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Even though sudden unexpected death in epilepsy (SUDEP) takes the lives of thousands

of otherwise healthy epilepsy patients every year, the physiopathology associated with

this condition remains unexplained. This article explores important parallels, which exist

between the clinical observations and pathological responses associated with SUDEP,

and the pathological responses that can develop when a set of autonomic reflexes known

as the mammalian dive response (MDR) is deployed. Mostly unknown to physicians,

this evolutionarily conserved physiological response to prolonged apnea economizes

oxygen for preferential use by the brain. However, the drastic cardiovascular adjustments

required for its execution, which include severe bradycardia and the sequestration of a

significant portion of the total blood volume inside the cardiopulmonary vasculature, can

result in many of the same pathological responses associated with SUDEP. Thus, this

article advances the hypothesis that prolonged apneic generalized tonic clonic seizures

induce augmented forms of the MDR, which, in the most severe cases, cause SUDEP.

Keywords: sudden unexpected death in epilepsy, SUDEP, mammalian dive response, MDR, pulmonary edema,

diving bradycardia, apnea, demargination

INTRODUCTION

Increasingly, neurologists are coming to terms with the reality that epilepsy patients die suddenly
24–28 times more frequently than the general population (1, 2). Victims are often found dead,
in bed. Seizures are occasionally witnessed prior to death, but often only a hint of one is
discovered (e.g., a tongue bite) (3). Witness accounts indicate that sudden unexpected death
in epilepsy (SUDEP), as this enigmatic phenomenon is known, is associated with generalized
tonic-clonic seizures (GTCS) (4–7), hypoventilation, peri-ictal apnea (5, 8–10), bradycardia, ictal
asystole (10), and postictal generalized electroencephalographic suppression (PGES) (11). From an
epidemiological standpoint, SUDEP affects patients who are young and otherwise healthy (12–14),
as well as patients who suffer from comorbid organic psychiatric disease (14).

A well-known study of SUDEP cases videotaped inside epilepsy monitoring units (EMU) from
around the world demonstrated a consistent pattern that involves GTCS, ictal hyperventilation,
cardiorespiratory dysfunction, and terminal apnea followed by bradycardia and asystole (10).
Autopsy reports have shown pulmonary edema so consistently, (15–19) that it is considered a
pathological hallmark of this condition (5, 10). Pulmonary hemorrhages, cerebral edema and/or
cerebral petechial hemorrhages are also found at autopsy, although less frequently (15, 17–19).
Heart and lung weights are generally increased, in association with a normal cardiac structure
(12, 15, 18), suggesting that SUDEP results from an acute process unrelated to chronic cardiac
disease.
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As SUDEP is relatively rare and difficult to investigate (20),
it is not entirely surprising that these clinical observations
and pathological findings remain unexplained. Current theories
include a convergence of postictal coma, airway obstruction
and hypoventilation (9), central and obstructive apnea (5),
susceptibility to sudden death due to the coexistence of
genetic cardiac arrhythmogenicity and epilepsy (21), postictal
neurovegetative breakdown (10), and imbalances in sympathetic
and parasympathetic control over cardiorespiratory function
(22). While these theories offer a general view of the
suspected physiopathology of SUDEP, amechanistic hypothesis is
lacking.

This article provides a brief description of the mammalian
dive response (MDR), a set of autonomic reflexes triggered
simultaneously during sustained apnea in order to protect the
brain from hypoxia. It also presents remarkable parallels which
exist between the physiopathology of this response, and that of
SUDEP, and hypothesizes that prolonged apneic seizures induce
augmented, ictal, forms of the MDR, which can culminate in
sudden death.

WHAT IS THE MDR?

