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The evolution of the full range of functions of regulatory T cells (Treg) coincides with the

evolution of mammalian pregnancy. Accordingly, Treg function has been shown to be

crucial for maternal-fetal tolerance and implantation. As reproduction is a key point of

selective pressure, mammalian pregnancy may represent an evolutionary driver for the

development of Treg. Yet beyond the chronological boundaries of mammalian pregnancy,

several key physiological and pathological events are being gradually uncovered as

involving the immunomodulating functions of Treg cells. These include autoimmunity,

age-related inflammation in males and in post-menopausal females, but also oncological

and cardiovascular diseases. The latter two sets of diseases collectively compose the

main causes of mortality world-wide. Emerging data point to Treg-modulable effects in

these diseases, in a departure from the relatively narrower perceived role of Treg as

master regulators of autoimmunity. Yet recent evidence also suggests that changes in

intestinal microbiota can affect the above pathological conditions. This is likely due to

the finding that, whilst the presence and maintenance of intestinal microbiota requires

active immune tolerance, mediated by Treg, the existence of microbiota per se profoundly

affects the polarization, stability, and balance of pro- and anti-inflammatory T cell

populations, including Treg and induced Treg cells. The study of these “novel,” but

possibly highly relevant from an ontogenesis perspective, facets of Treg function may

hold great potential for our understanding of the mechanisms underlying human disease.
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INTRODUCTION: SELECTIVE PRESSURE SHAPES FUNCTION IN
Treg

Biological systems develop as serendipitous solutions to selective pressure, according to
evolutionary theory. The evolution of regulatory T (Treg) cells and their master regulator
transcription factor, foxp3 (1), must have occurred in response to selective pressure that conferred
an advantage to vertebrates that possessed them. Whilst an early form of foxp3 does exist in
zebrafish (2), the full set of domains of foxp3 only appear in the non-placental mammal platypus
(3). Additionally, the enhancer element that is necessary for the induction of induced Treg (iTreg)
in the periphery, also first appears in the platypus (4).

The platypus is an egg-laying mammal, and the egg creates a barrier separating the
(non-self) paternal antigens from the maternal adaptive immune system. Absence of a barrier
would necessitate a mechanism of suppression of maternal anti-fetal responses, a requirement
termed “immunological paradox of pregnancy” by transplantation pioneer Medawar (5).
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On the other hand, all subsequent (in terms of speciation)
mammals are placental, having dispensed with the egg, benefiting
from the advantage of a continuous flow of nutrients to the fetus.
Thus, one can speculate that the serendipitous acquisition of an
immunosuppressive T cell subpopulation could have enabled the
elimination of the egg barrier.

In support of such a speculation we and others have shown
that placental pregnancy with a genetically different father is not
possible in the absence of regulatory T cells (6–8). Defects in
Treg cells are associated with increased early-stage miscarriage
and preeclampsia in humans (9, 10). In summary, whilst a robust
adaptive immune system, as developed in vertebrates, is essential
in maintaining defense of the self against pathogens (11), the
evolution of Treg cells in placental mammals may have enabled
the more complex management of the distinction between the
self vs. the “non-self of the same species”. The recognition of non-
self of the same species, which is central in placental pregnancy, is
ironically a much older problem, as sea-dwelling protochordate
Botryllus had to fend off -and not tolerate- competition
from neighboring individuals of the same species, using
molecular processes not too dissimilar from those of Natural
Killer (NK) cells (12). In mammalian pregnancy, maternal
uterine NK cells interacting with non-classical Class I Major
Histocompatibility molecules, such as HLA-G, independent
of presence or absence of alloantigen, are essential for
vascularization of the placenta, especially at the start of
pregnancy (13, 14).

Treg IN PREGNANCY: A FLUCTUATING
BUT REGULATED POPULATION

Evidence from mice and humans demonstrates that the
abundance of Treg cells is modified during events linked to
placental pregnancy. Periodic fluctuations in uterine (15) or
peripheral (16) Treg levels render the cells more abundant
during the fertile window of the estrus/menstrual cycle, so that
suppression can take place should a pregnancy occur. These
fluctuations are possibly estrogen-driven, as estrogen has been
shown to boost Treg function (17, 18), whilst estrogen-depleting
ovariectomy reduces Treg cell abundance (19). Once fertilization
occurs, a much more substantial expansion of Treg cells can
be observed (6). In this expansion, a role for paternal and
male antigen-driven expansion of Treg has been demonstrated;
initially in response to seminal fluid antigens (20), as well as
paternal antigens (8, 21), which may explain the clonal expansion
of Treg cells in the decidua but not the periphery in pregnant
women (10).

