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Simple Summary: Recently, the price escalation of fishmeal has made aquaculture nutritionists to
consider using carbohydrate in aquafeed to spare the use of dietary protein. However, the high
carbohydrate diet could induce lipid metabolism disorder, impair antioxidant capacity, reduce
nonspecific immunity and decrease resistance to a pathogen in farmed fish. Myo-inositol is regarded
as a vitamin-like essential nutrient for most aquatic animals. Previous studies have shown that dietary
supplementation with myo-inositol can reduce lipid accumulation in tissues and decrease the chance
of becoming a fatty liver. To explore the mechanism of myo-inositol on alleviating the adverse effect
of the high carbohydrate diet in Nile tilapia, six diets contained either low carbohydrate (30%) or
high carbohydrate (45%) with three levels of myo-inositol supplementation (0, 400 and 1200 mg/kg
diet) to each level of the carbohydrate diet. After an 8-week trial, the result showed that additive
myo-inositol in the diet could significantly improve the growth performance and increase the crude
protein content of fish. The addition of myo-inositol could effectively decrease the lipid accumulation
induced by the high carbohydrate diet by accelerating the transportation of cholesterol back to the
liver and promoting the lipid decomposition.

Abstract: This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse
effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low
carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400
and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg
MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the
lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg
MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI
supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation
in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with
increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione
peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase
activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT,
SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under
expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes
related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase
of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis,
glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose
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phosphate pathway was up-regulated with the increase of MI levels. This study indicates that
HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI
supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into
the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus.
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1. Introduction

Recently, the price escalation of fishmeal has made aquaculture nutritionists to consider using
carbohydrate in aquafeed to spare the use of dietary protein [1,2]. Teleosts are known to be glucose
intolerant with slow serum glucose clearance and hyperglycemia after a high intake of carbohydrate
(HC) [3]. Nevertheless, the use of an appropriate level of carbohydrate as an alternative source of
energy can improve oxidative protection in common dentex (Dentex dentex) juveniles [4]. The HC diet
could induce lipid metabolism disorder, impair antioxidant capacity, reduce nonspecific immunity
and decrease resistance to a pathogen in farmed fish [1,5,6]. Therefore, the diet with HC had been
consistently linked to the high risk of hypertriglyceridemia, obesity, type 2 diabetes mellitus and fatty
liver disease in fish [5]. Although the HC diet has been widely used in aquaculture, little attention
has been paid to the negative effect of dietary HC in fish. With the increasing interest of using more
carbohydrate in aquaculture diets, it is necessary to investigate the method to mitigate the negative
effects of dietary carbohydrate on fish.

The structure of myo-inositol (MI) is similar to glucose, and it is a biologically active isomer of
inositol in cell membranes [7,8]. The MI is the structural base for some secondary messengers, and it is
also involved in lipid signaling, osmolarity, glucose and insulin metabolism in land animals [9,10].
In mammals, dietary supplementation with MI can effectively ameliorate certain endocrine diseases
such as diabetes and insulin resistance as MI is closely related to carbohydrate metabolism [11]. Due to
the de novo synthesis pathway, free MI could be de novo synthesized with glucose-6-phosphate (G6P),
which is catalyzed by myo-inositol-1-phosphate synthase (MIPS) and myo-inositol monophosphatase
(IMPA1) [12–14]. At the same time, G6P is involved in the pathways of carbohydrate metabolism [8,11].
Therefore, the myo-inositol biosynthesis (MIB) pathway is associated with carbohydrate metabolism
and dietary supplementation with MI can also regulate lipid metabolism. The dietary MI can reduce
the accumulation of triglycerides (TG) and decrease the expression of lipogenic genes and the activity
of lipogenic proteinsin in rats with a nonalcoholic fatty liver [15]. In turbot Scophthalmus maximus, MI
plays a vital role in transmembrane signal transfer, protection of the liver, and lipid metabolism [16].
In other aquatic animals, dietary supplementation with MI can reduce lipid accumulation in tissues
and decrease the chance of becoming a fatty liver [17]. Although MI can reduce lipid accumulation in
aquatic animals, the underlying molecular mechanism is still not clear.

