibrostenotic diseasea

rs3732379, V249I Fibrostenotic diseasea Caucasian 239 Sabate et al. (52)

TGF-β rs1800471, R25P Fibrostenotic diseasec Australian 235–112 Hume et al. (79)

MMP-3 −1613 5T6T Colonic disease location Dutch 134 Meijer et al. (88)
Fibrostenotic diseasea

MAGI1 rs11924265 Fibrostenotic diseased Spanish 1090–1296 Alonso et al. (96)

JAK2 rs10758669 Ileal disease location Caucasian 1528 Cleynen et al. (50)
Fibrostenotic diseased

FUT2 rs601338 Fibrostenotic diseased Belgian 647 Forni et al. (99)

IL12B rs1363670 Fibrostenotic diseased Belgian 875 Henckaerts et al. (103)

If a significant association between the given variant and disease location is found in the reference, this is mentioned in the table.
aNot corrected for disease location.
bNot significant after Bonferroni correction.
cNo longer significant after multivariate analysis taking into account disease location.
dCorrected for disease location.
eNumber of included CD patients in primary cohort − number of included CD patients in replication cohort (if applicable).
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GeNeTiCS AND FiBROSiS

There exists broad heterogeneity of published literature concern-
ing the genetic background of fibrotic CD. Below, we give an 
overview of individual variants and genes that have been associ-
ated with fibrotic disease in CD (Table 1), and we hypothesize on 
the potential pathophysiological mechanisms.

Nucleotide-Binding Oligomerization 
Domain-Containing Protein 2
The NOD2 gene is the most studied gene in relation to fibrosten-
otic disease in CD. Located in the IBD1 locus on chromosome 
16q12, it encodes CARD15, a member of the Apaf-1/NOD1 
family of CARD (caspase recruitment domain-containing 
protein) proteins (16, 17). NOD2/CARD15 is mainly expressed 
by monocytes and macrophages, where it acts as a cytosolic 
sensor for bacterial products, and is involved in apoptosis and 
activates NF-κB in response to lipopolysaccharide (LPS) binding 
at its leucine-rich repeating region (LRR) (18, 19). Moreover, the 
CARD-domain provides CARD15 the unique function to be able 
to induce interleukin 1-beta (IL-1β) processing and release (20). 
Importantly, NOD2 is also expressed in Paneth cells (21).

In the early 2000s, three NOD2 variants, including two amino 
acid substitutions (R702W in exon 4 and G908R in exon 8) 
and one frameshift mutation (Leu1007fsinC in exon 11), were 
identified as associated with CD (17, 22–25). Later on, several 
other NOD2 SNPs were found to be associated with CD, although 
the first three described still represent the strongest association 
signals. Ever since NOD2 was identified as a CD susceptibility 
gene, many genotype–phenotype studies were performed to find 

its role in defining CD disease location and behavior, but none of 
the three SNPs was uniformly found as an independent risk factor 
for developing fibrostenotic disease in CD (12, 15, 18, 19, 21, 24, 
26–53). Some genotype–phenotype studies demonstrated strong 
associations between at least one of the three NOD2 variants and 
fibrostenotic disease (19, 32, 38, 52), often independent of an 
association with small bowel disease (18, 26, 31, 37, 50) (Table 2).

