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With increasing trend of polypharmacy, drug-drug interaction (DDI)-induced
adverse drug events (ADEs) are considered as a major challenge for clinical prac-
tice. As premarketing clinical trials usually have stringent inclusion/exclusion
criteria, limited comedication data capture and often times small sample size
have limited values in study DDIs. On the other hand, ADE reports collected
by spontaneous reporting system (SRS) become an important source for DDI
studies. There are two major challenges in detecting DDI signals from SRS: con-
founding bias and false positive rate. In this article, we propose a novel approach,
propensity score-adjusted three-component mixture model (PS-3CMM). This
model can simultaneously adjust for confounding bias and estimate false discov-
ery rate for all drug-drug-ADE combinations in FDA Adverse Event Reporting
System (FAERS), which is a preeminent SRS database. In simulation studies,
PS-3CMM performs better in detecting true DDIs comparing to the existing
approach. It is more sensitive in selecting the DDI signals that have nonpositive
individual drug relative ADE risk (NPIRR). The application of PS-3CMM is illus-
trated in analyzing the FAERS database. Compared to the existing approaches,
PS-3CMM prioritizes DDI signals differently. PS-3CMM gives high priorities to
DDI signals that have NPIRR. Both simulation studies and FAERS data analy-
sis conclude that our new PS-3CMM is a new method that is complement to the
existing DDI signal detection methods.
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1 INTRODUCTION

Drug-drug interaction (DDI) can change either the pharmacokinetics or pharmacodynamics (PD) drug response when
two or more drugs are coadministered together.1 Clinically, adverse drug events (ADEs) are the primary safety concern

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2019 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

996 wileyonlinelibrary.com/journal/sim Statistics in Medicine. 2020;39:996–1010.

https://orcid.org/0000-0002-6350-7998
https://orcid.org/0000-0002-3592-9042
http://creativecommons.org/licenses/by/4.0/


WANG et al. 997

of DDIs. The incidence of DDI-induced ADEs is expected to increase due to the increasing trend of polypharmacy. Cur-
rently in US, 21.8% of US population receives three or more prescription drugs simultaneously, and 10.7% of the persons
even have five or more.2 Comparatively, these percentages were only 11.0% and 3.6% before 2000.2 DDI-induced ADEs
have become a major challenge to the clinical care setting, as DDIs are suspected to be related with up to 59.1% of ADEs,
and they became a common cause for drugs withdraw from the market.3,4 However, only limited DDIs have been detected
in premarketing clinical trials; most of these trials focus on single-drug effect, and comedications due to the comorbidi-
ties are usually limited by stringent inclusion/exclusion criteria. Thus, most DDIs are discovered through analyzing the
postmarketing pharmacovigilance databases.5

The spontaneous reporting system (SRS) is an important type of pharmacovigilance database for the postmarketing
ADE detection.5 SRS collects ADE reports from a variety of sources including patients, pharmaceutical companies, and
healthcare professionals. As the SRS collects only “cases”, ADE incidence rates are usually inflated. Despite the potential
bias, it is commonly acceptable to use the SRS and test whether a drug or a drug combination has an increased ADE
relative to the other patients who did not have this drug or drug combination. This analysis is also called disproportionality
analyzes (DPAs) for the drug-induced ADE signal detection. DPAs are originally developed to detect single-drug-ADE
signals by comparing the observed report frequency for a drug-ADE combination (ie, observed frequency) to the baseline
frequency under the no association assumption (ie, expected frequency).6 Well-known DPAs include the Information
Component (IC),7 IC with Dirichlet prior,8 empirical Bayes geometric mean (EBGM) also known as the multigamma
Poisson shrinkage (MGPS),9 and the three-component mixture model (3CMM).10 On the other hand, the likelihood ratio
test (LRT) and its extension zero-inflated Poisson model-based LRT (ZIP-LRT) are able to test the associations between
an ADE and many drugs.11,12

The DPA method has also been used for investigating the DDI-induced ADEs by comparing the observed report
frequency of a drug-drug-ADE combination to its baseline frequency assuming no interactions between two drugs. By
considering the drug-drug pair as a “new drug”, the observed report frequency can be obtained from the SRS database.
Therefore, the single-drug-ADE signals detection methods can be extended to identify the DDI signals by designing a new
baseline frequency. For example, by extending the baseline frequency from a two-item set to the three-item set based on a
so-called concept of “market basket problem”, the EBGM approach was extended to identify the suspected DDIs.13,14 The
IC with Dirichlet prior approach was extended for detecting DDI signals based on a proposed three-order IC function.8
The three-order IC is defined as the deviation between the IC under the condition of the third event and the original
IC, and the baseline frequency account for both the main effects and the two-drug interactions. Despite these extensions
of DPA methods, Thakrar et al15 proposed multiplicative and additive models to detect DDI signals in the FDA Adverse
Event Reporting System (FAERS) database. Under the assumption of no interaction, the multiplicative model assumes
that the risk associated with one drug multiplies to the background risk, and the relative risk (RR) associated with this
drug is not influenced by the other drug; the additive model assumes that the risk associated with one drug is additive to
the background risk, and this drug's risk is not influenced by the other drug. Norén et al16 also proposed a well-known
Ω shrinkage method for the suspected DDIs detection in individual case safety reports (ICSRs) data. It determines the
baseline model with an addictive model and calculates a shrinkage observed-to-expected ratio of the ADE risk for the
drug-drug pair. The shrinkage penalizes the signals of rare drug-drug-ADE combinations with a prespecified parameter.

