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Tailed phages are viruses that infect bacteria and are the most abundant biological entities on Earth. Their
ecological, evolutionary, and biogeochemical roles in the planet stem from their genomic diversity.
Known tailed phage genomes range from 10 to 735 kilobase pairs thanks to the size variability of the pro-
tective protein capsids that store them. However, the role of tailed phage capsids’ diversity in ecosystems
is unclear. A fundamental gap is the difficulty of associating genomic information with viral capsids in the
environment. To address this problem, here, we introduce a computational approach to predict the capsid
architecture (T-number) of tailed phages using the sequence of a single gene—the major capsid protein.
This approach relies on an allometric model that relates the genome length and capsid architecture of
tailed phages. This allometric model was applied to isolated phage genomes to generate a library that
associated major capsid proteins and putative capsid architectures. This library was used to train
machine learning methods, and the most computationally scalable model investigated (random forest)
was applied to human gut metagenomes. Compared to isolated phages, the analysis of gut data reveals
a large abundance of mid-sized (T = 7) capsids, as expected, followed by a relatively large frequency of
jumbo-like tailed phage capsids (T � 25) and small capsids (T = 4) that have been under-sampled. We
discussed how to increase the method’s accuracy and how to extend the approach to other viruses.
The computational pipeline introduced here opens the doors to monitor the ongoing evolution and selec-
tion of viral capsids across ecosystems.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Tailed phages are viruses that infect bacteria and have evolved
an extremely diverse set of protein capsid architectures to protect
their infective genome [82,12]. Tailed phage capsids sizes range
from 40 nm to 180 nm in diameter [95,118,51]. The internal vol-
umes of these capsids accommodate genomes spanning three
orders of magnitude in length, from 5 kilobase pairs (kbp) to 735
kbp [82,62]. The diversity in genome length and genomic content
of tailed phages may explain their key role in regulating ecosys-
tems [86,113], in promoting the evolution of microbes
[129,67,121], in participating strongly in the planetary carbon
cycle [74], and in becoming the most abundant biological entity
on the planet [27]. However, the role of the diversity in tailed
phage capsid architectures and genome lengths across ecosystems
remains unclear.

A key challenge investigating the selection and evolution of
tailed phage capsids is linking viral capsids with their viral genome
in the environment [19]. The number of phages isolated and stud-
ied both genetically and structurally [34,70] represent a very small
sample compared to the number of viruses evolving in the environ-
ment [27,6,29,38,109,50,103,11,107]. Electron microscopy can
measure the morphology and size of tailed phages, but these
observations do not include genomic information, limiting how
to interpret the change in capsid size distributions observed across
ecosystems[119,18]. There are trade-offs in selecting capsid sizes
that are difficult to disentangle [37]. An increase in temperature
may promote smaller genomes among viruses and other organisms
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[90], but larger genomes encode more genes, which can enhance
the survival of both phages and their hosts[120,110,112]. On the
other hand, larger genomes and their associated larger capsids
are more costly energetically, which can compromise their replica-
tion in limiting growth conditions [20,84]. Additionally, an
increase in size reduces virus diffusivity [26], which can negatively
impact their infectivity [66]. To link the capsid and genomic infor-
mation of viruses in the environment, we introduced a new com-
putational approach that builds on the established geometrical
principles governing the capsid structure and genome packing of
tailed phages [102,81,44,118,42,82].

The majority—80% to 90%—of tailed phage capsids are quasi-
spherical [2,3]. The remaining tailed phages adopt elongated cap-
sids with icosahedral caps [3,80]. Among tailed phages, the capsids
are built from multiple copies of the major capsid protein, which
systematically adopt the HK97-fold [124,98,34]. Capsid proteins
in tailed phages are organized following hexagonal and trihexago-
nal icosahedral lattices, Fig. 1 [122,99,82], and the double-stranded
DNA genome is packed in the capsid at quasicrystalline densities
[36,78,82]. The number of capsid proteins is determined by the tri-
angulation number or T-number, which is a discrete index deter-
mining the possible capsid surfaces compatible with icosahedral
symmetry [24,122]. The number of major capsid proteins is 60 T0
(Fig. 1), where T0 represents the classic T-number:

T0ðh; kÞ ¼ h2 þ hkþ k2 : ð1Þ
In the generalized theory for icosahedral capsids, the T-number

for the hexagonal lattice is Thex = T0, and the T-number for the tri-
hexagonal lattice is Ttri = 4/3 T0 [122]. The factor 4/3 � 1.33
accounts for the additional surface associated with 60 T0 minor
capsid proteins inserted as trimers in the trihexagonal lattice
Fig. 1. Icosahedral capsids among tailed phages. The hexagonal (top) and trihexagona
both lattices, major capsid proteins (MCPs) form clusters (capsomers) of five (pentamers)
crossing over hexamers. The trihexagonal lattice also contains minor capsid proteins (
number of major and minor capsid proteins. T0 is the T-number defined by the classic ico
with the hexagonal and trihexagonal lattices defined by the generalized icosahedral cap
phage HK97 (PDB 2 fs3; [47]and phage patience (EMDB-21123; [99]. The capsids were r
the generalized hkcage tool in ChimeraX[82].
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(Fig. 1). Experimental and bioinformatic studies indicate that tailed
phages can adopt capsid architectures from putative T = 1.33 cap-
sids to T = 52 capsids [118,82]. The T-number follows an allometric
relationship with the genome length with an approximate expo-
nent of 2/3 � 0.67 because the T-number is proportional to the
capsid surface and the genome length is proportional to the capsid
volume [82]. Thus, the increase in genomic content is associated
with larger tailed phage capsids built with more capsid proteins.
Since the major capsid proteins conserve the HK97-fold while
adopting a large diversity of sequences, here we propose that part
of this sequence diversity is associated with the formation of dif-
ferent T-number capsids.