The Oreochromis niloticus is an excellent farmed fish, which is promoted by Food and Agriculture
Organization of the United Nations (FAO) due to its fast growth, high yield potential, low oxygen
tolerance, euryhaline habitat, disease resistance and high fecundity [18,19]. Therefore, O. niloticus is an
excellent model species for studying carbohydrate metabolism and lipid metabolism. The objective of
this study was to investigate the effect of dietary myo-inositol on alleviating the adverse effects of high
carbohydrate diets in O. niloticus.

2. Materials and Methods

2.1. Diet Preparation and Experimental Fish

Six semi-purified diets were prepared with a 2 × 2 factorial design are shown in Table 1. The basal
diet contained 38% crude protein and 7% crude lipid. Corn starch was used as the source of carbohydrate.
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The feed used was the base purified feed. In this experiment, six different diets were prepared with
two carbohydrate levels: low carbohydrate (LC 30%) and high carbohydrate (HC 45%) and three levels
of MI supplementation (0, 400 and 1200 mg/kg diet) at each level of the carbohydrate diet. The diets
were extruded into 2 mm pellets, air-dried and then stored at −20 ◦C until use.

Table 1. Formulation and chemical composition of experimental diets (g/kg dry basis).

Ingredients Content (g/kg Dry Basis)

Casein (Vitamin-Free) 320 320 320 320 320 320

Gelatin 80 80 80 80 80 80
Soybean oil 70 70 70 70 70 70
Corn starch 300 450 300 450 300 450

Myo-inositol c (mg/kg diet) 0 0 0.4 0.4 1.2 1.2
Vitamin premix a 5 5 5 5 5 5
Mineral premix b 5 5 5 5 5 5

Ca(H2PO4)2 15 15 15 15 15 15
Carboxymethyl cellulose 25 25 25 25 25 25

Cellulose 175.75 27.75 175.35 27.35 176.55 26.55
Phagostimulant 2 2 2 2 2 2

BHT 0.25 0.25 0.25 0.25 0.25 0.25
Total 1000 1000 1000 1000 1000 1000

Proximate composition
Moisture 100.5 105.6 100.3 102.3 106.8 103.9

Crude protein 372.2 379.8 375.5 377.4 376.5 378.4
Total lipid 69.5 69.6 68.3 68.7 68.5 69.3

Ash 28.82 28.76 28.73 30.18 30.16 29.11
a Vitamin premix (mg/kg diet): retinal palmitate (500,000 IU/g), 8; cholecalciferol (1,000,000 IU/g), 2; menadione, 10;
DL-α-tocopherol acetate, 200; thiamin-HCl, 10; riboflavin, 12; pyridoxine-HCl, 10; D-calcium pantothenate, 32; amine
nicotinic acid, 80; folic acid, 2; cyanocobalamin, 0.01; biotin, 0.2; choline chloride, 400; ascorbic acid, 60; α-cellulose,
4173.79; b Mineral premix (mg/kg diet): ZnSO4·H2O, 150; FeSO4·H2O, 40; MnSO4·H2O, 15.3; CuSO4·5H2O, 8.3;
potassium iodide, 5; CoCl2·6H2O, 0.05; Na2SeO3, 0.09; α-cellulose, 4785.76; c Sangong Biotech, Ltd., Shanghai, China.

Nile tilapia (O. niloticus) used in this experiment were obtained from a commercial fish hatchery
in Guangdong Province (Guangdong Tianfa Fish Fry Development Co. LTD, Guangzhou, China).
Fish were transported to the Biological Experimental Station of East China Normal University. During
the acclimation period, the fish were fed with apparent satiety hand-fed twice daily by using a
commercial diet. The water temperature was maintained at 27 ± 1 ◦C. After the two-week acclimation,
the fish were fasted for 24 h prior to the experiment. A total of 540 juvenile Nile tilapias (1.45 ± 0.5
g) were selected and randomly distributed into eighteen 200-L tanks with 30 fish per tank. During
the eight-week trial, all fish were hand-fed twice daily at 08:30 and 17:30 at a daily ration of 4% body
weight. During the feeding trial, the environmental condition was maintained at 27 ± 1 ◦C, 5.0-6.0 mg
L−1 dissolved oxygen, 7.3–7.6 pH, and a period of 12 h light and 12 h dark.