Detecting DDI signals from SRS has several major challenges. SRS analysis subjects to confounding bias from thou-
sands of comedications. In single-drug-ADE association analysis, Dumouchel et al9 proposed a stratified expectation by
using the Mantel-Haenszel formula.17 This approach calculates the expected frequency by using the expected frequency
within each strata. The stratified approach can be generalized for LRT, IC, and their aforementioned extensions as well.
However, stratification is limited by the number of suspected confounders. As the increased number of strata yields
reduced sample size within each strata, the power to detect DDI signals is reduced.18 Besides stratification, confounding
bias can be addressed by multiple regression models in which confounding variables (eg, demographic variables and
comedications) are treated as covariates. For example, van Puijenbroek et al19 proposed a multiple logistic regression
model for detecting DDI signals. Though multiple regression approach is not necessarily limited by the sample size
challenge, techniques for properly selecting confounding variables are still underdeveloped.20 False positive control is
another significant challenge in detecting DDI signals from hundreds of thousands drug pairs.10 False discovery rate
(FDR) is more practical than traditional hypothesis testing techniques (eg, P-value) for large-scale DDI signals detec-
tion. For instance, Bayesian FDR and local FDR were proposed to control false positive rate for detecting single-drug
signals.21,22 While these approaches have not been developed for DDI signals detection.

In this article, our aim is to detect suspected DDI signals with a low FDR from the FAERS, which is a prominent SRS
database. Specifically, we propose a novel approach to compute the expected report frequency, in which confounding
bias is adjusted by using the comedication information. Then, we model the observed and expected frequencies for the
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drug-drug-ADE combinations under an empirical Bayes model frame work. By defining the null risk (eg, RR = 1), the
proposed approach estimated local FDR for each signal. The rest of the article is organized as follow. In Section 2, we
review the Ω shrinkage method and describe the proposed method. In Section 3, we conduct simulation studies to eval-
uate and compare the performance of the proposed approach and the Ω shrinkage method. In Section 4, we illustrate
the utilization of the proposed approach by analyzing the FAERS. Last, Section 5 concludes and discusses the proposed
approach.

2 MATERIALS AND METHODS

2.1 The FAERS database and data processing

The FAERS is a prominent SRS maintained by the U.S. Food and Drug Administration. The FAERS database collects
adverse event reports directly from manufacturers, pharmacists, physicians, nurses, and consumers.23 Each report con-
sists of information including: (1) patients demographics; (2) drugs information which classified as “primary suspect”,
“secondary suspect”, “concomitant”, and “interacting”; (3) ADEs coded by using the Medical Dictionary for Regulatory
Activities' (MedDRA) Preferred Terms (PTs)24; (4) patient outcomes; (5) report sources; and (6) indications coded by using
MedDRA PT code for the reported drugs. For FAERS analysis, the ADEs can be defined by using MedDRA PTs. How-
ever, the drug names may involve abbreviations, synonyms, brand names, and spelling mistakes. Thus, normalization of
the drug names is necessary for FAERS analysis. The FAERS database has two major advantages: (1) massive sample size
(>18 million reports)25 and (2) the implementation of MedDRA PT allows the ADEs to be directly available. Despite the
advantages, the FAERS database also has some limitations. First, the true ADE incidence rates cannot be obtained, as the
FAERS database only contains ADE reports. Second, there is a great uncertainty between the drugs and the ADEs on a
report, as the report collects all possible drugs and ADEs for a patient.9 Third, the quality of the FAERS database may be
compromised by inaccurate reports and missing data (eg, age and gender). For instance, over 30% of the FAERS reports
involve missing data, as reporting of demographics is voluntary.26 Although the FAERS database has the aforementioned
limitations, it is a valuable source for DDI study.

In this article, we selected FAERS reports from 2004Q1 to 2012Q3 as our data source. To avoid the spurious associations
caused by the duplicated reports, we only left the reports with the latest primary ID and removed other reports with the
same primary IDs. As there was a great uncertainty of the drugs' roles (eg, primary suspect), we used all the drugs on each
report including “primary suspect,” “secondary suspect”, “concomitant”, and “interacting”. Furthermore, the drug names
were normalized into generic names by using the dictionary proposed by DrugBank and Wu et al27,28 Frequent drug
names (report frequency> 999) that failed to be normalized were manually checked and corrected. After data processing,
our FAERS dataset contained 4 280 322 reports with 1180 generic drug names and 15 445 MedDRA PT ADE names. Of
these 4 280 322 reports used for data analysis, about 38% of the reports involved with missing age information and nearly
10% of the reports involved with missing gender information.

To detect potential DDI signals, we extracted the information for drug-drug combinations and ADEs from our pro-
cessed FAERS dataset. The total number of drugs in our FAERS dataset was 1180. In order to limit the search space of the
drug-drug combinations and maintain sufficient candidate drug-drug combinations, we set criteria to filter the drug-drug
combinations by their frequencies. Specifically, all drug-drug combinations appeared in our FAERS dataset with the fre-
quency bigger than 50 were used in our illustrative FAERS analysis. After filtering the report frequencies of drug-drug
combinations (eg, >50), we identified 81 312 drug-drug combinations generated by 1061 drugs. Furthermore, we selected
four primary ADEs for analysis including delirium, myopathy, neuropathy, and skin pigmentation disorder.10 Our final
dataset contained 256 887 drug-drug-ADE combinations which were formed from four ADEs and 1061 drugs (Figure 1).

2.2 Notations and definitions

For a drug-drug-ADE combination (eg, Drug1 and Drug2), the FAERS reports can be summarized into eight frequencies
(Table 1) In Table 1, a, b, c, d, e, f , g, and h denote the eight report frequencies for a drug-drug-ADE combination in
the FAERS, according to the status of Drug1, Drug2, and the ADE. For instance, g is the number of reports that contain
Drug1, Drug2, and the ADE; and h is the number of reports that contain Drug1 and Drug2 but do not contain the ADE.
Furthermore, we define the observed relative reporting rate for the ADE under the four different drug exposure status as
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F I G U R E 1 Overview of
FAERS data processing

T A B L E 1 Report frequencies and rates for a drug pair
and ADE in FAERS database Exposure status ADE status

Drug1 Drug2 Yes No Relative reporting rate

No No a b r00 = a/(a+ b)

Yes No c d r10 = c/(c+ d)

No Yes e f r01 = e/(e+ f )

Yes Yes g h r11 = g/(g+ h)

Abbreviation: ADE, adverse drug event.

r00 = a
a+b

, r10 = c
c+d

, r01 = e
e+f

, and r11 = g
g+h

(Table 1). We define N = g as the observed report frequency, E as the expected

report frequency, 𝜆 as the RR, and 𝜆 = N
E

as the observed RR for a drug-drug-ADE combination. For different DPAs, E are
calculated differently.