Confirming a direct relationship between major capsid protein
sequences and T-number capsids would open the doors to predict-
ing the capsid architecture of tailed phages (and genome lengths)
from a single gene. This would facilitate inferring tailed phage cap-
sids from sequenced environmental data that is now obtained rou-
tinely [17,112,103,77,105]. To test the capsid protein-to-T-number
association, we developed a computational approach that can pre-
dict accurately the capsid architectures of tailed phages from the
major capsid protein gene (Fig. 2). First, the genome-to-T-
number model (G2T) was extended by training a power function
physical model using a larger database of high-resolution tailed
phage capsids than prior studies (Fig. 2a). Major capsid proteins
(MCPs) adopting HK97-fold were obtained from tailed phage gen-
ome isolates, and the G2T model was applied to the genomes to
obtain the putative capsid architectures among these phage iso-
lates, generating the MCP/T library (Fig. 2b). The MCP/T library
was used to train the major capsid protein-to-T-number (MCP2T)
models using a proximity matrix approach (MCP2T-PM) and a ran-
dom forest approach (MCP2T-RF) (Fig. 2c). Finally, these statistical
l (bottom) icosahedral lattices observed among icosahedral tailed phage capsids. In
and six (hexamers) proteins. Two nearby pentamers are connected by h and k steps
mCPs) clustered in groups of three (trimers). The T-number is proportional to the
sahedral capsid theory [24]. Thex and Ttri are the T-numbers associated, respectively,
sid theory[122]. The top and bottom capsid examples correspond, respectively, to
endered with ChimeraX[96]. The 3D icosahedral lattice models were produced with



Fig. 2. Computational approach to predict capsid architecture from genomic information. a) A database containing tailed phage genomes and their associated high-
resolution capsid reconstructions was used to validate the physical genome-to-T-number (G2T) model. b) A database containing isolated tailed phage genomes and encoded
HK97-fold major capsid proteins (MCPs) was curated. The G2T model was applied to identify the putative T-number capsid architectures associated with each HK97-fold
MCP, obtaining the MCP/T library. c) The MCP/T library was used to train statistical learning methods to predict the capsid architecture of tailed phages from information in
the MCP sequence, leading to the major capsid protein-to-T-number (MCP2T) models. The MCP2T-PM model was built on a proximity matrix (PM) algorithm using protein
sequence similarity. The MCP2T-RF model was built on a random forest algorithm using MCP amino-acid composition as features.

Table 1
High-resolution capsid database. See additional information in Data File 1.
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learning models were applied to metagenomic data to infer the
capsid architecture of uncultured tailed phages in the human gut.
Phage T Genome (kbp) Reference

C1 4 16.7 [5]
HSTV-1 7 32.2 [98]
P2 7 33.6 [31]
TP901-1 7 37.7 [9]
Sf6 7 39.0 [92]
e15 7 39.7 [7,64]
HK97 7 39.7 [48,55,124]
T7 7 39.9 [4,53,61]
CUS-3 7 40.2 [93]
HK022 7 40.8 [100]
Pf-WMP4 7 40.9 [132]
BPP-1 7 42.9 [127]
P22 7 43.5 [25,91]
80a 7 43.9 [115]
K1E/K1-5 7 44.7 [75]
P-SSP7 7 45 . 0 [79]
Gifsy-2 7 45.8 [40]
Syn5 7 46.2 [49,131]
K 7 48.5 [73]
CW02 7 49. 4 [108]
SPP1 7 49.5 [123]
SIO-2 12 80.0 [72]
P74-26 9.33 83.0 [116]
P23-45 9.33 84.2 [8]
Basilisk 12 81. 8 [52,122]
Mic1 13 92.6 [65]
T5 13 121. 8 [39]
SPO1 16 132. 6 [35]
UM12 19 194.7 [117]
N3 19 207.0 [118,59]
PAU 25 219.0 [118,59]
URSL1 27 240.0 [41]
PBS1 27 252.0 [118,59]
UKZ 27 280.0 [45]
121Q 28 348.5 [118]
SCTP2 39 440.0 [59]
G 52 498.0 [118,59]
2. Methods

The GitHub repository http://github.com/Luquelab/Lee_etal_
CSBJ_2022 contains the codes and instructions necessary to imple-
ment the methods and replicate the research. The supplementary
section SI-1 contains the description of the supplementary Data
Files referenced in the Methods and Results sections.

Genome-to-T-number (G2T) model. The genome-to-T-number
(G2T) model is a physical model that predicts the capsid architec-
ture (T-number) of a tailed phage from its genome length (Fig. 2a).
The G2T model was introduced in [82]. The model relies on the
empirically and theoretically justified physical allometric relation
between the genome length and capsid architecture of tailed
phages [82]. Here, the G2T model was revised, increasing the data-
base of high-resolution structure to train and test the model (from
23 to 37 structures) as detailed in the Data acquisition section
below. Another novelty was the error analysis of the model and
error prediction when increasing the training data set, as detailed
in the Model accuracy section below.

Data acquisition. Tailed phages containing high-resolution cap-
sid data were initially identified from a review article in the field
[118], the icosahedral capsid database VIPERdb [89], and four
recently reconstructed tailed phages displaying new T-numbers:
the jumbo tailed phage SCTP2 [59] and P74-26, P23-45, and Mic1
[116,8,65]. The capsid protein stoichiometry and high-resolution
structures were revised to update the T-numbers according to
the generalized quasi-equivalence icosahedral framework, includ-
ing hexagonal and trihexagonal lattices observed among tailed
phages [122]. The final high-resolution database included
nHR = 37 tailed phage capsid structures (Table 1 and Data File 1).