Intriguingly, the pregnancy-associated expansion can
be interrupted, should a uterine infection appear that
could jeopardize fetus and mother (22). From a speculative
evolutionary perspective, pathogen-induced reductions in Treg
functionality would be selected for, as they would spare the
mother from pathogens that could expand uncontrollably in
an immunosuppressed environment. A putative mechanism
may involve recognition of the pathogen by IL-6-producing
innate immune cells, blocking the suppressive potential of Treg

(23). Indeed, IL-6 is associated with fertility and pregnancy-
related pathologies (24), and the cytokine is also known to
mediate a conversion of Treg cells into Th17 pro-inflammatory
cells in autoimmune arthritis (25). It should be noted that
danger signal-induced fetal rejection can be mediated by
invariant/semi-invariant lymphocytes, such as iNKT cells (26),
Mucosal-Associated Invariant T cells (27) or γδ T cells (28).

Treg IN AUTOIMMUNITY

It is reasonable to ask how the function most often ascribed
to Treg cells, the control of autoimmunity, fits with their role
in placental reproduction. Pregnancy is known to temporarily
alleviate the symptoms of rheumatoid arthritis in a majority of
patients (29). In amurinemodel of autoimmune arthritis we have
shown that the pregnancy-driven expansion of Treg is indeed
responsible for this amelioration (30).

A few studies on peripheral blood Treg levels in human
patients have shown a maintenance of their elevated numbers
in the short period post-partum (31). Nonetheless, in antigen-
specific murine models, which can be monitored with more
precision, long-term increases in Treg levels from previous
pregnancies were much lower than the peak reached during
pregnancy (8). Consequently, Treg levels must be dropping
after every pregnancy. The same could occur at menopause,
as the ovariectomy-induced Treg contraction suggests (19).
The time period post-partum and menopause are the main
windows of incidence of most -though not all (32)—autoimmune
diseases, which often affect far more women than men. In a
logical corollary of an evolutionary selection-driven role for
Treg in pregnancy, this higher incidence of autoimmunity in
women may be an unwanted consequence of an estrogen-
responsive Treg population that is necessary for an improved,
placental reproduction. Such unwanted deleterious effects of
selected-for earlier benefits fall within the term antagonistic
pleiotropy (Figure 1), often applied to describe the benefit of
infection-fighting immunity in young age leading to deleterious
inflammation in old age (33). As pregnancy is the timepoint
of genetic heredity, conditions after pregnancy may potentially
feature antagonistic pleiotropy effects.

AFTER MENOPAUSE AND IN MEN:
AGE-RELATED DISEASES

The absence of estrogen fluctuation in ovariectomized female
mice induces not only a reduction in Treg levels but also a
shortening of their lifespan, which approaches that of male
mice (19). This is compatible with an overall beneficial effect
of Treg in females undergoing estrus/menstrual cycles. If this
conjecture were to be true, it would lead to a propensity for
inflammation-associated disease in post-menopause women and
in all men. Murine models may not be the optimal subjects of
study for this question, as mice do not undergo menopause; only
humans and cetaceans do (34), possibly as a result of socially-
driven selection. Further, modern humans have another unique
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FIGURE 1 | Outline of the putative evolutionary drivers affecting Treg/iTreg function and disease pathogenesis.
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feature: compared to other primates or even human hunter-
gatherer populations, modern humans live substantially longer,
with longevity data forming a branching point corresponding
to the first industrialized societies (circa 1850), when sanitation
was applied in a large scale (35). We can therefore hypothesize
that if Treg function has been selected, in all mammals from
the platypus onwards, thanks to its beneficial effects in enabling
pregnancy, it would still nonetheless be involved, beneficially or
detrimentally, in the regulation of any inflammation-associated
ailment that occurs in our recently-acquired long lifespans. The
reported decay of thymic Treg and iTreg with advanced age (36)
could indeed contribute to a loss of self-tolerance to antigens
expressed by aging tissue, promoting inflammation-associated
disease pathogenesis. The ailments that predominantly affect
older humans and lead to the majority of human mortality in
the developed world are cancer and cardiovascular disease (37).
Fitting our conjecture above on a Treg-related benefit prior
to menopause, cardiovascular disease has higher incidence in
men than in women, with a difference that decreases with older
age (38). For all these reasons, thus, we would expect to find
regulatory roles for Treg cells within these groups of diseases.