Humans share with marine and other terrestrial mammals a
multipronged, autonomic response to submersion known as the
MDR (23, 24). Its discovery dates back to 1786 when Edmund
Goodwyn [1756–1829], an inquisitive medical student at the
University of Edinburgh, subjected a toad to conditions of forced
water immersion while investigating the physiological correlates
of death by drowning (25, 26). He observed that quickly after
immersion, the toad’s heart rate decelerated gradually, until it
ceased. But soon after its removal from the water, the toad
took a deep breath, its heart resumed beating, and it walked
about “without any expressions of uneasiness” (25). Goodwyn,
however, did not realize the importance of this observation,
which remained in relative obscurity for several decades until
it became part of the theoretical background that led Paul
Bert [1833–1886] to find a similar phenomenon in ducks (26,
27). Later, Charles Richet [1850–1935] demonstrated that Bert’s
observation represented an oxygen-conserving reflex which is
triggered when water makes contact with its nostrils and beak
(28). In addition, by blocking the reflex with atropine, he was
able to attribute its efferent arm to the decelerating action of
the vagus nerve on the heart (29). Decades later, Andersen and
colleagues performed selective denervation experiments which
led them to conclude that the afferent arm of the reflex was
mediated by the ophthalmic branch of the trigeminal nerve (30).
Today, over 230 years after its first description, we know that
this primitive, oxygen-conserving reflex, which has come to be
known as “diving bradycardia” (31, 32), is only one aspect of
the autonomic nervous system’s response to submersion, –the
MDR– which also involves apnea, peripheral vasoconstriction,
and splenic contractions (24, 31).

The apnea of the MDR was first shown in anesthetized
and decorticated ducks subjected to forced water immersion
(33), but a similar reflex was subsequently found in several

marine and terrestrial species (34–38). This involuntary apnea,
which occurs simultaneously with diving bradycardia, is also
associated with a profound vasoconstriction that prevents blood
from circulating through peripheral tissues, thus conserving
most of the available oxygen for preferential use by the brain
and heart (34, 35, 39–41). Seals, for instance, experience
over 90% reduction in peripheral circulation in association
with a nearly 400% increase in cardiopulmonary blood flow
during submersion (41). While cardiac output is reduced under
these circumstances, cerebral blood flow is preserved (41) or
increased (42). A fourth reflex, also triggered simultaneously,
was discovered when seals were noted to exhibit hematocrit
increases of more than 60% during some dives (43, 44). This
effect was later found to stem from a release of resident red
blood cells (RBCs) from the spleen, due to contractions promoted
by systemic catecholamines (45, 46). The resulting boost in
hemoglobin from these contractions helps to maximize brain
oxygenation during apnea (47). Thus, the MDR is composed
of four oxygen-conserving reflexes –apnea, diving bradycardia,
peripheral vasoconstriction, and splenic contractions, –which act
simultaneously during submersion to protect the brain from
hypoxia (23, 24, 31, 48).

THE HUMAN MDR

After decades of animal research on the subject, three legendary
physiologists, Irving, Sholander and Grinnell, finally reported “a
good human diver” who exhibited significant diving bradycardia
while swimming (49). Several years later it was shown that
humans can elicit diving bradycardia by combining facial
immersion with voluntary apnea (50–52). This effect occurs
simultaneously with a marked peripheral vasoconstriction (53,
54), which shunts a significant portion of the total blood
volume into the cardiopulmonary vasculature (55–58). This latter
component of the human MDR is often referred to as the
“blood shift” (55, 56, 59). However, unlike aquatic mammals,
whose blood pressure is unchanged by the MDR (60), human
blood pressure increases drastically by this response, reaching
values as high as 280/200 (61, 62). Such an altered hemodynamic
state increases cerebral blood flow (62–65) and impairs cerebral
autoregulation (66), despite a concomitant reduction of cardiac
output (61, 67). The human MDR also involves splenic
contractions that result in transient but modest elevations in
circulating RBCs (45, 68, 69). A bystander effect of these
contractions, without any apparent physiological benefit to the
oxygen-conserving purposes of the MDR, is the release of large
numbers of splenic white blood cells (WBC) into the bloodstream
(68). More recent work has shown that humans can trigger
the MDR through prolonged voluntary apnea, independently of
facial immersion (62, 63, 65, 69), and this effect is augmented
if apnea is performed with exercise (51, 54, 65, 70). Thus,
humans, like all other vertebrate species tested to date, exhibit
a complex oxygen-conserving response to prolonged apnea, the
MDR, which is characterized by bradycardia, vasoconstriction,
hypertension, increased cardiopulmonary and cerebral blood
flow, and splenic contractions (48).