Statistical model. A power function model T Gð Þ ¼ b G
G0

� �a
related

the T-number as a function of the genome length, G. Here, b was
the prefactor constant, a the allometric exponent, and G0 the refer-
ence units of G, G0 = 1 kbp. This allometric relationship was empir-
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ically and theoretically established previously for a smaller
number of tailed phages [60,82]. The allometric relationship is a
consequence of the constant density of the genome stored in tailed
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phage capsids and constant surface of the major protein on the
capsid exterior [82]. The theory predicts an allometric exponent
ath = 2/3 because the T-number scales like the capsid surface and
the genome scales with the capsid volume. A derivation of the the-
oretical prediction is provided in the supplementary section SI-2.
The model was linearized using a logarithmic transformation:

lnðTÞ ¼ a lnðG=G0Þ þ lnðbÞ : ð2Þ
The slope, a, and intercept, ln b, of best fit were obtained using

the least squares method in the Linear Regression function from the
Scikit learn package for Python [94]. The residual bias and coeffi-
cient of determination of this model were compared with alterna-
tive models (exponential, quadratic, reciprocal, logarithmic) for
quality control, confirming the adequacy of the power function
model (see supplementary section SI-3 and Fig. S1).

Model accuracy. The accuracy of the G2T model was investigated
statistically using different training sets. This estimated the
expected model’s error and facilitated making projections to judge
if increasing the data set would improve the model. The approach
was as follows. The best fit values for the G2T model, Eq. (2), were
obtained using different training data sets of size n, ranging from
n = 5 to n = 30. The n data points in a training data set were chosen
randomly from the high-resolution tailed phage capsid database
(Table 1). For each model, the T-number was predicted from the
genome length of the remaining capsid structures (nHR – n, that
is, 37 – n). The relative error was defined as the model’s residual
(difference between the predicted T-number and the empirical T-
number) divided by the empirical T-number. This process was
repeated 10,000 times for each n to estimate the G2T’s mean rela-
tive error (MRE) as a function of the training data set size, n. To
predict the accuracy of the model for data sets larger than the cur-
rent database, (n > nHR), the mean relative error was fitted to the
exponential model

MREðnÞ ¼ pe�qn þw : ð3Þ
The values of best fit for the parameters p, q, and w were

obtained applying the robust least squares method from the least
squares function in the Python’s SciPy optimize package [125].
The confidence interval of the parameters was estimated by boot-
strapping 10,000 random subsets and fitting Eq. (3) in each case. A
genome length was associated with a T-number in the hexagonal
or trihexagonal lattice if the uncertainty of the predicted T value,
that is, T ± DT, contained such T-number. The uncertainty DT
was calculated based on the mean relative error projected from
Eq. (3) for the size of the high-resolution database, n = nHR = 37,
that is, DT = T�MRE(nHR).

MCP/T library. Major capsid protein amino acid sequences
associated with tailed phages were obtained from isolated gen-
omes accessed on the phantome.org website in January 2017
[88,97]. Genomes listed as Caudovirales (the taxonomic order of
tailed phages) in the GenBank ORGANISM field were filtered.
Among the 2,996 Caudovirales genomes identified, protein-coding
genes (CDS) containing the term ‘‘major capsid” as a product key-
word were selected, leading to 669 putative tailed phage major
capsid proteins. The folded structures for the selected major capsid
proteins were obtained investigating structural relatives in HHpred
using the PDB database and submitting the top candidates (above
95% probability) to Modeller [128,46,114,56,88]. The folded mod-
els were inspected visually. Only those major capsid proteins dis-
playing the canonical features of the HK97-fold were selected
[118]. Major capsid proteins identified in phage genomes from
the high-resolution capsid database were also included. The pro-
tein sequences associated with open reading frames (ORFs) in
these genomes were retrieved from NCBI. Structural functions
were identified from the protein sequences using the Phage Artifi-
cial Neural Networks (PhANNs) web server [21]. Sequences pre-
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dicted to be major capsid protein as the most likely function and
displaying a score � 2 (98% true positive confidence) were selected.
The HK97-fold in these proteins was validated combining HHpred
and Modeller as described above. HK97-fold MCP proteins were
obtained for 31 out of 37 phages in the high-resolution database.
The exceptions were Gifsy-2, SIO-2, Basilisk, URSL1, UKZ, and
SCTP2. This led to a final library of nlib = 635 HK97-fold MCPs asso-
ciated with tailed phage genome lengths (Data File 2 and Fig. 2b).

The distribution of genome lengths was investigated using the
non-parametric kernel density estimation method. To capture
accurately the multimodal nature of the phage genome length dis-
tribution, the kernel bandwidth was investigated independently
for four distinctive genome length groups identified visually: 17–
130 kbp, 130–210 kbp, 210–270 kbp, and 270–498 kbp (Supple-
mentary Fig. S2). The Scikit grid search 5-fold cross-validation
method [94] was applied to obtain the most likely Gaussian ker-
nel’s bandwidth for each group, leading to 1.78 kbp, 3.33 kbp,
1.39 kbp, and 20 kbp, respectively. The four distributions were
combined and normalized to obtain a single probability density
function of tailed phage genome lengths. The peaks of the distribu-
tion were obtained using the find peaks function from the SciPy
signal package for Python [125].