The lack of uniformity concerning this topic seems mainly 
based on the small sub-analyses done in the different studies 
(Table  2). In 2004, Heresbach et  al. observed in a Northern-
French population NOD2 R702W (rs2066844) as being a 
strong predictor of fibrostenotic disease, independently of ileal 
localization of the disease (34). No other group could confirm 
this association. An association of NOD2 G908R (rs2066845) 
and fibrostenotic disease was first reported in a Spanish CD 
cohort, although fibrostenotic disease was mainly dependent on 
location of disease in the terminal ileum (33). Later on, Adler 
et al. reported in their meta-analysis G908R as being associated 
with fibrostenotic disease [pooled relative risk (RR)  =  1.90] 
(47). It is important to highlight that only 12 of all included 
studies in this meta-analysis had enough data to analyze 
individual NOD2 variants, and most included studies did not 
differentiate between G908R homo- and heterozygotes. Of the 
three NOD2 variants, the Leu1007fsinsC frameshift mutation 
(rs2066847) shows the strongest association with fibrosten-
otic disease (18, 37). The same finding was also published by 
Radlmayr et  al., who moreover reported no association with 
ileal disease (28). Vavassori et  al. also noticed an association 
between Leu1007fsinC and fibrostenotic disease, although no 
correction for ileal disease involvement was made (29). Seiderer 
et al. calculated a positive predictive value (PPV) of 80% and 
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a negative predictive value (NPV) of 75% for the diagnosis of 
small bowel stenosis in clinically symptomatic patients with a 
Leu1007fsinC variant. Furthermore, they noticed 62% of their 
patients being Leu1007fsinC homo- or heterozygous needed 
surgery, whereas the need for surgical intervention in patients 
without this variant was remarkably low (53). A sub-analysis of 
another cohort with 19 patients, all Leu1007fsinC homozygous, 
identified a high-risk population, characterized by, for instance, 
long-segment stenosis, frequent need for surgery, and high risk 
for re-stenosis afterward (24). The same group confirmed these 
findings later on in a prospective study (53), whereafter the 
European IBD chip project reported the same in a retrospective 
study (n = 38) (50), as did Schnitzler et al. (51). Besides studying 
the association of individual NOD2 SNPs with a fibrostenotic 
CD phenotype, often the NOD2 SNPs are considered together. 
The pooled RR of stricturing disease with the presence of any 
NOD2 variant allele was 1.33 in a meta-analysis, including 35 

studies by Adler et al. (47). Furthermore, Lesage et al. clearly 
described the “gene dosage effect” of NOD2 SNPs: patients car-
rying two SNPs have a higher incidence of stenosis compared 
to patients with one or two wild-type alleles (26), which was 
afterward confirmed by others (31, 40, 47). Although many 
groups, thus, reported an association between NOD2 variants 
and fibrostenotic disease, several studies could not find this 
association. Louis et  al. found that only disease location and 
number of flares per year are significantly different between 
different CD phenotypes, and that ileal disease location was 
associated with a stricturing disease pattern (30). In addition, 
although NOD2 variants were associated with CD susceptibil-
ity in a Brazilian population, Baptista et  al. could not find a 
genotype–phenotype correlation (42). The biggest study looking  
into genotype–phenotype associations in IBD to date, also did 
not find an association between NOD2 and fibrotic disease, 
when considering disease location. They conclude that while 

TABLe 2 | Overview of original studies showing an association between NOD2 and fibrotic CD.

Polymorphism Association Studied population Sample size Reference

rs2066844 Fibrostenotic diseasea French 205 Heresbach et al. (34)
R702W

rs2066845 Fibrostenotic diseasec Spanish 204 Mendoza et al. (33)
G908R Fibrostenotic diseaseb Meta-analysis 8833 Adler et al. (47)

rs2066847
Leu1007fsinC

Ileal disease location North-American 201 Abreu et al. (18)
Fibrostenotic diseaseb

Ileal disease location Italian 133 Vavassori et al. (29)
Fibrostenotic diseasec

Fibrostenotic diseasec German 97 Radlmayer et al. (28)
Ileal disease location Italian 316 Annese et al. (37)
Fibrostenotic diseaseb

Fibrostenotic diseasec German 80 Seiderer et al. (53)
Ileal disease location German 303 Seiderer et al. (24)
Fibrostenotic diseasec

Ileal disease location Caucasian 1528 Cleynen et al. (50)
Fibrostenotic diseasea

Ileal disease location German 550 Schnitzler et al. (51)
Fibrostenotic diseasec

All SNPs combined Ileal disease location British 244 Ahmad et al. (19)
Fibrostenotic diseased

Ileal disease location Finnish 271 Heliö et al. (32)
Fibrostenotic diseasec

Ileal disease location Hungarian 527 Lakatos et al. (38)
Fibrostenotic diseasec

Ileal disease location North-American 201 Abreu et al. (18)
Fibrostenotic diseasea

Colonic disease location Caucasian 453 Lesage et al. (26)
Fibrostenotic diseasea

Ileal disease location North-American 275 Brant et al. (31)
Fibrostenotic diseasea

Ileal disease location Italian 316 Annese et al. (37)
Fibrostenotic diseasea

Ileal disease location Caucasian 1528 Cleynen et al. (50)
Fibrostenotic diseasea

Ileal disease location Spanish 239 Sabate et al. (52)
Fibrostenotic diseasec

If a significant association between the given variant and disease location is found in the reference, this is mentioned in the table.
aCorrected for disease location.
bUnclear if corrected for disease location.
cNot corrected for disease location.
dNo longer significant after multivariate analysis taking into account disease location.
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disease location is in part genetically determined, it is consid-
ered an intrinsic aspect of a patient’s clinical disease and the 
major driver to changes in disease behavior over time (15).