2.3 A review of the 𝛀 shrinkage method

In this section, we review the well-known DPA to detect DDI signals from SRS by Norén et al16 This method, also known
as the Ω shrinkage method, penalizes the signals of less frequent drug-drug-ADE combinations. Under this approach,
based on the addictive risk model:

r11 + r00 = r10 + r01

The expected frequency E is calculated as:

E =
⎡⎢⎢⎢⎣
1 − 1

max
(

r10
1−r10

,
r00

1−r00

)
+ max

(
r01

1−r01
,

r00
1−r00

)
− r00

1−r00
+ 1

⎤⎥⎥⎥⎦
× (g + h). (1)

In Equation (1), (g+ h) represents the total number of reports that contain both Drug1 and Drug2 (Table 1). The max-
imum functions on denominator are equivalent as r10 = max(r10, r00) and r01 = max(r01, r00). These restrictions guarantee
the ADE risk caused by single drug is higher than its background risk. And the Ω shrinkage measure is calculated as

Ω = log2
N + 𝛼

E + α
. (2)

In Equation (2), 𝛼 is prespecified (eg, 𝛼 = 0.5). The Ω shrinkage method can also be derived under the Bayesian
framework by assuming N ∼Pois(𝜆E) and 𝜆∼Γ(𝛼, 𝛼). The posterior distribution of 𝜆 is also a gamma distribution: 𝜆 ∣N,
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E ∼Γ(N + 𝛼, E + 𝛼). To detect DDIs, the signal generation can be based on the logarithm of the lower limits of 95%
credibility interval for 𝜆 denoted as Ω025. According to Noren et al16, positive Ω025 value indicates DDI signals.

2.4 Propensity score-adjusted three-component mixture model

Our proposed statistics for DDI signal detection is named as PS-adjusted three-component mixture model (PS-3CMM).
We will first introduce the calculation for the expected frequency E and subsequently the empirical Bayes mixture model
for adjusted-FDR estimation.

2.4.1 Logistic regression-based expected frequency for drug-drug-ADE combinations

If there are no confounders, logistic regression model (3) can be used to estimate the individual drug and DDI effect.

Logit[P(ADE = 1)] = 𝛽0 + 𝛽1D1 + 𝛽2D2 + 𝛽3D1D2, (3)

where in Equation (3), D1 and D2 are the binary drug exposure status, P(ADE = 1) is the risk of ADE, and 𝛽0, 𝛽1, 𝛽2, 𝛽3
are the coefficients.

The estimation for the background odds of the ADE in the absence of both D1 and D2 is:

Odds00 = r00

1 − r00
= exp(𝛽0). (4)

Similarly, the estimations for the odds of the ADE in the absence of one of D1 and D2 are

Odds10 = r10

1 − r10
= exp(𝛽0 + 𝛽1), and (5)

Odds01 = r01

1 − r01
= exp(𝛽0 + 𝛽2). (6)

The estimation for the odds of the ADE in present of both D1 and D2 under the condition of no interaction is

Odds11 = r11

1 − r11
= exp(𝛽0 + 𝛽1 + 𝛽2). (7)

From Equations (4) to (7), we get the relation for the reporting rate (8)

r11

1 − r11
× r00

1 − r00
= r10

1 − r10
× r01

1 − r01
. (8)

Therefore, the baseline model can be seen as a multiplicative odds model.
From Equations (7) and (8), the expected report frequency of taking both drugs under a non-DDI assumption can be

calculated as:

E =

⎡⎢⎢⎢⎢⎣
1 − 1

r10
1−r10

× r01
1−r01

r00
1−r00

+ 1

⎤⎥⎥⎥⎥⎦
× (g + h) =

exp(𝛽0 + 𝛽1 + 𝛽2)
1 + exp(𝛽0 + 𝛽1 + 𝛽2)

× (g + h). (9)

2.4.2 PS-adjusted logistic regression-based expected frequency for drug-drug-ADE
combinations

Because the large number of comedication confounders cannot be straightforwardly controlled in the SRS dataset, we
propose a PS-adjusted expectation to address confounding bias. Assuming that the unobserved confounders can be
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characterized by the comedications in our dataset, the logistic regression (10) and the principal components (PCs)
derived from comedications are used to compute the probability (ie, propensity score, PS) of taking the drug.

Logit[P(Drug = 1)] = 𝛼0 +
K∑

i=1
𝛼i × 𝑃𝐶 i. (10)

In Equation (10), K denote the number of PCs that we used to calculate the PS. PCs are derived from the comed-
ications and K are selected by a prespecified threshold for the fraction of the total explained variance. Then, for each
drug-drug-ADE combination, we used the logistic regression model (11) to estimate the individual drug and DDI effect
with adjustment of two PSs.

Logit[P(ADE = 1)] = 𝛽0 + 𝛽1D1 + 𝛽2D2 + 𝛽3D1D2 + 𝛽4PS1 + 𝛽5PS2. (11)

In Equation (11), D1 and D2 are the binary indicators of two drugs and PS1 and PS2 are their PSs, respectively. The
expected report frequency is calculated as:

E =
g+h∑
i=1

Exp(𝛽0 + 𝛽1 + 𝛽2 + 𝛽4PS1i + 𝛽5PS2i)
1 + Exp(𝛽0 + 𝛽1 + 𝛽2 + 𝛽4PS1i + 𝛽5PS2i)

. (12)

In Equation (12), for report i, Exp(𝛽0+𝛽1+𝛽2+𝛽4PS1i+𝛽5PS2i)
1+Exp(𝛽0+𝛽1+𝛽2+𝛽4PS1i+𝛽5PS2i)

is the estimation of the PS-adjusted probability for the ADE
occurrence with only the individual drug effects. In another word, E is the expected report frequency of taking both drugs
under a non-DDI assumption while adjusted for potential confounders.