The library containing MCPs and the associated T-numbers
(MCP/T library) was built as follows (Fig. 2b). For the 31 MCPs
found in the high-resolution capsid database, the T-number used
in the library was the one associated with the 3D capsid architec-
ture. For the rest of the isolated tailed phage genomes, the T-
number was predicted applying the G2T model to the genome
length. If the predicted T-number fell within the ranges of one or
several overlapping T-numbers regions, the T-number selected
was closest to the mean predicted T-number, and the alternative
T-numbers were tallied. For T-numbers associated with multiple
lattices (for example, T = 12 trihexagonal versus T = 12 hexagonal),
each architecture was considered as a potential structure. If the
predicted T-number was not within the error margin of a valid
icosahedral T-number, the architecture was categorized as
‘‘elongated.”

MCP-to-capsid model based on similarity (proximity
matrix): MCP2C-PM. Protein-protein sequence similarities were
obtained for the MCPs in the library using NCBI blastp [13,85],
applying the default algorithm parameters except for the e-value
threshold, which was chosen to be 0.001 to increase the quality
and decrease the effects of randomness for the matches. In any
instance where blastp returned more than one score for any pair
of phages, the higher similarity score was chosen for the pair. In
the MCP/T library, 80% of the data was selected randomly as the
training set and the remaining 20% was used as the test dataset
(80/20 split). For statistical robustness, 1000 different 80/20 train-
ing and test splits were generated. For each major capsid protein
sequence in the test set, the T-number predicted corresponded to
the T-number associated with the most similar major capsid pro-
tein sequence in the training set (proximity matrix). A prediction
was considered correct if the T-number predicted coincided with
the T-number associated with the major capsid protein in the
MCP/T library. The model accuracy was defined as the fraction of
correct predictions in the full test dataset. The accuracy was inves-
tigated as a function of different minimum similarity thresholds,
from 0% to 100% similarity in increments of 10%. In each case,
the fraction of predicted architectures was tallied.

MCP phylogenetic tree. The protein sequences of the MCPs in the
MCP/T library were aligned using the Clustal Omega webserver
(default settings) at https://www.ebi.ac.uk/Tools/msa/clustalo/
[111]. The resulting phylogenetic tree (ClustalW format) was visu-
alized and analyzed using the Interactive Tree of Life (iToL) web-
server at https://itol.embl.de [76]. Each MCP in the tree included
the associated phage genome length (using the log-linear transfor-
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mation Gt = log10(genome length in kbp)-3) and the capsid archi-
tecture predicted by the G2T model. Clades displaying common
properties were identified qualitatively from the tree internal
structure and phage phenotypic data.

MCP-to-capsid model based on random forest: MCP2C-RF.
The similarity model introduced above has two important limita-
tions. First, the method cannot predict the capsid architecture for
major capsid proteins that have no similarity in the MCP/T library.
This is a bottleneck for environmental analysis because most
uncultured tailed phage genes have little similarity to genes in
public databases [131,71]. Second, the matrix similarity is a com-
putational search method of quadratic order, O(nlib2 ), which limits
the scalability of the model when increasing the size of the training
library, nlib. To circumvent these foreseeable challenges when char-
acterizing environmental data, an alternative machine learning
method was investigated and compared. The approach chosen
was random forest because it offers a rapid learning process when
the training sets are small with respect to the dimensionality of
data, and the cost of prediction is independent of the training data
set’s size [63].

Random forest regression is an ensemble statistical learning
algorithm that generates multiple decision trees using a collection
of input features as nodes and the value of the dependent variable
(output) at the end of the node. To create each of these decision
trees, m random observations and f random features are selected
from the original data and the corresponding labels used as targets.
A final sorting decision is made based on the trees formed by the
training data and can then be used to generate a proposed label
for each test data point [57,16]. A total of 22 MCP features were
used to train the random forest model: protein sequence length,
the protein’s isoelectric point, and the frequency of each amino
acid in the MCP sequence (20 features referred to as the amino acid
composition). The isoelectric point was calculated using Biopy-
thon’s sequence utility package [28]. These protein features have
been previously used to identify functions of viral proteins effi-
ciently in machine learning approaches [106,21]. The T-number
associated with each major capsid protein in the MCP/T library
was used as the label for the random forest classification. T-
numbers that were overlapping based on the confidence interval
of the G2T model were combined in single classes. Due to the small
density of large genomes, architectures T � 25 were groped as a
single class. An 80/20 training/test split was applied to the library
to test the random forest model. The random forest parameters
were optimized for accuracy using Scikit’s GridSearchCV function
[94] using 80% of the library. The top 10 estimators were run 100
times each to verify the aggregate highest average accuracy. This
led to a maximum number of 4 features per tree, 250 estimators,
a max depth of 20, 1 minimum sample in a leaf, and a minimum
sample split of 46, with data bootstrapping, and using a balanced
weight distribution. To ensure statistical robustness, the random
forest model was then tested selecting 1000 different randomly
generated training datasets from the MCP/T library. Given a major
capsid protein sequence, a predicted capsid architecture was con-
sidered correct if the predicted T-number was within the margin
of error (9%) expected associated with the T-number in the MCP/
T library. The number of correctly predicted phages was tallied
and used to calculate a percentage accuracy for that test set. Both
permutation and dropout analysis were performed on all features.
The randomization or omission of no single feature caused devia-
tion greater than 8 %. To gain insight in the interpretation of the
random forest model, the 22 features of the model were analyzed
for the main clades identified in the phylogenetic analysis and
compared to the average features in the MCP/T library. Those fea-
tures departing on average more than a standard deviation from
the reference value were identified as significant.
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To determine the impact of increasing the training library in the
accuracy of the random forest model, the accuracy of the model
was assessed for different library sizes and fitted to a mathematical
model. The different sizes for the training set were defined as ni =-
nlib i/20 for a total of twenty training sizes, i = 1 to 19. The size of
the testing set was nlib – ni = nlib (1– i/20). For statistical robust-
ness, 1000 different training sets were generated for each size ni

and the mean accuracy was measured in each case, MACCi . The
mean accuracy values were fitted to the logarithmic model

MACCðnÞ ¼ glog10nþ h : ð4Þ
The values of best fit for the parameters g and h were obtained

using the robust least squares method. The confidence intervals of
the values of best fit were obtained by bootstrapping 10,000 sub-
sets generated randomly from the estimated mean accuracies,
MACCi.