2.2. Sample Collection and Chemical Analysis

At the end of the trial, before fish were weighed and sampled, we stopped feeding for 24 h.
The fish were weighed by tank, and the number of fish was counted to determine weight gain (WG)
and survival (SR). Twelve fish of each treatment (four per tank) were euthanized (MS-222 at 20 mg/L)
(tricaine methanesulfonate, Western Chemicals, Inc., Ferndale, WA, USA) and blood was rapidly
collected from the caudal vein with a 1 mL syringe (Klmediacal, Haimen, China) and centrifuged
for serum preparation (4,500 rpm, 10 min and 4 ◦C). The serum was immediately frozen at −80 ◦C
for further analysis. Then the body length, viscera and liver weight of each fish were measured to
calculate viscerosomatic index (VIS), hepatosomatic index (HSI) and condition factor (CF) respectively.
The liver and muscle were collected for biochemical and molecular assays. The liver tissue was fixed
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in 4% paraformaldehyde for histological analysis. After that, 12 fish were collected in each treatment
group and temporarily stored at −20 ◦C for the analysis of fish body composition.

2.3. Methods of Measurement

2.3.1. Growth Performance and Body Composition

Weight gain (WG %) = 100 × (final body weight—initial body weight)/initial body weight;
Survival rate (SR %) = 100 × (final fish number/initial fish number);
Feed conversion ratio (FCR) = total feed intake weight/(final body weight—initial body weight);
Condition factor (CF %) = 100 ×wet body weight/body length;
Hepatosomatic index (HSI %) = 100 ×wet hepatopancreas weight/wet body weight;
Visceral index (VIS %) = 100 ×wet visceral weight/wet body weight [13,17].

2.3.2. Proximate Composition

Proximate composition of the whole body was determined by the standard methods (AOAC,
135 1995). Moisture was determined by gravimetric analysis following oven-drying at 105 ◦C. Crude
protein and total lipid were determined by the Kjeldahl method (KjeltecTM 8200, Foss, Sweden) and
the chloroform/methanol method, respectively.

2.3.3. Histological Analysis

Three fish livers per tank were fixed in 4% paraformaldehyde solution for 48 h, washed in 70%
ethanol solution, and then transferred to a 70% ethanol solution for storage until histological analysis.
The paraffin production process, image collection and sample measurement of were determined
according to the methods in previous studies, and digital images were taken using Image-Pro plus
6.0 [20–22].

2.3.4. Biochemical Indicators

The contents of glucose (F006-1-1), triglyceride (TG, A110-1-1), high-density lipoprotein (HDL-C,
A112-1-1), low-density lipoprotein (LDL-C, A113-1-1) and total cholesterol (T-CHO, A111-1-1) in the
serum were all determined using the corresponding commercial kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China). The relevant steps were carried out according to the instructions. The total
protein (A045-4-2) in the liver was also determined using the commercial kit (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the manufacturer’s guidelines. Serum insulin
levels were analyzed by the ELISA kit following the manufacturer’s protocol (Shanghai Enzyme-linked
Biotechnology Co., Ltd., Shanghai, China). The liver tissue was weighed and mixed with saline water
at the ratio of 1:9 by weight (pH = 7.4). Ice bath homogenization was performed, and the homogenate
was centrifuged at 4500 rotations/min at 4 ◦C for 10 min. The supernatant was pipetted and put on ice
for the test. The liver TG (A110-1-1) content and the activities of superoxide dismutase (SOD, A001-3-2),
glutathione peroxidase (GSH-Px, A005-1-2), alkaline phosphatase (AKP, A059-2-2), acid phosphatase
(ACP, A060-2-1), aspartate aminotransferase (AST/GOT, C010-2-1), glutamic-pyruvic transaminase
(ALT/GPT, C009-2-1) and muscle glycogen (A043-1-1) were determined using the corresponding
commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