2.4.3 FDR estimation for drug-drug-ADE combinations

To model the observed and expected report frequencies (ie, Ns and Es), we adopt the empirical Bayes mixture model
framework. As nearly 83% of report frequencies for drug-drug-ADE combinations in our dataset is equal to 0, we choose
the three-component empirical Bayes mixture model proposed by Zhang et al10 to model the RR for the drug-drug-ADE
combinations. Moreover, the 3CMM framework also provides a much needed false positive control for the signals. We
assume the drug-drug-ADE combinations belong to three groups. They are (i) zero DDI risk: drug-drug-ADE combina-
tions have 0 frequency (eg, neither the drug combination nor the individual drugs causes the ADE); (ii) background noise:
the report frequencies for drug-drug-ADE combinations are close to their expected frequencies due to the additive effects
from two drugs; and (iii) DDI signals: drug-drug-ADE combinations have much higher RRs than the background additive
effect.

We assume the unobserved RR (𝜆) follows the 3CMM (13).

𝜆 ∼ P1{I(𝜆 = 0)} +
3∑

l=2
[PlΓ(𝜆; 𝛼l, 𝛽l)];

𝛼2 = 𝛽2, 𝛼3 > 𝛽3, and P1 + P2 + P3 = 1. (13)

In Equation (13), I(𝜆 = 0) is an identity distribution that characterizes the drug-drug-ADE combinations with RR = 0
(eg, no ADE risk). Γ(𝜆; 𝛼l, 𝛽 l) is the gamma distribution such that Γ(𝜆; 𝛼l, 𝛽l) =

𝛽l
𝛼l

Γ(𝛼l)
𝜆𝛼l−1 exp(−𝛽l𝜆). There are two gamma

distributions with different restrictions in the 3CMM. One gamma distribution (l = 2) restricts 𝛼2 = 𝛽2, and has its mean
equal to 1. Therefore, this gamma distribution characterizes the drug-drug-ADE combinations to have a background ADE
risks (ie, mean RR = 1). The other gamma distribution (l = 3) restricts 𝛼3 >𝛽3 and has its mean greater than 1. Therefore,
this gamma distribution characterizes drug-drug-ADE combinations with increased ADE risks (ie, mean RR> 1), which
represents signals of DDI. Furthermore, from Equation (13), we assume N ∼Pois(𝜆×E). Thus, the observed distribution
of N is
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P(N) = P1I(N = 0) +
3∑

l=2
[PlF(N; 𝛼l, 𝛽l,E)], (14)

𝛼2 = 𝛽2, 𝛼3 > 𝛽3, and P1 + P2 + P3 = 1.

In Equation (14), F(N; 𝛼l, 𝛽l,E) =
Γ(N+𝛼l)×EN×𝛽𝛼l

l
Γ(𝛼l)×N!×[E+𝛽l]N+𝛼l

is the negative binomial distribution function.
For the adverse DDIs detection, our concern is drug-drug-ADE combinations with positive report frequencies (N > 0).

Therefore, to reduce the excessive amount of drug-drug-ADE combination with N = 0, the conditional distribution (15)
can be used for inference, which will not affect local FDR estimation accord to Zhang et al10

P(N = k| N > 0) =
F(N = k; 𝛼2, 𝛽2,E) + P3

P2
× F(N = k; 𝛼3, 𝛽3,E)

P(N > 0; 𝛼2, 𝛽2,N) + P3

P2
× P(N > 0; 𝛼3, 𝛽3,E)

. (15)

In Equation (15), P(N > 0; 𝛼2, 𝛽2, N) is the probability for N > 0, F(N = k; 𝛼2, 𝛽2, E) is the distribution function for
P(N > 0; 𝛼2, 𝛽2, N). The conditional log-likelihood function for Equation (15) is:

𝑙𝑙

(
N;E,

{
𝛼2 = 𝛽2, 𝛼3, 𝛽3,

P3

P2

})
=
∑

log[P(N = k| N > 0)]. (16)

By considering P3

P2
as one parameter, the four parameters

{
𝛼2 = 𝛽2, 𝛼3, 𝛽3,

P3

P2

}
in Equations (16) can be obtained by

maximizing the observed likelihood (eg, maximum likelihood estimate). In this study, the MLEs are obtained by using the
R function nlminb, which is able to conduct both unconstrained and box-constrained optimization by using Newton-like
methods.29

As the mean of the first gamma component in Equation (16) equals 1, it will be served as the null distribution to
compute the local FDR accord to Efron et al22 The local FDR for a drug-drug-ADE combination is defined as:

Local FDR(N = k|k > 0) = F(N = k; 𝛼2, 𝛽2,E)
F(N = k; 𝛼2, 𝛽2,E) +

P3

P2
× F(N = k; 𝛼3, 𝛽3,E)

. (17)

In another word, local FDR represents the posterior probability that a drug-drug-ADE combination has the back-
ground RR (null). As we use PSs to adjust confounding bias, we name the statistic in Equation (17) as adjusted-FDR for
screening adverse DDIs.

2.5 Proportional reporting ratio for DDI

Proportional reporting ratio (PRR) is a well-known method for pharmacovigilance proposed by Evan et al.30 PRR is devel-
oped for detecting signals of single-drug-induced ADE from a SRS database. Specifically, PRR calculates the ratio of ADE
reporting rates with and without a drug. Based on the report frequencies of Drug1 and Drug2 (Table 1), PRRD1 and PRRD2
for Drug1 and Drug2 are defined as:

PRRD1 =
(c + g)∕(c + d + g + h)
(a + e)∕(a + b + e + f )

,

PRRD2 =
(e + g)∕(e + f + g + h)
(a + c)∕(a + b + c + d)

. (18)

For the Drug1-Drug2-ADE combination, we define its PRR by considering the Drug1-Drug2 pair as a “new drug”,
based on the drug pair's ADE frequency (Table 1), the PRRD1D2 for the Drug1-Drug2-ADE combination is:

PRRD1D2 =
g∕(g + h)

(a + c + e)∕(a + b + c + d + e + f )
. (19)
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The lower bound of the 95% confidence interval (CI) for the PRR is defined as:

PRR025 = eln PRR−1.96SD, (20)

where SD denotes the SD, for Drug1, SDD1 =
√

1
c+g

− 1
c+d+g+h

+ 1
a+e

− 1
a+b+e+f

; similarly, for Drug2 SDD2 =√
1

e+g
− 1

e+f+g+h
+ 1

a+c
− 1

a+b+c+d
, for Drug1-Drug2 combination SDD1D2 =

√
1
g
− 1

g+h
+ 1

a+c+e
− 1

a+b+c+d+e+f
.31 Let

PRR025 D1, PRR025 D2, and PRR025 D1D2 to be the values of PRR025 for Drug1, Drug2, and Drug1-Drug2 combination,
respectively.