Computational performance of MCP2C models. The computa-
tional scalability of the proximity matrix similarity (MCP2C-PM)
and random forest (MCP2C-RF) models was estimated generating
larger artificial libraries. The original MCP/T library (nlib = 617)
was sequentially used 15 times, generating 15 artificial libraries
with 617 to 10,035 entries. Both models were trained (80/20 split)
for 100 different randomly selected training sets for each library
size. For each training, the elapsed training time was recorded,
and the statistics of the training time were obtained for each model
and library size. Then, the T-number of 50 major capsid protein
sequences were predicted to tally in each case the elapsed time
for the prediction. These time-searches were averaged for each
generated model and library size. Linear and quadratic models
were fitted to the average times as a function of the library size
using least-squares method via numpy polyfit [54]. These fitted
models were used to extrapolate the scalability of the twomethods
for libraries as large as 1,000,000 entries. The elapsed times were
obtained on Lenovo laptop with an intel i7 processor and 16 GB
RAM.

Capsid architecture prediction from gut metagenomes. 3,173
metagenomically assembled circular genomes (direct terminal
repeats � 50 bp) and at least two canonical tailed phage markers

published in [11] were accessed at ftp://ftp.ncbi.nih.gov/pub/yuti

nn/benler_2020/gut_phages/ in the NCBI server. The open reading
frame sequences (putative proteins) were input to the PhANNs
web server [21]. Proteins that displayed major capsid protein func-
tion as the highest score were selected. Those proteins with
score � 2 were further selected (expected accuracy—true posi-
tives—of using this score is 98%). When the same MCP was found
in similar metagenomic assembled genomes, one representative
was kept (dereplication). These selected putative major capsid pro-
teins were run in the MCP2T-RF model to predict capsid
architectures.
3. Results

Genome length predicts capsid architecture with 90% accu-
racy. The power function model, Eq. (2), relating the capsid archi-
tecture, T, as a function of the genome length, G, explained 98% of
the variance (R2 = 0.98, n = 37, Fig. 3a). This model is referred to as
the genome-to-T-number (G2T) model. In the high-resolution cap-
sid database, the genome lengths, G, ranged from G = 16.7 kilobase
pairs (kbp) to 498.0 kbp. The capsid architectures ranged from T = 4
to 52 (see Data File 1). The fitted allometric exponent was
0.71 ± 0.03. This value was consistent with a prior analysis using
a smaller dataset (0.68 ± 0.09, n = 23) [82]. The value was also close
to the theoretical value, 2/3 � 0.67 , expected for quasi-spherical
shells packing a genome at a constant density (see supplementary



Fig. 3. Genome-to-T-number (G2T) model and accuracy. a) T-number as a
function of genome length in log–log scale (natural log) obtained from n = 37 tailed
phage capsid 3D reconstructions (black product signs). The data is available in Data
File 1. Vertical lines are displayed every 10 kbp as guide to the eye. The dotted black
line corresponds to the linear regression of the power function (G2T) model in log–
log scale (Eq. (2)). The gray band indicates the 95% confidence interval of the
regression. b) Mean relative error, MRE, of the G2T model as a function of the size of
the training set, n (blue squares). The error bars represent the standard deviation of
the mean relative error. The solid, gray line corresponds to the fitted exponential
decay model. a-b) The equations fitted, values of best fit, and coefficient of
determination (R2) are displayed in each legend. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 4. Putative capsid architectures among phage isolates in the MCP library. a)
Probability density distribution of genome lengths (black line). The density was
built with Gaussian kernels using multiple bandwidths (see methods). The genome
length peaks in the probability density function are indicated with red product
signs. Genome length regions predicted to form icosahedral capsids (G2T model)
are shaded in blue. Regions associated with putative elongated capsids are shaded
in gray. The T-numbers associated with peaks are displayed. b) Frequency of
predicted architectures. The bar colors are associated with the shaded regions in
panel a). c) 3D models for the three most common predicted capsid architectures.
The labels at the bottom display the T-number, h and k steps, and frequency in
percentage. Blue arrows and black dots highlight the steps in the hexagonal lattice.
The models were generated with the hkcage function in Chimera X [96,82]. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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section SI-2 for derivation). The mean relative error of the G2T
model was 9% when testing the model using 30 structures for train-
ing and 7 for testing, 80/20 split. The analysis of the relative error
using different training sizes revealed an initial exponential decay
with training size, n, saturating at � 9% for n � 25 (R2 = 0.99,
Fig. 3b). This implied that the genome length can predict the capsid
architecture with 91% accuracy, each T-number is associated with a
range of genome lengths that may overlap with nearby T-numbers
(Data File 3), and this accuracy is not expected to improve when
increasing the number of high-resolution capsid architectures.