Treg AND CANCER

The link between inflammation and cancer is two-pronged.
On the one hand, extensive findings have demonstrated
that pro-inflammatory cytokines may enhance the chances
of carcinogenesis and genetic instability (39). Treg-mediated
suppression of such oncogenic inflammation would be beneficial.
Such events clearly happen away from the clinically observable
conditions of cancer patients, whose diagnosis occurs long after
the carcinogenic event; this may be limiting the incentive to study
the role of Treg cells in carcinogenesis. Yet even in growing
tumors, evidence has shown that formation of tumor-promoting
fibrotic capsules around prostate tumors occurs only in the
presence of pro-inflammatory T cells (40), selective suppression
of which would be beneficial.

On the other hand, the most clinically important interaction
between immunity and cancer is the anti-tumoral, pro-
inflammatory function of immunosurveillance (41), which has
enabled the development of tumor immunotherapy. The latter,
in its most applicable form of immune checkpoint blockade
immunotherapy, is based on antibody-mediated reactivation
of pro-inflammatory T cells. Yet Treg cells express and
utilize the immunotherapy target molecules CTLA-4 (42)
and PD-1 (43), and the suppressive action of the Treg
may be inhibiting beneficial anti-tumor immunity (44). Why
would Treg cells inhibit an anti-tumor response? Interpreted
according to the signals a Treg cell may have evolved to
deal with, a tumor expressing self-antigens and neo-antigens
may be not that different from a fetus, the putative driver
of the Treg cells’ selection. Genes and processes that help
fight non-pediatric, growing, solid tumors cannot have been
inherited and selected for in mammals, as until very recently
it was not possible to survive and reproduce following
cancer incidence.

And yet an obvious solution does arise from the, admittedly
speculative, study of the evolutionary drivers of Treg function.

As hypothesized above, Treg suppression could collapse in order
to reject an infected fetus, in order to protect the mother from
the infecting pathogen. In this context, as pioneered in principle
by Coley’s toxin (45), vaccination strategies that fool the immune
system into identifying the tumor as an infected fetus may
represent tools that are aligned with the evolutionary drivers of
the biological components that we are trying to modulate (46).

Treg AND CARDIOVASCULAR DISEASE

Cardiovascular diseases, ranging from atherosclerosis to
myocardial infarction (MI) and heart failure, are not
traditionally thought of as linked to immunity. Over the
recent years, experiments showing that stressed cardiomyocytes
release pro-inflammatory cytokines (47) led to clinical
trials aiming to therapeutically inhibit the cytokine activity
via monoclonal antibodies. As these failed (48), renewed
efforts centered on identifying the adaptive immune cells
involved in the progression of pathogenesis in atherosclerosis
and heart failure. This was based on the premise that a
chronic immune response may well be under the control
of adaptive immunity. Accordingly, a role for Treg was
identified in atherosclerosis (49), whilst therapeutic effects by
the experimental administration of Treg cells in a model of
pressure overload induced heart failure were also reported
(50). In a more translational approach, we have used a
molecule derived from Treg, CTLA-4, in soluble fusion
protein form (CTLA-4-Ig/Abatacept) to treat advanced-stage
heart failure in the pressure overload model. Surprisingly,
the treatment with the drug, which is FDA-approved for use
in Rheumatoid Arthritis patients, was almost 3-fold more
effective than the current standard therapy for heart failure,
demonstrating the potential of Treg-inspired therapeutic
strategies (51).

More recently we identified, via single cell RNA sequencing,
that Treg cells found to be infiltrating the ailing myocardium,
express PD-1. Inhibition of PD-1 in healthy hearts blocked
the Treg-mediated suppression, releasing cardiac inflammation,
which in turn led to a significant reduction in heart function
(52). This is intriguing, as anti-PD-1 treatment in human cancer
patients has been shown to occasionally lead to T cell-mediated
fulminant myocarditis (53). Luckily a solution exists, as CTLA-
4-Ig treatment of tumor immunotherapy-induced myocarditis
patients has a rescuing effect (54).

In MI that progresses to chronic ischemic heart failure,
very recent evidence suggests that Treg cells may lose their
immunosuppressive properties, becoming pro-inflammatory and
worsening disease outcome (55). Their role is somewhat less clear
in the early phase of post-MI repair, where the pro-inflammatory
conventional T cells may be useful in the short term in order to
deal with the extensive tissue damage (56, 57).