Frontiers in Neurology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 677

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Vega MDR Physiopathology Causes SUDEP

PHYSIOPATHOLOGY OF THE HUMAN MDR

Even though the MDR represents a beneficial set of reflexes
to conserve oxygen and maximize the chances of survival
during apneic conditions (23, 24), its deployment poses a major
challenge to human physiology. For instance, the overwhelming
parasympathetic discharge that causes diving bradycardia can
result in heart rates as low as eight beats per minute, and is
invariably accompanied by electrocardiographic abnormalities,
including pointed T waves, ectopic beats, abnormal P waves,
atrioventricular nodal and idioventricular rhythms, AV block,
sinus-arrest followed by nodal or ventricular escape, and ectopic
ventricular beats (31, 71–73). Combined with a simultaneous,
and equally overwhelming sympathetic response, which induces
severe peripheral vasoconstriction (51, 54), and hypertension
(61, 62, 64) the MDR generates an autonomic conflict that
can lead to dangerous conduction abnormalities (74). This has
led some to hypothesize that the diving bradycardia of the
MDR is to blame for some cases of sudden cardiac death
(74, 75), and sudden infant death syndrome (76). Triggered
while swimming, diving bradycardia is also thought to induce
fatal cardiac arrhythmias in otherwise healthy individuals
who harbor subclinical pro-arrhythmogenic conditions (77–
80). For instance, an eye-opening study that tested for cardiac
channelopathies in drowning victims, found that nearly 30%
of them hosted mutations that would have made them
susceptible to developing either long QT syndrome (LQTS)
or catecholaminergic polymorphic ventricular tachycardia while
swimming (79). These data are in sharp contrast with, for
instance, the 0.05% estimated incidence of congenital LQTS
in the general population (81), and further implicate diving
bradycardia in the unmasking of potentially lethal arrhythmias
(74, 75, 77–80, 82, 83).

The blood shift is yet another aspect of the MDR thought
to induce pathology in humans, due to the abrupt shunting
of excess blood into the intrapulmonary vasculature (55–
58). Combined with the strong vasoconstriction characteristic
of the MDR (53, 54), the blood shift (55, 56, 59) can

result in elevated pulmonary capillary transmural pressure,
and in the subsequent extravasation of fluid, or blood
into the interstitium or into the alveolar space (84) (i.e.,
pulmonary edema, and pulmonary hemorrhage). This form
of pulmonary pathology is often seen in breath-hold divers
who induce the MDR by diving to significant depths under
apneic conditions (85–87). In this population pulmonary edema
becomes clinically manifest as shortness of breath, chest
tightness, and the production of a pink, frothy sputum, or
frank blood, upon surfacing from a dive (85–87). Rales or
crackles, abnormally low arterial oxygen saturation, and reduced
pulmonary performance are revealed by physical examination,
pulse oximetry and spirometry, respectively (85, 86, 88). A
strikingly similar form of pulmonary edema has also been
reported in swimmers (89, 90). Thus, two of the main
components of the human MDR, diving bradycardia and the
blood shift, have been implicated in the development of cardiac
arrhythmias, cardiac arrest, pulmonary edema, and pulmonary
hemorrhage.