If there would be an independent association between NOD2 
variants and fibrostenotic disease in CD, how could this be 
pathophysiologically explained? NOD2 variants might induce 
fibrostenotic disease by shifting T lymphocytes toward tissue 
growth factor beta (TGF-β) cytokine production and by increas-
ing collagen deposition by smooth muscle cells and fibroblasts 
in the intestine (18). Of the three main variants, functional data 
are primarily available for Leu1007fsinC: Leu1007fsinC leads to 
a truncated CARD15 protein, resulting in an altered activation 
of NF-κB following bacterial triggers (23). Furthermore, it was 
previously thought that Leu1007fsinC was associated with an 
impaired IL-1β production and dendritic cell function, resulting 
in a dysregulation of the antibacterial host defense, increased 
intestinal permeability, and impaired regulation of innate and 
adaptive immunity in the intestinal tract (53). However, Maeda 
et al. later on reported Leu1007fsinC is associated with enhanced 
NF-κB activation and IL-1β secretion in mice (20). Additional 
mechanisms, such as diminished mucosal alpha-defensin expres-
sion, might also be involved (53). It is possible that the other 
two variants also alter the structure of LRR domain, resulting in 
abnormalities in bacterial recognition (35).

Autophagy-Related 16-Like 1
The ATG16L1 gene, member of a large family of genes involved 
in autophagocytosis, is located on chromosome 2q37. It encodes 
a protein in the autophagosome pathway that is essential in the 
targeting and destruction of pathogen-derived proteins in the 
innate immune response (54, 55). Furthermore, autophagy is 
important for degrading cytoplasmic components, sequestered 
within vesicles, by the lysosome (21).

After the ATG16L1 T300A variant (rs2241880) was identified 
as a susceptibility variant for CD (54, 56, 57), Prescott et al. were 
the first to associate this variant with ileal disease location, inde-
pendent of NOD2 state or disease duration; they did not mention 
an association with stricturing disease (55). Later on, Fowler et al. 
reported a significant association between fibrostenotic disease, 
the GG risk genotype, and ileal disease, independent of NOD2 
(although the number of NOD2 variants in their Australian CD 
population might be too small) (58). However, the European 
IBDchip Project could not confirm this association between 
ATG16L1 T300A and fibrostenotic disease (50).

The T300A amino acid substitution is a highly conserved 
residue that is located in the WD-repeat domain of autophagy-
related 16-like 1 (ATG16L1) and which may therefore affect 
interactions of the protein with other components of the 
autophagosome (55). This variant plays an important role in 
pathogen clearance (59), resulting in imbalanced cytokine 
production (60). Moreover, presence of this ATG16L1 risk allele 
seems associated with a reduced ability to generate a specific type 
of macrophages (Mφind, phenotypically closely resembling the 
anti-inflammatory CD206+ M2-macrophages), also implying 
an impaired anti-inflammatory functioning (61). The resulting 
inflammatory signals could eventually stimulate mesenchymal 
cells to make enormous amounts of collagen and other fibrogenic 

molecules (62). Importantly, a link between NOD2 and ATG16L1 
in the activation of autophagy could also be relevant for intestinal 
fibrogenesis: it is possible that NOD2 and/or ATG16L1 variants 
jointly can alter the responsiveness of immune cells to bacterial 
components, thereby amplifying inflammatory signals leading to 
fibrosis (62). Moreover, the ATG16L1 T300A variant enhances 
NOD2-driven cytokine production in an autophagy-independent 
manner (60, 63).

interleukin-23 Receptor
IL-23R is found on chromosome 1p31 and encodes a subunit of the 
receptor for the proinflammatory cytokine interleukin-23 (64). It 
is highly expressed on the cell membrane of memory T cells and 
other immune cells, such as natural killer cells, monocytes, and 
dendritic cells, which identify foreign substances to defend the 
body against infection. Interleukin-23 receptor (IL-23R) is involved 
in the mediation of proinflammatory activities by the production of 
interleukin 17 via the activation of Th17 lymphocytes (21).