Treg AND INFECTIONS

Treg can dampen the response against pathogens during
an infection, limiting collateral damage. As a consequence,
this also leads to pathogen persistence, which in turn
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boosts the persistence of protective immunity against the
pathogen itself (58). Yet, simultaneously, the inflammation
associated with the response limits the functionality of Treg
cells (59), a finding that matches the inhibition of Treg
function induced by danger signals, mentioned above (23),
or indeed by inflammation per se, including in contexts of
cardiovascular disease (60).

Treg AND INTESTINAL MICROBIOTA

The fetus expressing paternal antigens is not the only “non-
self ” that our adaptive immune system has to tolerate
via Treg cells. Intestinal microbiota are essential for our
survival and are not rejected (61), despite reaching very high
cell numbers in the gut (62). The tolerization of “useful”
bacteria may be mediated via Treg-mediated suppression
(63), whereas “harmful” bacteria may be attacked by pro-
inflammatory T cell subpopulations (64). Conversely, both
anti-inflammatory iTreg and pro-inflammatory Th17 cells are
induced in the gut, displaying a plasticity that depends on
the microbiota (65, 66). For example, the immunomodulatory
capsule polyaccharide A (PSA) of Bacteroidetes fragilis has
been shown to induce IL-10-secreting Treg cells in the gut,
restraining gut inflammation (67). Further, bacterial metabolites
such as short-chain fatty acids (SCFAs), are involved in
Treg differentiation (68–70).

Consequences of the microbiota-induced plasticity may affect
disease pathogenesis. The anti-tumoral, pro-inflammatory effect
of anti-CTLA-4 or anti-PD-1, described above, was abolished
in experimental systems where the intestinal microbiota
were eliminated (71, 72), demonstrating the potency of the
microbiota-mediated effects. In agreement with these striking
results, multiple translational studies have now highlighted how
the microbiome of patients that respond to anti-PD-1 treatment
is significantly different from that of non-responders (73), and
how antibiotic treatment in combination with anti-PD-1/anti-
PD-L1 immunotherapy can have a direct effect on patient
survival rate (74).

In an analogous manner, emerging evidence demonstrates
that the microbiome can significantly affect the pathogenesis
and outcome of cardiovascular disease. Alteration of the gut
microbiota has been associated with atherosclerotic lesion
formation, as revealed by gut metagenome analysis in patients
(75). Gut microbiota-produced SCFAs have even been shown
to affect blood pressure regulation (76). The above findings
exemplify how gut microbiota, possibly also via their effects on
iTreg/Th17 populations, have substantial, though still largely
unexplored, regulatory roles on the major disease groups that
drive mortality world-wide.

CONCLUDING REMARKS—AN
EVOLUTIONARY ROLE FOR MAMMALIAN
GUT FLORA UPSTREAM OF Treg AND
PLACENTAL PREGNANCY?

The hypothesis that pregnancy may have been a driver
for the selection and survival of estrogen-responsive,
immunosuppressive Treg cells that enable us to reproduce
via a placenta and not using eggs is attractive. The enhanced
ability to provide a continuous flow of nutrients to the fetus could
even be hypothesized to have helped select bigger brains, capable
of abstract thought. However, the interaction between Treg cells
and the intestinal microbiota, which is central to our physiology
and pathology, raises an intriguing possibility. The evolution
of fully-functional foxp3 may have indeed been a prerequisite
for the evolution of placental mammalian pregnancy. At least
until further species are sequenced, the full set of foxp3 domains
appears to have first appeared in the platypus. Yet Treg evolution
in the platypus cannot have had pregnancy as a driver of selective
pressure, as the platypus is lactating but does not have a placenta.
We could, however, hypothesize that, prior to pregnancy, the
intestinal microbiota required to digest milk in mammals,
which first appeared in the platypus, offering clear advantages
as a source of readily-available calories for the litter, could
be distinctly different from those found in non-mammalian
vertebrates. Could such a bacterial diversification drive the
selection of a dedicated tolerizing immune cell population?
Could this immunosuppressive population only then enable the
evolution of pregnancy in the next speciation step? Compatible
with this hypothetical conjecture, the intestinal microbiota of
lactating animals has been recently found to be significantly
different (77). Further experimentation will be required to assess
the validity of these hypotheses.

The interaction between intestinal microbiota and Treg,
especially if the conjecture that the former may have been
a driver for the evolution of the latter is valid, offers novel
means of investigating the functional aspects of Treg cells. In
the long term, one would hope that this will lead to innovative
therapeutic strategies, in the context of autoimmunity, cancer
and cardiovascular disease.
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