2.3.5. Gene Expression Analysis

Primers designed based on the O. niloticus transcriptome genome sequences are presented in
Table 2. The primer amplification efficiency of all genes was between 90% and 110%. Total RNA was
extracted by TRIzol® reagent (RN0101, Invitrogen, Shanghai, China). The quantity and concentration
of total RNA were measured by the Nanodrop 2000 (Thermo Fisher Scientific, Wilmington, NC, USA).
The first-strand cDNA synthesis was performed using the PrimeScriptTM RT Reagent kit (KR116,
Tiangen Biotech, Beijing, China).
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Table 2. Primer pair sequences and product size of the genes used for real-time PCR (qPCR).

Gene Position Primer Sequence Length Tm Product Size (bp)

GK Forward GTCATCAACCTGATGCGGGA 20 60.18 163
Reverse ACCTGTCACGGAAACATGGG 20 59.75

PK Forward GCTAACCAAGACTGGCAGGT 20 59.96 438
Reverse TGGAGGGATTCGTGGAGTCT 20 59.96

G6Pase Forward GGATGCTAATGGGCCTGGTC 20 59.78 169
Reverse CAGCTACCAGTGTGCCTGTAA 21 59.60

G6PDH Forward TCCAGAACCTCATGGTGCTT 20 60.18 312
Reverse GGCTCCTTGAAGGTAAGGACG 21 59.69

MIPS Forward CGTCCTACGAGGGAACCTCT 20 60.39 179
Reverse GCAGAGTCTTTGCACGGAATA 21 58.65

IMPA1 Forward ATAAGCCGGGAAGCAGTCTC 20 59.53 132
Reverse GTGTTTGGTCGTTCGATGGTG 21 60.07

CPT Forward GTGGGCGTCCAACTATGTCA 20 59.04 251
Reverse TACGCTCGTATTGGGCTGAG 20 60.12

PPAR-α Forward GGGCCATAGTGTGAGTGTGA 20 59.75 245
Reverse TGGGTGTCCACCATGTCTAC 20 59.78

ATGL Forward AAAACGTCCTGGTGACCCCAGT 21 59.98 104
Reverse TAGGAGGAATGATGCCACAGTACA 24 60.03

FAS Forward ACAGCTGCAGACCCAGAATC 20 60.04 307
Reverse GTAGAAGGCAGAGGCTGCAA 20 60.04

DGAT2 Forward AGAGGAGCTGTAAGCTCGGA 20 60.03 157
Reverse AGTGCCTTTGAGGAATCCCG 20 60.04

SREBP Forward ATGTCCCCATGTTCCCACTG 20 59.67 137
Reverse GCTAACGCATATGCCTCCCA 20 60.25

β-actin Forward GGATTCACTCTGAGCGCCG 19 58.43 203
Reverse CCGTCTCCTTACCTTTGGGTG 21 59.12

GK: hexokinase; PK: pyruvate kinase; G6Pase: glucose-6-phosphatase; G6PDH: glucose-6-phosphate dehydrogenase;
MIPS: myo-inositol-1-phosphate synthase; IMPA1: myo-inositol monophosphatase; CPT: carnitine palmityl
transferase; PPAR-α: peroxisome proliferator activated receptor-α; ATGL: triglyceride lipase; FAS: fatty acid
synthetase; DGAT2: diacyltransferase; SREBP: sterol regulatory element binding protein.

The reaction volume used in qRT-PCR was 20 µL containing 10 µL 2 × Ultra SYBR Mixture
(CWbio, Nanjing, China), 1.6 µL of each forward and reverse primers (2.5 µmol/µL), 1 µL of diluted
cDNA (200 ng/µL) and 7.4 µL of RNAase free water. All procedures are performed according to the
manufacturer’s instruction. β-actin was used as the reference gene. qRT-PCR data were analyzed with
the 2−∆∆Ct method.