HYPOTHESIS: A SIGNIFICANT FRACTION
OF SUDEP VICTIMS SUCCUMB TO AN
UNFETTERED ICTAL FORM OF THE MDR

As discussed above, amajor effect of theMDR is the sequestration
of blood inside the cardiopulmonary circulation (23, 24, 35,
55, 56). This is especially important during apneic exercise,
when unrestricted blood flow to active muscles could result
in a rapid depletion of the limited supply of oxygen available
to the brain. It is therefore appropriate that apnea associated
with exercise induces an augmented form of the MDR by
comparison to that induced by apnea at rest (51, 54, 65, 70).
Thus, it is hypothesized that apneic GTCS (91, 92), which by
definition exhibit vigorous muscle activity, pose physiological
challenges that result in augmented, ictal forms of the MDR.
It is further hypothesized that unlike a MDR deployed in a
conscious subject, which could be tamed by higher cortical
function (75, 93), an ictal MDR deployed during GTCS, or
during a period of electrographic suppression (10, 11, 94), has
a greater potential to become pernicious, and induce one or
more of the common pathological findings of SUDEP, namely
pulmonary edema, pulmonary hemorrhage, cerebral edema,
cerebral petechial hemorrhage, or cardiac arrest (see Table 1).
Specifically, over-distension of pulmonary blood vessels brought
on by an augmented blood shift (56, 57, 59), in combination
with simultaneous and pronounced vasoconstriction (53, 54,
63, 64), can increase pulmonary capillary transmural pressure
to the point of precipitating pulmonary edema and pulmonary
hemorrhage (15, 17–19, 84). The magnitude of this effect is likely
to correlate with the degree of MDR augmentation produced
by specific seizure characteristics. For instance, a non-convulsive
seizure that features a brief period of sustained apnea starting
at the peak of the lung’s inspiratory reserve volume is likely to
induce a lesser degree of pulmonary edema or hemorrhage than
a convulsive seizure that features a prolonged period of sustained
apnea starting at the nadir of the tidal volume. A more severe
form of pulmonary edema could occur when a prolonged ictal cry
(i.e., a sustained expiratory laryngeal vocalization), precedes the
onset of apnea, as the MDR is augmented if triggered at the end
of expiration (106, 107). Perhaps the worst pulmonary pathology
is to be expected when a prolonged apneic GTCS preceded by
an ictal cry is followed by a forceful inhalation against a blocked
airway (e.g., from positional causes resulting from the convulsion
(9) or from laryngospasm (108)), as this would decrease intra-
alveolar pressure further, resulting in the extravasation of fluid
and blood into the alveoli (i.e., negative pressure pulmonary
edema) (84, 109).

Aside from providing an explanation for the pulmonary
pathology seen in SUDEP, the expanded intrathoracic blood
volume generated by the blood shift of the MDR also accounts
for the increased lung weights frequently observed in SUDEP
autopsies (15, 17). However, it does not account for the increased
heart weight, as blood is typically emptied from the atria and
ventricles before the heart is weighed at autopsy. Similarly, this
hypothesis does not intuitively explain the presence of focal
myocardial fibrosis previously seen in some SUDEP autopsies
(19).
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TABLE 1 | Hypothesized pathological effects of ictal MDRs.

Documented physiologic MDR Hypothesized ictal MDR

Physiologic MDR Pathologic MDR Non-lethal GTCS SUDEP

APNEA

James and De Burgh Daly (36)

Huxley (33)

Prolonged voluntary apnea

Loss of consciousness

Lindholm and Lundgren (87)

Transient involuntary apnea

Goldenholz et al. (92)

Nashef et al. (91)

Terminal apnea

Ryvlin et al. (10)

Tao et al. (9)

Langan et al. (5)

So et al. (8)

Diving bradycardia

Irving et al. (49)

Bert (27)

Goodwyn, (96)

Transient arrhythmias

Wierzba et al. (73)

Elsner and Gooden (31)

Olsen et al. (72)

Wyss (71)

Transient bradyarrhythmias

Hampel et al. (95)

Fava et al. (97)

So and Sperling (98)

Reeves et al. (99)

Nashef et al. (91)

Terminal bradycardia

Cardiac arrest

Ryvlin et al. (10)

Blood shift

Schagatay (59)

Andersson et al. (54)

Arborelius et al. (57)

Arborelius et al. (58)

Schaefer et al. (55)

Craig (56)

Pulmonary edema

Pulmonary hemorrhage

Lindholm and Lundgren (87)

Lindholm et al. (85)

Liner and Andersson (86)

Neurogenic pulmonary edema

Kennedy et al. (100)