Similar to the approach proposed by Almenoff et al32, a drug pair with PRR025 D1D2 >max(PRR025 D1, PRR025 D2) is
considered as a signal of DDI.

Comparing to adjusted-FDR and Ω025, PRR and PRR025 are measurements without shrinkage adjustment. Therefore,
in this study, they will be served as a reference for the Ω shrinkage and our proposed approach.

3 SIMULATION STUDY

We conducted extensive simulation studies to evaluate the performance of our proposed method and compare it with
the Ω shrinkage method. In each method, the area under the receiver-operating characteristic (ROC) curve (AUC) was
calculated by using the simulated true positive DDIs and negative controls. Let PS be the PS, D be the binary drug exposure
status, and Y be the binary ADE status. Specifically, the data were simulated as:

1. Simulate drug exposure status by D∼Bin(1, PS), where PS∼Beta(𝛼, 𝛽).
2. Simulate ADE status for a given drug pair by:

Logit[P(Y = 1)] = 𝛽0 + 𝛽1D1 + 𝛽2D2 + 𝛽3D1 ∗ D2 + 𝛽4PS1 + 𝛽5PS2. (21)

In order to evaluate and compare the performance of our proposed method to the Ω shrinkage method, we first define
two types of DDIs. One type is DDI with nonpositive individual drug relative ADE risk (DDI-NPIRR) (eg, r01 − r00 ≤ 0 or
r10 − r00 ≤ 0) and the other is DDI with positive individual drug relative ADE risk (DDI-PIRR) (eg, both r01 − r00 > 0 and
r10 − r00 > 0).

We simulated data of the following three situations:

(a) Data contain both DDI-NPIRR (𝛽1 > 0, 𝛽2 < 0, and 𝛽3 > 0) and DDI-PIRR (𝛽1 > 0, 𝛽2 > 0, and 𝛽3 > 0), and without
confounding bias (𝛽4 = 𝛽5 = 0).

(b) Data only contain DDI-NPIRR, and without confounding bias.
(c) Data contains both DDI-NPIRR and DDI-PIRR, and with confounding bias (𝛽4 ≠ 0 and 𝛽5 ≠ 0).

For all the three situations, the total number of reports was chosen to be 100 000, and PS was generated from beta
distribution such that PS∼Beta(1, 6). In each simulation, 10 000 positive DDI signals and 10 000 negative controls were
simulated from the uniformly distributed parameters shown in Table 2.

The ROC curves and AUC values are shown in Figure 2. In the first simulation, Figure 2A, we display the AUCs in
the absence of confounding bias [𝛽4 = 𝛽5 = 0 ] in Equation (21) for both DDI-NPIRR and DDI-PIRR. Although both
proposed PS-3CMM and the Ω shrinkage methods have good performance, PS-3CMM performs better than Ω shrinkage,
AUC = 0.94 vs AUC = 0.88. In the second simulation with only DDI-NPIRR, PS-3CMM has even better DDI detection
performance than the Ω shrinkage method, AUC 0.93 vs 0.78, respectively. In the third simulation, Figure 2C, when
confounding bias is present, [𝛽4 ≠ 0 and 𝛽5 ≠ 0 ] in Equation (21), the PS-3CMM's DDI detection performance did not
reduce (AUC = 0.94) much from the simulation where there was no confounding. On the other hand, the Ω shrinkage
method has obvious decreased performance from 0.88 to 0.84 when confounding bias was presented.

4 FAERS ANALYSIS

We demonstrate the utilization of the proposed approach in analyzing the FAERS database including 256 887
drug-drug-ADE combinations. In our analysis, 160 PCs, [K = 160 ] in Equation (10), were used to calculate the PS and
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T A B L E 2 Parameters setting for the simulation study

Situation (a) Situation (b) Situation (c)

DDI signal Negative control DDI signal Negative control DDI signal Negative control

𝛽0 [−6,−5] [−6,−5] [−6,−5] [−6,−5] [−6,−5] [−6,−5]

𝛽1 [−0.8,0.8] [−0.8,0.8] [0.1,2] [−0.8,0.8] [−0.8,0.8] [−0.8,0.8]

𝛽2 [−0.8,0.8] [−0.8,0.8] [−2,0.1] [−0.8,0.8] [−0.8,0.8] [−0.8,0.8]

𝛽3 [0.1,1] [−1,−0.1] [0.1,1] [−1,−0.1] [0.1,1] [−1,−0.1]

𝛽4 0 0 0 0 [−2,1] [−1,1]

𝛽5 0 0 0 0 [−2,1] [−1,1]

Abbreviation: DDI, drug-drug interaction.

F I G U R E 2 A, Receiver-operating characteristic (ROC) curves of propensity score-adjusted three-component mixture model
(PS-3CMM) and Ω shrinkage without confounding bias for all drug-drug interactions (DDIs); B, ROC curves of PS-3CMM and Ω shrinkage
without confounding bias for DDI-nonpositive individual drug relative ADE risk; and C, ROC curves of PS-3CMM and Ω shrinkage with
confounding bias for all DDIs. [Color figure can be viewed at wileyonlinelibrary.com]

expected report frequency, in which the 160 PCs explained 70% of total variation of all comedications. The estimated
parameters for the conditional likelihood in Equation (16) are 𝛼2 = 𝛽2 = 2.19, 𝛼3 = 0.22, 𝛽3 = 0.04, and P̂3

P2
= 0.08. These

estimates mean that the component 2 (background noise group) had mean RR = 1 with SD = 0.68 and the component 3
(increased risk group) had mean RR= 5.33 with SD= 11.33. For each drug-drug-ADE combination, the adjusted-FDR and
Ω025 were calculated for signal detection and comparison. We also calculate the value of PRR025 for each drug-drug-ADE
combination as a reference for the DDI signals detected by PS-3CMM and Ω shrinkage methods.