2.4. Statistical Analysis

All statistical analyses were performed using SPSS Statistics 19.0 software. Normality and
homoscedasticity assumptions were checked prior to the statistical analysis. Two-factor analysis
of variance (ANOVA) was used to detect the two main factors of carbohydrate level and MI
supplementation and their interaction. If significant interactions were detected, post hoc tests
were used to assess the dependencies between the six treatments. All data are on average ± standard
error (means ± SE) said. An asterisk (*) represents a significant difference of p < 0.05 between different
MI levels in the same carbohydrate group. Double asterisks (**) represent a significant difference of
p < 0.01 between different MI levels within the same carbohydrate group. A, B, C and a, b, c Values
on bars without a common superscript letter are significantly different (p < 0.05), (a/A indicated the
lowest value).

2.5. Ethical Statement

This research has been approved by Animal Ethics Committee of East China Normal University
in February 2019 (permit number: E20120101).
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3. Results

3.1. Growth Performance and Morphometric Parameters

Growth performance and morphometric parameters of O. niloticus fed different diets are showed
in Table 3. No significant difference was observed in WG, SR, FCR and CF between carbohydrate levels
(p > 0.05), but there were significant differences in these parameters between MI concentrations (p < 0.05).
HSI and VIS were influenced by the interaction between carbohydrate levels and MI concentrations
(p < 0.05). The highest WG value was found in the fish fed 400 mg/kg MI supplementation in the HC
group (p < 0.05). No significant difference was observed in SR among the treatment groups. FCR
was significantly decreased with the increase of dietary MI supplementation regardless of dietary
carbohydrate levels (p < 0.05). The highest CF was found in the fish fed 400 mg/kg MI supplementation
in the HC group (p < 0.05). HSI significantly decreased with the increase of MI supplementation in
the HC group (p < 0.05). The lowest VIS was found in those fish fed 1200 mg/kg MI supplementation
regardless of dietary carbohydrate levels (p < 0.05).

Table 3. Growth performance and physiological parameters of O. niloticus fed different experiment diets.

Diets WG (%) SR (%) FCR CF (%) HSI (%) VIS (%)

LC-0 722.45 ± 6.21 91.11 ± 1.11 1.13 ± 0.54 B 2.96 ± 4.67 1.76 ± 7.05 10.84 ± 18.04 A

LC-400 739.35 ± 19.11 95.56 ± 2.94 1.09 ± 0.35 A 3.06 ± 8.06 1.73 ± 10.35 12.98 ± 51.66 B

LC-1200 766.75 ± 48.54 92.22 ± 2.22 1.09 ± 1.56 A,B 3.09 ± 6.52 1.61 ± 10.22 11.75 ± 39.55 A

HC-0 753.32 ± 42.11 a 94.44 ± 2.94 1.10 ± 1.81 b 2.96 ± 5.76 a 2.08 ± 11.26 b,* 11.07 ± 21.41 b

HC-400 867.73 ± 43.46 b 88.33 ± 5.00 1.12 ± 3.09 b 3.14 ± 6.01 b 1.55 ± 10.10 a 11.30 ± 25.83 b

HC-1200 777.85 ± 9.53 a 97.78 ± 1.11 0.96 ± 0.42 a 3.03 ± 6.40 a,b 1.76 ±9.91 a 9.92 ± 23.63 a

AN0VA (P)
MI 0.140 0.486 0.120 0.073 0.012 0.002

carbohydrates 0.042 0.795 0.029 0.940 0.223 0.001
MI × carbohydrates 0.143 0.073 0.081 0.506 0.043 0.017

Data were expressed as mean ± SEM (standard error of the mean) (n = 6). Values in the same line with different
superscripts are significantly different (p < 0.05). Values are means (n = 3 replicate tanks) with standard errors
represented by vertical bars. Asterisk (*) represents a significant difference of p < 0.05 between same level of MI
groups. a, b and A, B Values on bars without a common superscript letter are significantly different (p < 0.05).