After Duerr et al. described IL-23R as a susceptibility gene to 
CD (64), Glas et al. published a genotype–phenotype correlation 
for the rs1004819 SNP within IL-23R. This group noticed an 
increased incidence of ileal involvement and fibrostenotic disease 
in TT homozygous carriers compared to CC wild-type carriers, 
which, both however, lost significance after Bonferroni correc-
tion (65). We did not find evidence of an association of the main 
CD-associated SNP in IL-23R, rs11202926 (64), with intestinal 
fibrosis in existing literature.

Major Histocompatibility Complex
The major histocompatibility complex (MHC) region encodes a 
large number of immunological proteins, including the antigen-
presenting classical human leukocyte antigen (HLA) molecules. 
Genome-wide association studies of IBD have shown strong 
evidence of association with the MHC complex (66). Because of 
the complexity of the region, many researchers avoid including 
this region into their analysis. One study by Ahmad et al. studied 
340 SNPs in 24 genes from the HLA region in relation with 
fibrotic CD, but did not find an association (19). The IIBDGC 
genotype–phenotype study found a genome-wide significant 
association with rs77005575 located in the MHC region and 
disease behavior, independent of disease location (15). None of 
the included classical HLA alleles were independently associated 
with disease behavior in this study.

Toll-Like Receptors
Toll-like receptors (TLRs) are transmembrane domain protein 
with a tripartite structure: they contain an extracellular domain 
(including LRRs) responsible for ligand recognition, a single 
transmembrane-spanning region, and a globular cytoplasmic 
Toll/IL-1 receptor (TIR)-signaling domain. Currently, 10 TLRs 
are described in humans (67). They are expressed in myeloid 
cells and play a major role both in detecting microbes and in 
initiating innate immune responses. TLR4, expressed in the Golgi 
apparatus of intestinal epithelial cells (IECs), interacts with LPS, 
contributing to the perpetuation of inflammatory epithelial cell 
injury via tumor necrosis factor alpha (TNF-α)-induced altera-
tions of enterocyte turnover in an (auto)paracrine matter (38).
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In 2004, Franchimont et al. identified rs4986790 (Asp299Gly), 
within TLR4 as a susceptibility variant to CD, regardless of 
association with phenotype (68). This variant is associated with 
decreased responsiveness to endotoxins in humans (69, 70). 
Lakatos et  al. could not find this association in a Hungarian 
cohort (possibly because the variant allele is more present in 
their control population compared to Franchimont et  al.), and 
they also did not find a genotype–phenotype correlation for this 
SNP (38). Although there is no strong evidence for a role for 
TLR4 in the pathogenesis of fibrostenotic disease in CD, Rieder 
et al. suggested the first direct link between innate immunity to 
bacteria (via TLRs) and fibrosis in humans (71). Furthermore, in 
other diseases, such as systemic sclerosis and liver fibrosis, TLR4 
might have a pathophysiological contribution (72, 73).

Fractalkine Receptor 1, CX3CR1
CX3CR1 (previously termed V28) is a leukocyte chemotactic 
and adhesion receptor that binds fractalkine (CX3CL1 or 
neurotactin, expressed in epithelial and endothelial cells), a 
CX3C chemokine that exhibits properties of both traditional 
chemokines and adhesion molecules (74). CX3CR1 is expressed 
on natural killer cells, monocytes, CD8+, and some CD4+ 
T  cells. By binding fractalkine, it regulates the migration of a 
subpopulation of CD8+ intraepithelial lymphocytes into the 
intestinal lamina propria and their interaction with IECs (74). 
After stimulation by bacteria (or bacterial degradation prod-
ucts), CX3CR1-expressing cells rapidly adhere to the inflamed 
vascular endothelium and may play a role as a vascular gateway 
for cytotoxic effector cells (52).

After two strongly correlated (D′ = 0.99) CX3CR1 polymor-
phisms (V249I, rs3732379; T280M, rs3732378) were identified in 
HIV-positive patients (75), Brand et al. investigated these SNPs 
in the context of CD. They observed an association between both 
SNPs and fibrostenotic disease (without Bonferroni correction), 
but this was not independent of ileocolonic disease location (74). 
Later, Sabate et  al. again noticed a trend toward fibrostenotic 
behavior in V249I carriers (not statistically significant after 
Bonferroni correction), especially in smokers, independent 
of NOD2 Leu1007fsinC carriage and ileal involvement (52). 
Although the two SNPs are strongly correlated (75), Sabate et al. 
did not see a similar trend for T280M (52).