4.1 Performance comparisons between PS-3CMM and 𝛀 shrinkage

If both drugs cause an ADE, we define it as the DDI-PIRR, which yields additive or synergistic risk for the ADE. In terms
of reporting rate, DDI-PIRR has the pattern r11 > r10, r01 > r00 (Table 1). Alternatively, if only one drug has ADE risk and
the other one does not, we define it as DDI-NPIRR, which increases the ADE risk when two drugs are coprescribed. In
terms of reporting rate, DDI-NPIRR has the pattern r11 > r10 > r00 ≥ r01 or r11 > r01 > r00 ≥ r10.

We compared the top-100 DDI signals between two methods in Figure 3: PS-3CMM and Ω shrinkage. The x-axis is
the difference of the marginal reporting rate of drug 1 and the reporting rate of no drug (eg, r10 − r00); and the y-axis is
the difference of the marginal reporting rates of drug 2 and the reporting rate of no drug (eg, r01 − r00). Clearly, top-100
DDI signals of PS-3CMM and Ω shrinkage have different patterns. Two lists only have 25 overlapped DDIs (Table 5).
Among the Ω shrinkage's top-100 signals, 62% of them have r10, r01 > r00. On the other hand, only 15% of the PS-3CMM's
top-100 signals are DDI-PIRR. For DDI-NPIRR (r00 ≥ r10 or r00 ≥ r01), the percentages are 32% for Ω shrinkage and 64%
for PS-3CMM.

http://wileyonlinelibrary.com
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F I G U R E 3 Top-100 drug-drug
interaction signals for propensity
score-adjusted three-component
mixture model and Ω shrinkage
methods. [Color figure can be viewed at
wileyonlinelibrary.com]

4.2 Evaluation of top-100 DDI signals detected by adjusted-FDR and 𝛀025

The drug side-effect database (SIDER) and DrugBank database were used to evaluate the top-100 adjusted-FDR DDI sig-
nals (Table S1) and the top-100 Ω025 DDI signals (Table S2). SIDER collects drug-ADE association data from drug labels.33

DrugBank documented DDIs from a variety of sources.28 Our evaluation was conducted manually through searching the
drug-drug-ADE combinations in SIDER and DrugBank. The results for the adjusted-FDR DDI signals and the Ω025 DDI
signals are summarized in Tables 3 and 4, respectively. As Table 3 shows, 49 out of the top-100 DDI signals have sup-
porting evidence from DrugBank. Among these 49 DDI signals, seven pairs have both drugs labeled with the ADE; 17
pairs have only one drug labeled with the ADE; and 25 combinations have neither drugs labeled with the ADE. For the
remaining 51 DDI signals that are not documented in DrugBank, four have both drugs labeled with the ADE; 20 have
only one drug labeled with the ADE; and 27 have neither drug labeled with the ADE. In Table 4, 56 out of the top-100
DDI signals have supporting evidence from DrugBank. Among these 56 DDI signals, eight pairs have both drugs labeled

T A B L E 3 Evaluation of the top-100 drug-drug-ADE
combinations ranked by adjusted-FDR

DDI evidence in DrugBankbNumber of drugs have
ADE on its labela Yes No Total

2 7 4 11

1 17 20 37

0 25 27 52

Total 49 51 100

Abbreviations: ADE, adverse drug event; DDI, drug-drug interaction; FDR,
false discovery rate.
aDrug label information was collected from SIDER.
bDDI evidence was collected from DrugBank.

http://wileyonlinelibrary.com
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DDI evidence in DrugBankb
Number of drugs have
ADE on its labela Yes No Total

2 8 1 9

1 25 18 43

0 23 25 48

Total 56 44 100

Abbreviations: ADE, adverse drug event; DDI, drug-drug interaction.
aDrug label information was collected from SIDER.
bDDI evidence was collected from DrugBank.

T A B L E 4 Evaluation of the top-100 drug-drug-ADE
combinations ranked by Ω025

T A B L E 5 Overlap top-100 drug-drug-ADE combinations

Drug1 Drug2 ADE

−log10
(adjusted-FDR)
[Rank] 𝛀025 [Rank] PRR025 D1 PRR025 D2 PRR025 D1D2

BUPROPIONa METHAMPHETAMINE Neuropathy 35.0380 [9] 3.2731 [84] 2.2115 3.9370 36.1433

BEVACIZUMAB VALPROIC ACIDa Delirium 23.1426 [18] 3.8676 [9] 0.6918 3.2050 66.0302

PEGFILGRASTIM PHENYTOINa Delirium 22.7221 [19] 4.9747 [1] 1.9341 2.0910 162.7558

BEVACIZUMAB PHENYTOINa Delirium 22.3023 [22] 4.1906 [4] 0.6918 2.0910 49.2345

PEGFILGRASTIM VALPROIC ACIDa Delirium 18.6823 [26] 4.2639 [3] 1.9341 3.2050 106.5403

CARBOPLATINa VARENICLINE Neuropathy 18.4633 [27] 3.6936 [17] 2.2121 0.3180 52.1493

NALOXONE BUDESONIDE Neuropathy 17.4483 [28] 3.8090 [13] 0.8758 0.7835 32.8251

PEGFILGRASTIM BEVACIZUMAB Delirium 16.6822 [31] 3.4410 [51] 1.9341 0.6918 14.1947

VALPROIC ACIDa CARBOPLATIN Delirium 15.4286 [34] 4.0513 [6] 3.2050 1.5340 89.2514

WARFARIN TETRACYCLINE Delirium 14.7344 [38] 3.2537 [93] 1.4521 2.3461 34.1982

METAXALONE TERIPARATIDE Delirium 14.0579 [40] 3.2475 [98] 1.2557 0.3933 24.9570

PHENYTOIN CARBOPLATIN Delirium 13.3545 [46] 4.3066 [2] 2.0910 1.5340 76.0028

CARVEDILOL NALOXONE Neuropathy 13.0354 [49] 3.2530 [94] 1.8283 0.8758 28.1420

METAXALONE ROSUVASTATIN Delirium 12.0456 [55] 3.3886 [60] 1.2557 0.5564 24.7431

ROFECOXIBa LAMOTRIGINEa Neuropathy 11.8226 [59] 3.5168 [35] 1.9221 1.0212 31.8124