Transient lactic acidosis

Lipka and Bulow (101)

Orringer et al. (102)

Transiently increased ICP

Solheim et al. (103)

Pulmonary edema

Nascimento et al. (19)

Esen Melez et al. (18)

Antoniuk et al. (17)

Kloster and Engelskjon (16)

Terrence et al. (15)

Pulmonary hemorrhage

Cerebral petechial hemorrhage

Cerebral edema

Esen Melez et al. (18)

Nascimento et al. (19)

Antoniuk et al. (17)

Terrence et al. (15)

Splenic contraction

Schagatay et al. (69)

Bakovic et al. (68)

NRPF Transient Leukocytosis

Aydogan et al. (104)

Shah et al. (105)

NRPF

The four reflexes that make up the MDR are shown under the “Physiologic MDR” column. Known physiopathological effects associated with each of these four reflexes in humans are

shown under the “Pathologic MDR” column. The right half of the table shows reported clinical and pathological observations associated with non-lethal GTCS, and SUDEP, in relation

to their hypothetically causative ictal MDR reflexes. Literature cited is merely representative. NRPF, No related publications found.

If the hypertension that occurs during the human MDR
(61) is increased further during an apneic GTCS, it could
induce cerebral edema and/or cerebral petechial hemorrhage
(17, 18) by increasing cerebral perfusion (62–65) to a critical
level that disrupts cerebral vascular autoregulation (66).
This notion is consistent with previous demonstrations of
increased intracranial pressure (103), and increased sympathetic
overactivity during seizures (110, 111), including a recent report
of a probable SUDEP victim in whom excess sympathetic
activity coexisted with terminal apnea for several minutes
preceding death (112). Theoretically, a MDR preceded by
intense hyperventilation (i.e., prolonged apnea preceded by
hyperventilation), such as that seen in the majority of SUDEP
cases reported by Ryvlin and colleagues (10), could further
exacerbate this process by lowering arterial CO2 levels, and
thus inducing cerebral vasoconstriction before ictal MDR
deployment.

While, theoretically, pulmonary edema and/or pulmonary
hemorrhage, in combination with cerebral edema or cerebral
hemorrhage could lead to SUDEP, the autonomic conflict
generated by the simultaneous parasympathetic and sympathetic
influences on the heart can also lead to SUDEP by inducing

ventricular arrhythmias (74). This pro-arrhythmogenic state
(95, 97–99, 113) could provoke sudden death in some epilepsy
patients –not always accounted as SUDEP—who consume
substances that prolong the QT interval, including recreational
ones such as alcohol and amphetamines, and therapeutic ones
such as citalopram, and quetiapine (82, 83, 114). Furthermore,
the MDR can act as an “effect amplifier” (115), responsible
for SUDEP in patients who harbor clinically silent pro-
arrhythmogenic genemutations (116). Finally, the high incidence
of SUDEP among the young (12–14) is congruent with reports
that the MDR is strongest in younger age groups (73, 117, 118).

If, as suggested by the present hypothesis, ictal MDRs
are normally triggered by prolonged apneic seizures, then all
such seizures should demonstrate a predetermined potential
to induce SUDEP, or SUDEP-related pathology, depending on
the magnitude of their associated ictal MDR. This notion
is supported by several clinical observations familiar to
most neurologists (see Table 1). For instance, GTCS induce
“neurogenic” pulmonary edema in some patients, through
an effect that is directly related to seizure duration (100),
suggesting that prolonged, intense, apneic convulsions might
be more likely to induce pathogenic forms of the ictal
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MDR than short, mild ones. If this is true, the possibility
arises that “spontaneous” neurogenic pulmonary edema is not
actually spontaneous, but instead, is triggered by unwitnessed,
prolonged apneic GTCS. After all, this form of pulmonary
edema is often reported in patients who are found unconscious
or with different degrees of altered mentation (i.e., possibly
postictal) before being transported to the hospital, and who
harbor epileptogenic pathologies, such as brain tumors (119),
hydrocephalus (120), subdural hematomas (121), strokes (122),
and subarachnoid hemorrhages (123, 124). Similarly, GTCS
often induce a short-lived lactic acidosis (101, 102), which is
comparable to that displayed by air-breathing aquatic mammals
(34), and humans (61), surfacing from long dives. This lactic
acidosis is precipitated by the blood shift, which as stated
previously, restricts blood flow to active muscles and forces them
to undergo anaerobic metabolism (34, 61). Consequently, it is
possible that the magnitude of an ictal blood shift could be
responsible for at least some of the characteristics of the transient
lactic acidosis seen after GTCS (e.g., peak lactic acid level,
duration, etc.). Finally, GTCS occasionally induce a transient
leukocytosis (104, 105), which is thought to reflect a release of
granulocytes from perivenular locations in response to systemic
catecholamines (125). The present hypothesis suggests that the
splenic contractions triggered during an ictal MDR (68) could
play a role in generating this leukocytosis.