Several findings point toward CX3CR1 as a critical component 
in maintaining homeostasis of lamina propria macrophages, and 
master regulators of inflammation and fibrosis (76). Importantly, 
specifically for the described variants, it was shown in vitro that 
peripheral blood mononuclear cells (PBMCs) from individu-
als with wild-type CX3CR1 genotype adhere more potently to 
membrane-bound fractalkine than do PBMCs from homozygous 
V249I–T280M donors (74, 77). Despite the limited data about 
an association between CX3CR1 and fibrostenotic disease, these 
functional data could point toward a true role for the CX3CR1/
fractalkine axis in fibrosis in CD.

Tissue Growth Factor Beta
Tissue growth factor beta is encoded by a gene on chromo-
some 19q13. It is a regulatory protein that plays a key role in 

inflammatory, fibrotic, and immunological events in the intes-
tinal mucosa (78, 79). Enhanced expression of TGF-β and its 
receptors seems to be involved in the pathogenesis of CD, and 
might contribute to fibrosis (80, 81). After some SNPs (including 
C509T) in the TGF-β1-gene were described to lead to variations 
in the production of TGF-β serum levels in women (82, 83), some 
groups looked in vain for an association with susceptibility to CD 
(79, 81, 84). However, Hume et al. observed a significant associa-
tion between the AA genotype of a SNP in codon 25 in the TGF-
β1 gene and a fibrostenotic phenotype. CD patients homozygous 
for the profibrotic A allele also tended to have a shorter time to 
intestinal resection (79).

Angiotensinogen
Angiotensinogen, mapped to chromosome 1q42, is meant to 
function locally as a cytokine in several organ systems, participat-
ing in the regulation of inflammation and fibrosis. After being 
cleaved by renin into angiotensin I and processed to angiotensin 
II, it may increase the production of TGF-β1 (79).

After a gain of function SNP 6 bp from the transcription site 
was described in the angiotensinogen gene (85), Hume et al. stud-
ied its association with CD and CD phenotype. They reported a 
positive association for the A allele and CD, although without any 
genotype–phenotype association at the univariate or multivariate 
level (79).

Matrix Metalloproteinases and Tissue 
inhibitors of MMPs
Matrix metalloproteinases (MMPs), all Zn-activated endopro-
teinases, are subdivided into four groups, depending on their 
structure and substrate specificity: collagenases, gelatinases, 
stromelysins, and membrane-type MMPs (86–88). They mediate 
degradation of essentially all components of the extracellular 
matrix. The enzymatic activity of these potentially harmful pro-
teinases is tightly controlled and counterbalanced by endogenous 
inhibitors, such as alpha 2 macroglobulin, and specific tissue 
inhibitors of MMPs, the so-called TIMPs. TIMPs are produced 
by the same cell types that produce MMPs, primarily in cells 
resembling macrophages and fibroblasts (87, 89).

In the last decade, many different SNPs in these genes were 
described, related to processes such as fetal development (90), 
primary sclerosing cholangitis (91), and coronary atherosclerosis 
(92). Meijer et al. also studied their role in relation to CD suscep-
tibility and CD phenotype. They found that the 5T5T genotype at 
the MMP-3 locus (an additional thymidine insertion at −1613 of 
the MMP-3 promoter) was associated with fibrostenotic CD (88). 
Furthermore, expression data of Warnaar et  al. demonstrated 
increased levels of MMP-3 in stenotic and prestenotic resected 
CD ileum, pointing to an MMP-3 (stromelysin-1)-mediated 
altered clinical course of CD patients. These findings might 
explain the high recurrence rate of intestinal strictures, as in 
non-resected, prestenotic CD ileum in which the anastomosis 
is made, tissue turnover is present (89). Conflicting evidence 
exists regarding the consequences of the 5T5T genotype: some 
groups reported upregulation of MMP-3 expression (93, 94), 
whereas others reported a downregulation (95). In the study by 
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Meijer et  al., patients stratified according to MMP-3 genotype 
had similar MMP-3 total activity (88).