BUPIVACAINE PREDNISONEa Delirium 11.2454 [67] 3.4850 [42] 2.0987 0.9646 54.0550

TETRACYCLINE ESCITALOPRAMa Delirium 10.9939 [68] 3.3108 [73] 2.3461 1.9282 50.7768

DULOXETINE ROFECOXIBa Neuropathy 10.9655 [69] 3.5546 [30] 2.6122 1.9221 45.9861

ROSIGLITAZONE BIMATOPROST Neuropathy 10.8976 [71] 3.4377 [52] 1.0349 0.7282 25.5408

GEMCITABINE DULOXETINE Delirium 10.6277 [74] 3.3538 [65] 0.8139 1.9728 45.1643

VALDECOXIBa TELMISARTANa Neuropathy 10.6144 [76] 3.4979 [38] 1.1240 0.8844 30.3932

GEMCITABINE ROFECOXIB Delirium 10.4108 [79] 3.4159 [56] 0.8139 0.8227 29.1456

BUPIVACAINE ZOLEDRONATE Delirium 10.3610 [80] 3.4567 [45] 2.0987 1.1792 58.8019

FILGRASTIM PHENYTOINa Delirium 10.2910 [81] 3.8094 [12] 1.9407 2.0910 50.6368

ROFECOXIB GRANISETRON Delirium 10.2715 [82] 3.5553 [29] 0.8227 1.4602 42.8081

Note: The underlined drug names represent DDI evidence in DrugBank database.
Abbreviations: ADE, adverse drug event; DDI, drug-drug interaction; FDR, false discovery rate.
aDrugs labeled the ADE in SIDER database.
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with the ADE; 25 pairs have only one drug labeled with the ADE; and 23 combinations have neither drugs labeled with
the ADE. For the remaining 44 DDI signals that are not documented in DrugBank, one have both drugs labeled with the
ADE; 18 have only one drug labeled with the ADE; and 25 have neither drug labeled with the ADE. By using DrugBank
as a gold standard to evaluate the top-100 signals, the proposed method has a positive-predicted values (PPVs) of 49% and
the Ω shrinkage method has a PPV of 56%.

Using PRR025 as a reference, for the top-100 adjusted-FDR DDI signals (Table S1), 91 DDI signals
have increased PRR025 (ie, PRR025 D1D2 >max(PRR025 D1, PRR025 D2), nine DDI signals have decrease PRR025
(ie, PRR025 D1D2 <max(PRR025 D1, PRR025 D2)). Among these nine DDI signals, four have supporting evidence from Drug-
Bank and two have both drugs labeled with the ADE. In the top-100 Ω025 DDI signals (Table S2), all of the 100 DDI
signals have increased PRR025. Among the top 100 ranking DDI signals detected by adjusted-FDR and Ω025, there are 25
common DDI signals (Table 5). Among these 25 DDI signals, 14 drug pairs have supporting evidence from DrugBank;
only two of the drug pairs have both drugs labeled with ADE and 11 of drug pairs have only one drug labeled with ADE.
Moreover, all these 25 common DDI signals have increased PRR025.

Except the overlap 25 DDI signals, both our proposed method and the Ω shrinkage method can detect some DDI
signals that cannot detected by each other, therefore, the PS-3CMM is an important complementary to the Ω shrinkage
method.

5 CONCLUSION AND DISCUSSION

In this article, we propose a new approach, PS-3CMM to detect signals of DDI from the FAERS database. This method
controls false positive rate and adjusts for confounding bias due to comedications. Specifically, this approach first uses the
comedications to derive the PSs. These PSs are then utilized to calculate adjusted expected frequencies for drug-drug-ADE
combinations under the no DDI assumption. The empirical Bayes mixture model is used to characterize the RR between
the DDI-induced ADE frequency and the expected ADE frequency of drug-drug combination under no DDI effect
assumption. This 3CMM estimates adjusted-FDR for each drug-drug-ADE combination.

The PSs are derived from PC analyses of comedication variables. The number of PCs can be determined by the
percentage of total variation that explained by the selected PCs. In our illustrative FAERS analysis, the selected PCs
capture 70% of variations of comedications. Therefore, we believe these comedication PCs contain sufficient variations
among the comedications, and they shall capture a great deal of comorbidity variation among the patients. Our model
also includes PS as continuous variable. It avoids the potential sparsity caused by the stratification of the data used
in the EBGM and IC.18 For instance, in our FAERS database the drug pairs' frequency has a median of 180. For P
binary variables (eg, age, gender, and comedications), the number of strata is 2P. The sparsity appears even for moder-
ate P (eg, stratify by four age groups and gender yield P = 8). Unlike the Ω shrinkage method in which the penalize
parameter is prespecified, the proposed approach is data-driven in which the parameters in the prior distribution are
estimated from data under the empirical Bayes framework. Furthermore, the adjusted-FDR provides much needed false
positive control for high throughput DDI signals detection. Our simulation studies show the PS-3CMM has better per-
formance comparing to the Ω shrinkage method especially in detecting DDI-NPIRR. In addition, the simulation studies
also demonstrate that our PS-3CMM has the advantage of adjusting for confounding bias, which is a common problem
in SRS.