Phage isolates display multimodal genome lengths domi-
nated by T = 7, 9, and 19 architectures. The genome length distri-
bution of tailed phage genomes (nlib = 635) displayed a multimodal
distribution with 19 peaks (Fig. 4a). The densest genome regions
were around� 40 kbp and� 160 kbp. The G2Tmodel revealed that
15 out of the 19 peaks (55%) were associated with T-number archi-
tectures. Several possible T-number ranges overlap, thus yielding
more than one possible T-number assignment for 38 % of phages
(Supplementary Fig. S3). The remaining four peaks (21 %) were
associated with alternative capsid architectures, which were inter-
preted as elongated architectures. The peak densities of elongated
architectures, however, were far less prominent than those associ-
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ated with icosahedral architectures. The total fraction of elongated
architectures among isolates was predicted to be 18 % (Fig. 4b).
This number was consistent with the observation of 10% to 20%
of elongated architectures among isolates imaged with transmis-
sion electron microscopy [3]. Among the remaining 82 % of capsid
architectures, which were predicted to be icosahedral, the most
frequent capsids were T = 7 (32%), T = 9 (9 %), and T = 19 (11 %)
(Fig. 4c). These three architectures combined accounted for 51 %
of the putative structures. In the high-resolution database (Data
File 1) 20 capsids were T = 7 (54%), no capsids were T = 9 (0%)
and two capsids were T = 19 (5%). Therefore, with respect to tailed
phage isolates, T = 7 has been over sampled in high-resolution cap-
sid studies, while T = 9 and T = 19 have been under sampled. No
tailed phage capsids were predicted to adopt the following T-
numbers: 1, 1.33, 3, 25.33, 28, 33.33, 36, 37, 37.33, and 39.
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Protein sequence similarity can predict capsid architecture
with 75% accuracy when requiring protein–protein similarities
above 80%. The analysis of the MCP/T library curated from phage
isolates (nlib = 635) revealed that MCPs sharing more than 80% sim-
ilarity were associated with similar T-number architectures, with a
mean relative difference in T-number of 2% (Fig. 5a). The relative T-
number difference ranged from 0% to 7% for these highly similar
MCPs. As the MCP similarity dropped below 60% the range of asso-
ciated architectures increased substantially (Fig. 5a and Supple-
mentary Table S1). In the last group, MCP similarities below 20%,
the mean relative difference in T-number was 63 % with a broad
range ranging from 0% to 699 %. A subset of 14.6 % of the MCPs that
shared less than 20% similarity were predicted to form the same
capsid architecture. This implies that high protein sequence simi-
larity is a good predictor of capsid architecture, but very distant
protein sequences can form the same capsid architecture.

The phylogenetic analysis of the major capsid protein
sequences confirmed the observation derived from the initial
MCP-MCP similarity analysis. The tree was very divergent due to
the overall dissimilarity between proteins (Fig. 5b). Protein clusters
displayed similar predicted architectures, but such architecture
was not unique and could be find in independent clusters. Three
clades contained a larger number of similar proteins, displaying
each similar phage genome lengths and capsid architectures (see
highlighted groups in Fig. 5c and Data File 5). Clade one
(nc1 = 95) adopted T = 19 capsids or slightly larger; clade two
(nc2 = 47) adopted T = 16 and T = 17.33 capsids, and clade three
(nc3 = 64) adopted mostly elongated architectures and some
T = 9 and T = 9.33 architectures (all with similar genome lengths).
These architectures were not exclusive of these clades; other small
Fig. 5. Association betweenmajor capsid protein similarity and capsid architecture. a
major capsid protein groups based on protein–protein similarity. The horizontal black line
lines capture the full range for each group. b) Unrooted circular phylogenetic tree obtaine
bars correspond to the genome length of the associated phage. The colors correspond to
length associated to the three more frequent T-number architectures. Three large clades a
the tree in vectorial format. c) The percentages of total capsid architectures predicted (pro
minimum protein–protein similarity required. The lines connecting points provide a guid
reader is referred to the web version of this article.)
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divergent clusters also adopt them. The frequent T = 7 capsids were
distributed in multiple groups across the tree. The phylogenetic
tree suggested that similar capsid architectures have emerged
independently several times during tailed phage evolution. The
alignment, Newick format tree, vectorial render of the tree, and
nodes associated to the three highlighted clades are provided in
Data Files 4–7.

The prediction of capsid architectures based on MCP-MCP
similarity (MCP2T-PM model) assigned T-numbers to 98 % of
the test set with 70 % accuracy when the proximity did not
require a minimum similarity threshold to make a prediction
(Fig. 5c). As the similarity percentage required to make a predic-
tion increased, the accuracy increased slightly, reaching 75 %
when requiring 90% similarity. However, above similarity thresh-
olds of 20%, the number of possible predictions decreased sub-
stantially, reaching 61 % of the test dataset when requiring
90% similarity (Fig. 5b).

MCP amino-acid composition predicts capsid architecture
with 74% accuracy. The random forest model (MCP2T-RF) trained
using the MCP/T library (n = 508 out of 635 in a 80/20 split) suc-
cessfully identified on average 95.2% ± 2.2% of icosahedral struc-
tures as icosahedral, and 53.4% ± 9.6% of the elongated structures
as elongated. (Fig. 6a). The accuracy varied across T-numbers
(Fig. 6b). For T= , 7, 16–17.33, and 19, the accuracy was above
80%, while for T = 4 , the accuracy was just below 50%. The average
accuracy was 74%. (see Supplementary Fig. S4 for further details on
the T-number confusion matrix). The most relevant amino acid
sequence features classifying the T-number were the amino acid
length (len) and frequencies of glycine (G), alanine (A), and pheny-
lalanine (F) (Supplementary Fig. S5).
) Violin plots for the distribution of relative differences in T-number (blue shade) for
include ticks associated with the 25th quantile, median, and 75th quantile The blue
d for the MCPs in the MCP/T library. The inner circle contains the phage names. The
the predicted T-numbers and the three circumferences represent the mean genome
re highlighted with black arcs and solid dots on the clade node. Data File 6 contains
duct signs) and accurate predictions (black triangles) are plotted as a function of the
e to the eye. (For interpretation of the references to colour in this figure legend, the