Membrane-Associated Guanylate Kinase, 
ww and PDZ Domain-Containing 1
MAGI1 is located on chromosome 3p14 and encodes the 
membrane-associated guanylate kinase WW and PDZ domain-
containing protein 1 (96). This protein plays an important role 
in the tight junction of IECs through interaction with JAM4, a 
junctional adhesion transmembrane molecule. Disruption of 
this epithelial barrier can have dramatic effect on the mucosal 
integrity, which has been shown to contribute to the development 
of CD (96).

Alonso et  al. recently published an interesting association 
between fibrostenotic CD and rs11924265, located in a 46.5-kb 
haplotype block inside a MAGI1 intron. They validated this 
association in an independent replication cohort (96). Previously, 
other groups have shown a significant increase in intestinal per-
meability in patients with stricturing disease (97). Rs11924265 
might induce an alteration in the membrane-associated guanylate 
kinase, WW and PDZ domain-containing 1 (MAGI1) protein 
function, contributing to an exaggerated immune response and 
to the subsequent transmural inflammation of the gastrointesti-
nal tract (96).

Janus Kinase 2
JAK2, located on chromosome 9, encodes for an intracellular 
tyrosine kinase that transduces cytokine-mediated signals 
via the JAK-STAT pathway (50, 70). The large, retrospective, 
and multicentre IBDchip study found that rs10758669 (C 
allele), within the JAK2 gene, is associated with an increased 
risk for ileal involvement and stenosing disease behavior. One 
mechanism by which Janus kinase 2 (JAK2) contributes to this 
fibrostenotic disease could be by altering intestinal permeability 
(50). Indeed, Prager et al. previously demonstrated that patients 
carrying the rs10758669 C risk allele significantly more often 
had an increased permeability compared with patients without 
the C allele (98).

Fucosyltransferase 2
FUT2, located on chromosome 19 (70), encodes the secretor 
enzyme alpha(1,2)-fucosyltransferase (Lewis blood group 
system), which allows expression of ABO antigens on the gastro-
intestinal mucosa and in bodily secretions (secretor phenotype) 
(99). After a nonsense allele in FUT2, rs601338 (W143X), was 
identified as a susceptibility variant for CD (100, 101), Forni et al. 
found non-secretors to be at slightly higher risk of a stricturing/
penetrating behavior (OR 1.51, p  =  0.046). Additionally, their 
analysis revealed patients with blood group O are less likely to 
develop a stricturing disease (OR 0.70, p = 0.038) (99). Although 
it is known that fucosyltransferase 2 (FUT2) expression affects 
the composition of the gut microbiota (102), the pathophysi-
ological link between this specific SNP and fibrostenotic disease 
has not been unraveled yet. Theoretically, an altered microbial 
environment might induce more severe inflammation, leading to 
a more aggressive phenotype.

Other Genes
In 2009, Henckaerts et  al. examined the influence of some 
CD-associated susceptibility loci on changes in disease behavior. 
They found that homozygosity for the rs1363670 G-allele in a 
gene encoding a hypothetical protein near the IL12B gene, located 
on chromosome 5, was independently associated with stricturing 
disease behavior, especially in patients with ileal involvement 
(70, 103). So far, the pathophysiological consequences of this 
SNP, leading to a non-coding transcript variant, are not fully 
understood (70).

Because inherited risk factors [factor V Leiden, methylene-
tetrahydrofolate reductase (MTHFR) C677T] have been reported 
to be associated with fibrosis in other chronic inflammatory 
diseases, Novacek et al. performed a retrospective study in CD 
patients aiming to identify these risk factors in fibrostenotic 
CD. They concluded that the MTHFR 6777TT variant, factor V 
Leiden, and the prothrombin G20210A variant are not associated 
with fibrostenosis in CD (104).

As TNFα plays a pivotal role in the pathophysiology of 
IBD, confirmed by the efficacy of anti-TNF drugs, such as inf-
liximab and adalimumab (105), Meijer et al. investigated the 
association between a SNP (G308A) in TNFα and fibrostenotic 
disease (88). In line with other reports (106, 107), they could 
not find an association between this SNP and fibrostenotic 
CD (88).