The application of PS-3CMM is demonstrated through the FAERS database. In FAERS analysis, we notice that the
PS-3CMM and the Ω shrinkage prioritized signals differently. PS-3CMM is more prone to identify DDI-NPIRR signals.
DDI changes the expected pharmacologic or clinical response for an individual drug when two drugs are coadministered.1
The incidence of ADE can be significantly increased by: (1) pharmacokinetic (PK) DDI, in which a drug's plasma concen-
tration is increased by coprescribed drug and exceeded the maximum tolerated dose34 and (2) PD DDI in which additive
or synergistic effects on ADE risk occurs. For DDI-NPIRR signals, a drug's ADE risk is significantly increased by another
drug which has either similar or lower ADE risk compared with background. In another word, DDI-NPIRR signals are
more likely to have a mechanism similar to PK DDI. For instance, the acetaminophen-methamphetamine-neuropathy
combination and acetaminophen-neostigmine-neuropathy combination are highly prioritized by PS-3CMM but not by
the Ω shrinkage method. They are ranked in 11th and 17th by PS-3CMM, and 915th and 8126th by the Ω shrinkage
method (Table S1). In both combinations, the neuropathy risks of methamphetamine and neostigmine are lower than
background risks, which imply both of these DDI signals are DDI-NPIRR signals. Moreover, both drugs are known to have
PK drug interaction with acetaminophen according to DrugBank.35 For instance, the description of drug interactions for
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acetaminophen-methamphetamine combination is “Acetaminophen may decrease the excretion rate of Metamfetamine
which could result in a higher serum level”. Thus, these DDI-NPIRR signals are likely to have a mechanism of PK DDI.
Alternatively, DDI-PIRR signals are more likely to have a mechanism similar to PD DDI. For DDI-PIRR signals, both
individual drugs have higher than background risks, and the drug combinations have much increased risks. For instance,
the cetirizine-levodopa-neuropathy combination and the ibuprofen-tinzaparin-neuropathy combination are highly prior-
itized by Ω shrinkage but not by the PS-3CMM. They are ranked in 32th and 34th by the Ω shrinkage method and 5716th
and 19226th by PS-3CMM (Table S2). Both of these two DDI signals are DDI-PIRR signals. These two-drug combinations
are known to have increased ADE risk according to DrugBank with no clear evidence of PK drug interaction.35 In conclu-
sion, DDI-NPIRR signals are more likely to have a mechanism similar to PK DDI and DDI-PIRR signals are more likely
to have a mechanism of PD DDI. The difference of the DDI signals pattern is mainly caused by the different baseline
risk assumptions, and the Ω shrinkage method also restricts the ADE risk caused by single drug should be higher than
its background risk, but the PS-3CMM do not has such restriction. Among the top-100 signals detected by PS-3CMM, 49
drug pairs have documented DDI evidences from DrugBank and 24 drug pairs have at least one drug with the ADE in its
drug label. At the meantime, 75% of top 100 PS-3CMM DDI signals are not ranked top 100 by the Ω shrinkage method.
These results suggest that PS-3CMM is a different and complementary approach to the Ω shrinkage approach, as well as
the PRR approach.

As we described earlier in Section 2.4.1, instead of using PS-adjusted expected DDI-ADE frequency under the no DDI
effect assumption, unadjusted expected DDI-ADE frequency can be computed in Equation (9). Although PS-adjusted
analysis is clearly supreme to the unadjusted analysis in FAERS data analysis, there are other situations that unadjusted
analysis is probably better. For example, if the pharmaco-epidemiological study is designed from a longitudinal cohort,
such as the electronic health record (EHR) dataset, the confounding variables, such as demographics, comedications,
or comorbidity can be matched and adjusted through nested case-control study design.36,37 In this case, in analyzing
DDI-ADE associations, the unadjusted analysis is a proper choice. Because it does not need to adjust for confounding
variables, it shall have better power comparing to the adjusted analysis. Additionally, in real application, either the full
model (Equation 13) or the conditional model (Equation 15) can be used for signal detection. However, the conditional
model is more efficient when the primary interest is to detect drug-drug-ADE combinations with increased risk.

In this article, we illustrate the utilization of our proposed method by using the FAERS database which is a
preeminent SRSs. Here, we would like to point that the proposed method can be utilized to other SRS databases.
Nowadays, the importance of pharmacovigilance through SRS is internationally recognized. For instance, all Euro-
pean Union countries were obliged to establish patient/consumer reporting within their SRSs since 2012.38 China
and Japan have well-established SRS as well.39,40 Additionally, the WHOs SRS (VigiBase) contains over 20 million
reports which are coded by MedDRA and WHO Drug Dictionaries.41 A detailed review of SRS database can be found
in Huang et al42 These SRS databases share similar informatics structure (eg, MedDRA), which facilitates the uti-
lization of the proposed method. For instance, the Ω Shrinkage method has been applied to both VigiBase and the
China's SRS database,16,43-45 in which the frequencies in Table 1 are able to be obtained. Thus, PS-3CMM can be
straightforwardly implemented to the other SRS databases, which share similar informatics structure with FAERS.
As for illustration, we only choose four ADEs in our FAERS analysis. However, the framework of PS-3CMM has
no limitation with respect to the number of ADEs. We would also like to point out that the study can be ini-
tiated by either ADE(s) or drug combination(s). The current study is initiated by ADEs, as our motivation is to
detect novel drug interaction signals. Alternatively, a study may be initiated with drug combinations with evidence
of DDI. Such a study is more powerful to detect ADE signals and it can be used as a validation for pharmacology
study.

One limitation of the proposed approach is to handle highly correlated drugs. It is a major challenge for all of the
current DDI detection research. These highly correlated drugs (eg, a drug always coadministered with another) are due
to increasing practice of polypharmacy. Another limitation is the proposed approach does not incorporate the drugs'
duration and dosage information which are important factors for DDI, as those informations are not well captured by most
SRS databases. Alternatively, EHRs databases contain detailed temporal information with respect to patients' pharmacy
prescriptions, as well as the dosages. The associations between drugs and ADEs in EHR can be investigated under elegant
epidemiology designs. For instance, nested case-control design with a 30-day drug exposure can be used to investigate
acute ADEs, as well as the case-crossover design.46 Hennessy et al provides detailed guidance for investigating DDI from
EHR databases.47 We would like to point out that our proposed method has the potential to analyze EHR data with proper
epidemiology designs. For instance, instantaneous exposure before the ADE (ie, duration information) can be captured by
the drug exposure window, and the analysis can be stratified or adjusted by dosage information. We believe the detection
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of DDI signals from EHR databases can be an important direction to further expand our model in order to characterize
drugs' duration and dosage information.
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