Fig. 6. Capsid architecture prediction from major capsid protein sequence
composition. a) Confusion matrix (mean and standard deviation) comparing actual
capsid morphologies and predicted capsid morphologies for the major capsid
protein-to-T-number random forest (MCP2T-RF) model. The green gradient scale
reflects the mean values. b) Accuracy of the MCP2T-RF model predicting different
architectures. Bars represent the mean accuracy (green for T-number architectures
and gray for elongated architectures). Error bars display the standard deviation. The
dashed line indicates the average accuracy. c) Mean (green squares) and standard
deviation (error bars) accuracy of the MCP2T-RF model as a function of the size of
the training set, n. The solid, gray line is the fitted logarithmic model displayed in
the legend (equation, parameters, and coefficient of determination, R2). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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To obtain further insight about the random forest model, the
amino acid sequence features were investigated for the three large
clades identified in the phylogenetic analysis. Clade 1 and clade 3
displayed, respectively, three and two amino acid sequence fea-
tures in their MCPs that departed significantly from the average
features in the MCP/T library (Supplementary Table S2). Clade 1
(characterized by T = 19 capsid structures) displayed MCP
sequences with a larger average number of amino acids (498 ver-
sus 391), average glycine enrichment (9.6% of the sequence versus
7.8%), and average impoverishment of leucine (6.4% of the
sequence versus 7.9%). Clade 30s MCPs (characterized by elongated
structures near T = 9 architectures) were on average enriched in
tryptophan (1.5% of the sequence versus 0.9%) and impoverished
in tyrosine (2.0% of the sequence versus 3.0%).

The accuracy of the model was investigated as a function of the
size of the training data set. This identified a logarithmic increase
of accuracy with the training size (R2 = 0.996, Fig. 6c). The accuracy
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model predicts that reaching a 90% accuracy would require a train-
ing set of 2,330 , that is, a library of 2,588 major capsids proteins
and putative capsid architectures.

The training time of the random forest model increased linearly
with the size of the training data set (slope = 2 ms/datum, R2 = 1.00,
Supplementary Fig. S6a). Training the random forest model with a
training set of size 2,330 (predicted to be 90% accurate) would take
about 20 s. The increase in training time was about two times less
costly than for the similarity model (slope = 4 ms/datum, R2 = 1.00,
Fig. SI-7a). In the random forest model, a single prediction was
independent of the training size, approximately 1 ms for a single
search (Fig. SI-7b). For the similarity model, the search time was
faster for small training sizes, but it increased quadratically with
the training size, that is, O(n2) (Supplementary Fig. S6b). The cross-
over time-search was around training size sets of size 10,000, with
a search time on the order of 1 ms. Therefore, the random forest
model provided a scalable approach.

T = 7 capsids dominate among uncultured gut phages. A total
of distinct 1,479 HK97-fold major capsid proteins annotations
were identified among 3,181 metagenomically assembled gen-
omes from gut samples containing tailed phage markers and direct
terminal repeats (Fig. 7a). The MCP2T-RF model predicted the pres-
ence of capsid architectures ranging from T = 4 to T = 31 (Data File
8). The most frequent predicted capsid architecture was T = 7
(48.9%), followed by T � 25 (12.4%), T = 4 (9.4%), and T = 5.33
(9.2%) (Fig. 7b). The frequency of predicted elongated capsids
was 1.9% (see Data File 9). The frequency of putative T = 7 capsid
architectures in gut metagenomes was ten points larger than those
predicted among tailed phage isolates (Fig. 4b and 7b). This was
interpreted due to the large presence of integrated prophages in
bacterial genomes in the gut[58,83]. The genome length of phages
that can integrate as prophages is typically around 45 kbp [14],
which is within genome length that we predict to be associated
with T = 7 capsids. The large frequency of T � 25 architectures in
gut metagenomes was unexpected based on tailed phage isolates,
probably because the observation of jumbo phages has been par-
ticularly elusive until the emergence of sequencing [12].
4. Discussion

The computational model introduced here confirmed a strong
association between the information encoded in the major capsid
protein and the capsid architecture of tailed phages. The applica-
tion of this model to metagenomic data facilitated surveying the
putative capsid architectures of tailed phages in the human gut
microbiome. The most frequent capsid predicted was T = 7. High-
resolution studies have revealed that this architecture is common
among tailed phages [118]. Our interpretation is that the high fre-
quency of T = 7 capsids is associated with the prevalence of lyso-
geny in gut bacteria [109,83]. Temperate tailed phages can
integrate in bacterial genomes as prophages, forming lysogenic
bacteria that can alter the functionality of microbiomes [68,58].
These prophages are expected to be present in gut metagenomes
in addition to free tailed phages. Temperate phages are character-
ized by adopting genomes around 45 kbp [14], which, based on our
model, are expected to be associated with T = 7 capsids, as
observed in lambda and other temperate lambdoids [23]. Pro-
phages in bacteria can be domesticated and shortened in genome
length [14], but the remaining major capsid protein would indicate
that the free version of the prophage was encoding a T = 7 capsid.