The Combined Action of the Known 
Susceptibility variants
Crohn’s disease is a complex multigenic disease, where several 
small-effect risk variants combined influence disease onset. It is 
more and more suggested that combining the many individually 
weak signals into a genetic risk score might be a more powerful 
approach to study the genetic association with subphenotypes or 
to improve predictive ability of disease (15, 108). Such a genetic 
risk score was calculated in the IIBDGC genotype–phenotype 
study and tested for association with several disease subphe-
notypes. A strong association with disease behavior was found 
(p = 9.23 × 10−18), indicating that the known susceptibility loci 
combined can be a useful measurement of CD subtypes, but still 
do not have enough predictive ability to distinguish between the 
different subtypes (15).

GeNeTiCS AND FiBROSiS iN 
PeDiATRiC CD

Currently, not much is known about the genotype–phenotype 
association in pediatric CD. Russell et al. studied NOD2 variants 
in the Scottish early onset CD population (aged <16 years) and 
noticed a relatively small contribution to CD susceptibility, but 
a major impact on phenotype. Presence of stricturing disease 
behavior at diagnosis showed a trend toward an increase in 
carriers of NOD2 variant alleles, which became significant by 
2 years of follow-up (39). The association of NOD2 variants and 
fibrostenotic pediatric CD was previously already reported by 
two other groups (109, 110).
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In contrast with a study in adult CD (79), Liberek et al. could 
not find any significant correlation between the four common 
SNPs in TGF-β and any specific clinical parameter (111).

In 2014, Strisciuglio et al. performed a genotype–phenotype 
correlation study, focusing on autophagy gene variants. They 
observed a trend toward switching to a fibrostenotic disease in 
children homozygous for the ATG16L1 T300A risk allele. They 
did not find an association between NOD2 variants and strictur-
ing CD (112).

GeNeTiCS AND FiBROSiS AROUND 
THe wORLD

Although the incidence of IBD is rising in developing countries 
(113, 114), epidemiological data on the clinical phenotype of 
disease, and genotype–phenotype association studies, in non-
European populations are limited. Similar as for Caucasian 
populations though, several smaller genotype–phenotype studies 
have been performed in non-Caucasian populations (115–120). 
These usually study the same variants as those considered in 
Caucasian populations (NOD2, IL-23R, etc.), but only one Korean 
study found the IL23R variant rs1004819 associated with strictur-
ing and penetrating disease (119). It is possibly not surprising 
that NOD2 variants are not found to be associated with disease 
(subtypes) in different populations, as NOD2 variants have 
been seen with different frequencies in geographically diverse 
populations. Whereas the prevalence of CD patients who carry 
at least one NOD2 susceptibility variant varies from 27 to 50% 
in most Caucasian European populations, observed frequencies 
are much lower (15–21%) in Scandinavian countries (121, 122), 
which are generally characterized by more homogenous study 
populations. Caucasian populations, relatively far from Europe, 
but with European ancestry with hardly no racial mixing, such 
as the United States, Canada, and Australia, have NOD2 vari-
ant frequencies comparable with those found across the rest of 
Europe (122). In Asians (Japanese, Chinese, and Korean), Arabs, 
Africans, and African-Americans, the NOD2 variants are rare or 
even absent (5, 21, 116).

Recently, the first trans-ancestry association study of IBD was 
published by the IIBDGC (5). They collected subphenotype data 
on 1991 patients with CD from East Asia, India, and Iran, and 
compared these data with available clinical phenotypes for 19,290 
Europeans (15). They showed some demographic differences, 
with, for example, more stricturing behavior and perianal and less 
inflammatory CD in the non-European population compared to 
the European population, in line with the previously reported 
prospectively collected clinical findings in incident cases of IBD 
in non-Europeans (114). It will be interesting to see if these 
differences are explained by genetic factors that differ between 
populations, or rather by environmental factors (including differ-
ent health-care systems), ascertainment bias, or a combination of 
these. The trans-ancestry association study showed that although 
for the majority of the IBD risk loci, the direction and magnitude 
of effect are consistent in European and non-European cohorts, 
genetic heterogeneity was seen between divergent populations 
at several established risk loci, driven by differences in allele 
frequency (NOD2), effect size (TNFSF15 and ATG16L1), or a 

combination of both (IL23R and IRGM). A large trans-ancestry 
genotype–phenotype study is under way, undoubtedly shedding 
light on possible genetic heterogeneity of disease subphenotypes 
in different populations.