Because frank cessation of breathing is required to trigger
the various autonomic components of the MDR, the present
hypothesis cannot adequately explain cases in which SUDEP
occurs independently of apnea. In addition, this hypothesis fails
to explain SUDEP cases characterized by sustained hypotension,
as by definition the human blood shift is accompanied by
severe hypertension. Unfortunately, the latter cannot be tested
against published observations due to a dearth of blood
pressure measurements in the SUDEP literature. Moreover,
while hypertension appears to predominate over hypotension
during non-lethal seizures (111), hypotension can also occur
(126), preventing us from drawing any firm conclusions
that could support or refute a role for the ictal MDR in
SUDEP.

HOW CAN THIS HYPOTHESIS BE TESTED?

As both seizures and their postictal period can exhibit prolonged
periods of apnea, (8–10, 91, 92), it should be possible to
confirm whether a sequential, and causal, relationship exists
between apnea and (1) bradycardia, (2) LQTS, (3) asystole
or other arrhythmias, or (4) any combination of these. This
can be learned from prospective observations recorded on
epilepsy patients monitored for nasal airflow, chest/abdominal
excursions, forehead pulse oximetry, and multichannel ECGs at

the EMU. Continuous noninvasive blood pressuremeasurements
during and after prolonged apneic GTCS can ascertain whether
hypertension occurs in association with bradycardia, and
whether it bears a quantifiable relationship with the blood shift,
and with lactic acidosis. The latter could be documented via a
combination of peripheral arterial Doppler ultrasound studies,
echocardiography, chest X-rays, and blood tests performed
at different times during the postictal period of prolonged
apneic GTCS. If possible, extracranial and intracranial Doppler
ultrasound tests can be used to determine the relationship
between apnea, hypertension and cerebral blood flow during,
and after, prolonged apneic GTCS. Other research questions
might aim at revealing whether themagnitude of seizure-induced
leukocytosis is related to the magnitude of splenic contractions.
This could be accomplished by using ultrasound to correlate
the absolute change in splenic size (size before vs. size after
GTCS) with the corresponding peak leukocytosis after a GTCS.
These studies could result in the identification of post-seizure
leukocytosis as a surrogate marker for ictal MDR deployment,
which in turn could be used to identify patients at risk of
SUDEP. Similar research questions can be asked of post-seizure
lactic acidosis. Finally, if this hypothesis were correct, it would
be important to understand why some seizures induce ictal
MDRs that result in SUDEP, and why others only induce
leukocytosis, lactic acidosis, or mild pulmonary edema. This
could be related to several factors, including total apneic time,
volume of air in the lungs at the onset of apnea, arterial levels
of O2 or CO2 at the onset or the end of apnea, intensity of
convulsions, and electrographic characteristics, among others.
Could such factors be altered during a GTCS to prevent
SUDEP?

In unconscious dogs, the MDR can be aborted by artificial
lung inflation (127). Could a similar intervention be used
in humans to prevent SUDEP? The answer to this and
other important questions related to the relationship between
SUDEP and MDR physiopathology could bring us closer to
understanding SUDEP, and to generating a strategic way to
prevent it.
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