The gut metagenome analysis also identified a significant pres-
ence of T � 25 capsids with predicted genome lengths above 206
kbp (Fig. 7b). This was an unexpected result because these group
of capsids are relatively rare among tailed phage isolates (Fig. 4).
Nonetheless, these capsids are considered jumbo phages (above



Fig. 7. Capsid architectures predicted in gut metagenomes. a) Bioinformatic
pipeline displaying the key steps and tools used to predict tailed phage capsids from
gut metagenomic data. b) Frequency of predicted icosahedral capsid architectures.
The arrows highlight the three most frequent T-numbers, including the putative
genome length range in parenthesis.
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200 kbp) [126], and recent studies have discovered that they are
far more common than initially expected across ecosystems
[45,62,12]. Our analysis indicates that jumbo tailed phages might
be particularly prevalent in gut microbiomes, in agreement with
recent studies [33] The detailed genomic and structural character-
ization of jumbo phages might be key to understanding the ecology
of phage and bacteria in the human gut. Additionally, the model
also predicted more frequent small capsids, T = 4 and T = 5.33
(Fig. 7b) than expected from phage isolates. This also aligns with
recent bioinformatic studies indicating that these groups of capsids
have been under sampled [82,12]. These small capsids could be the
key to understand the evolution of tailed phages and cellular com-
partments like encapsulins [82]. The application of the G2T model
to the circular genome lengths indicated that 43 genomes pre-
dicted T = 4 and T = 5.33 capsids in agreement with the MCP2T-
RF model; only 56 genomes led to this agreement for gut phage
genomes. This result suggests that these 43 candidates are proba-
bly complete phage genomes that could provide a great source of
information to investigate the structure and evolution of small,
tailed phage capsids. The MCP2T-RF model did not predict smaller
capsids (T less than 4) because such putative capsids were not pre-
sent in the MCP/T library, but the observation of small circular gen-
omes among tailed phages suggest that that they could exist [82].
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The computational model introduced here is a first step to
bridge viral genomic information with viral structural phenotype
in microbiomes. However, there are important steps ahead to
improve the accuracy of the models. The MCP2T-RF model is pro-
jected to reach an accuracy of 90% using a library of 2,600 MCPs
and putative T-number architectures (Fig. 6c). However, to go
beyond this accuracy, it would be necessary first to improve the
underlying genome-to-T-number (G2T) model responsible for
building the MCP/T library (Fig. 2). The G2T model currently has
an accuracy of 91%, but this error is not projected to be reduced
when increasing the number of structures in the high-resolution
database (Fig. 3b). This implies that at least one more genome fea-
ture would be necessary in addition to the genome length. One
compelling direction would be to add the tailed phage packing
strategy. Head-full mechanisms tend to pack more DNA than
encoded in the genome, while packing signal mechanisms pack
exactly the genome length [22,59]. These variations may explain
that the empirical exponent in the power-function model is
slightly larger than the theoretical prediction (Fig. 3a).

The research introduced here does not clarify the structural rea-
sons why features such as amino acid sequence length as well as
glycine and threonine frequencies are so relevant in predicting
capsid architecture. Nonetheless, two out of the three big MCP
clades identified phylogenetically displayed a few characteristic
features, including larger amino acid sequence lengths and a larger
content of glycine and tryptophan, which could be important to
MCPs associated with large capsids. However, follow-up structural
analyses would be necessary to reveal the origin of the selection of
MCPs to form specific T-numbers. Additionally, information from
other proteins involved in the assembly of tailed phages (like scaf-
fold, minor capsid proteins, and reinforcement proteins) will be
necessary to predict more accurately the capsid architecture as
well as alternative capsid architectures formed by the same major
capsid protein [73,44,32,99]. It is now possible to predict these
protein functions from genomic data, but the accuracy is typically
lower than for major capsid proteins, and some categories are still
hard to predict correctly, like minor capsid proteins [21].

The method described in Fig. 2 could be adapted to also predict
the capsid architecture of other viruses. The first key step would
be identifying strong allometric relationships between the genome
length and capsid architecture of those viruses (Fig. 2a). The analysis
of allometric relationship between virion volume and genome
length combining all virus types has led to non-optimal statistical
results due to the variance between virus groups [30,15,37]. Prior
studies indicate that the allometric exponent would vary strongly
depending on the virus group [10,37]. A strategy to improve the
accuracy of this relationship is separating viruses that use the same
capsid protein fold and genome storage strategy[1,70,122,69,101].
The second step would be generating the MCP/T library of capsid
proteins and capsid architectures using isolated genomes (Fig. 2b),
and the third would be using these libraries to train similar statisti-
cal learning methods as those presented here (Fig. 2c). Sequencing
technologies are now capable of identifying both DNA and RNA
viruses [104,43]. Nonetheless, the diversity of capsid architectures
among viruses different than tailed phages is smaller [89]. Thus,
other phenotypical features might be more interesting to include
in the MCP/T library. The development of bioinformatic pipelines
as the one used here would facilitate constant monitoring and anal-
ysis of viral capsids of different virus groups in the environment
(Fig. 7a).
5. Conclusion

The protein-to-capsid model introduced here predicts the archi-
tecture of tailed phages from just one gene (the major capsid pro-
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tein) with 74% accuracy. Increasing the library of proteins and
putative architectures around 2,600 could increase this accuracy
to 90%. The application of this approach in human gut metagen-
omes predicted the abundance of T = 7 capsids probably associated
to temperate phages followed by an unexpected abundance of
jumbo capsid architectures (T � 25) and small architectures
(T = 4 and T = 5.33) that have been under sampled among phage
isolates and high-resolution tailed phage capsid studies. The
method introduced here will facilitate bridging the evolution and
selection of tailed phage genomic data with capsid architecture.
This would eventually help identify the functions associated with
capsids beyond storage capacity.
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