THe PROMiSe OF ePiGeNeTiCS

So far, the epigenetic control of inflammation and fibrosis in IBD 
is not fully understood (12). But, as only a modest fraction (ca. 
15%) of the 200 association signals is driven by missense muta-
tions, the large majority of causal alleles is likely to be related 
to regulatory functions such as modulation of gene expression 
(123). Intestinal disease-associated DNA methylations in IBD 
do occur, leading to changes in gene expression (124), such as 
in several loci within the interleukin 12/interleukin 23 pathway 
(125). As epigenetic changes are dynamically responsive to the 
environment, they are likely to play a key role in the pathogenesis 
of fibrosis and offer a molecular explanation for how the intestine 
becomes profibrotic (126).

Sadler et al. recently published their genome-wide analysis of 
DNA methylation and gene expression in the context of fibrotic 
CD (126). They found three functional candidate genes to be 
differentially methylated and expressed in fibrotic CD: wingless-
type mouse mammary tumor virus integration site family 
member 2B (WNT2B), prostacyclin synthase (PTGIS), and pros-
taglandin D2 synthase (PTGDS) (126). The decreased expression 
of hypermethylated WNT2B and PTGIS are novel findings both 
in the context of fibrosis and CD, though hypermethylation of 
the PTGIS promoter has been described as a feature of colorectal 
cancer (127). Interestingly, increased expression of WNT2B has 
been detected in the intestinal mucosa of UC patients (128), 
suggesting that WNT2B may perform distinct functions in CD 
and UC (126). Hypomethylation of the PTGDS gene, together 
with increased gene expression levels, was previously noticed 
in a murine UC model (129). In future, both epigenetic and 
transcriptomic analyses will undoubtedly reveal novel insights 
in the pathogenesis of stricturing CD, potentially leading to new 
targeted therapies.

CLiNiCAL iMPLiCATiONS

Based on current evidence, it is too early to adjust treatment in 
CD patients according to genetic profiles, in order to personalize 
treatment in CD (15). NOD2 is by far the most studied genetic pre-
dictor for fibrostenotic disease in CD, and many studies suggested 
an important role for NOD2 variants in developing fibrostenotic 
CD. Still, the low sensitivity of a single NOD2 variant for predict-
ing fibrostenotic disease does not justify NOD2 genotyping in all 
patients (48), and there is no adequate scientific evidence for a 
top-down medical therapy based solely on NOD2 variants. It has 
been suggested that targeted early-intensive therapy for high-risk 
patients with two NOD2 mutations might be beneficial, if proven 
by prospective trials (47), but so far this evidence does not exist. 
Importantly, based on the biggest genotype–phenotype study 
ever done including over 19,000 CD patients, it was found that 
no NOD2 variants are associated with fibrostenotic disease after 
conditioning for disease location. Disease location thus seems to 
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be the major driver to changes in disease behavior over time (15). 
Preferential involvement of the terminal ileum could be explained 
by NOD2 variants abrogating normal Paneth cell behavior, as 
Paneth cells express NOD2/CARD15 throughout the small intes-
tine, with maximal expression in the terminal ileum (35, 130).

CONCLUSiON AND FUTURe DiReCTiONS

As outlined above, several genotype–phenotype studies have 
been performed to find which genetic variants play a role in 
defining CD disease location and behavior, but hardly any 
variants were uniformly found as independent risk factors for 
developing fibrostenotic disease in CD. Different reasons can be 
put forward. The first one is related to power of the individual 
studies. Many studies indeed included relatively small patient 

numbers (Table  1), and looking into subgroups of patients 
makes the sample sizes even smaller. It should also be noted 
that various studies might include patient groups from either 
population-based registries and/or from secondary or tertiary 
referral centers. This has a direct influence on the proportion of 
patients with more severe disease as opposed to inflammatory 
disease, which in turn could lead to over or under presentation 
of certain genetic associations. An example is the Scandinavian 
registries that are population-based and where indeed a lower 
proportion of stenosing and penetrating CD is seen (15). NOD2 
frequencies in these populations are also lower (see above) (121), 
but this could be linked to the population-based character of 
the study population. Third, most susceptibility variants are not 
the pathophysiological causal ones, but are in LD with the true 
causal variant(s) at that locus, which might have more qualitative 
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Figure  1 gives an overview of different interacting aspects 
we believe are important in fibrotic CD pathogenesis and sum-
marizes the genetic factors identified thus far. In future studies 
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