3.2. Whole-Body Proximate Composition

Crude lipid and moisture were affected by the interaction between carbohydrate levels and MI
concentrations (p < 0.05). Crude protein was affected by the MI concentrations (p < 0.05). Crude lipid
significantly decreased with the increase of MI supplementation regardless of dietary carbohydrate
levels (p < 0.05). The highest moisture and crude protein occurred in the fish fed 400 mg/kg MI
supplementation in the LC level (p < 0.05) (Table 4).

Table 4. Proximate composition of O. niloticus (% wet weight) fed different experiment diets.

Diets Moisture (%) Crude Lipid (%) Crude Protein (%)

LC-0 74.06 ± 0.11 A 13.87 ± 0.77 B 45.72 ± 0.19 A

LC-400 76.70 ± 0.47 B 11.90 ± 0.91 A 54.77 ± 2.61 B,**
LC-1200 73.62 ± 0.56 A 15.62 ± 0.53 A,B 45.26 ± 0.69 A

HC-0 74.65 ± 0.21 15.80 ± 0.37 b 43.77 ± 0.82
HC-400 74.39 ± 0.37 15.00 ± 0.46 b 44.07 ± 0.39
HC-1200 74.65 ± 0.43 13.28 ± 0.18 a 44.14 ± 1.02

AN0VA (P)
MI 0.003 0.109 0.013

carbohydrates 0.488 0.133 0.068
MI × carbohydrates 0.006 0.003 0.076

Data were expressed as mean ± SEM (standard error of the mean) (n = 3). Values in the same line with different
superscripts are significantly different (p < 0.05). Values are means (n = 3 replicate tanks) with standard errors
represented by vertical bars. Double asterisks (**) represent a significant difference of p < 0.01 between same level of
MI groups. a, b and A, B Values on bars without a common superscript letter are significantly different (p < 0.05).
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3.3. Parameters of Glycogen Content in Serum, Liver and Muscle

As shown in Table 5, serum glucose, serum insulin, liver glycogen and muscle glycogen contents
were not affected by the interaction between carbohydrate levels and MI concentrations, or by
carbohydrate levels (p > 0.05). No significant difference was found in serum glucose and muscle
glycogen contents among the treatment groups (p > 0.05). Fish that were not fed MI supplementation
showed a lower content of serum insulin (p < 0.05). The lower content of liver glycogen was found in
the groups without MI supplementation regardless of dietary carbohydrate levels (p < 0.05).

Table 5. Serum, liver and muscle carbohydrate content parameters of O. niloticus fed different
experiment diets.

Diets Serum Glucose Serum INS Liver Glycogen Muscle Glycogen

LC-0 4.23 ± 0.18 70.35 ± 1.56 A 17.68 ± 0.92 B 1.42 ± 0.16
LC-400 4.69 ± 0.31 85.75 ± 2.61 C 17.66 ± 2.48 B 1.44 ± 0.27

LC-1200 4.89 ± 0.22 80.01 ± 0.49 B 14.07 ± 0.96 A 1.46 ± 0.15
HC-0 5.44 ± 0.43 73.53 ± 0.81 a 16.90 ± 0.51 b 1.56 ± 0.18

HC-400 5.19 ± 0.32 83.87 ± 2.72 b 14.57 ± 1.32 a 1.67 ± 0.20
HC-1200 5.68 ± 0.22 80.07 ± 1.68 b 14.58 ± 0.87 a 1.58 ± 0.12

AN0VA (P)
MI 0.119 0.000 0.000 0.924

carbohydrates 0.000 0.767 0.154 0.507
MI × carbohydrates 0.418 0.405 0.077 0.650

Data were expressed as mean ± SEM (standard error of the mean) (n = 3). Values in the same line with different
superscripts are significantly different (p < 0.05). Values are means (n = 3 replicate tanks) with standard errors
represented by vertical bars. a, b and A, B, C Values on bars without a common superscript letter are significantly
different (p < 0.05). Serum INS: Serum insulin.

3.4. Histology and Vacuolization of the Cytoplasm Area in the Liver

After 8 weeks of the feeding trial, the liver morphology of O. niloticus fed 400 mg/kg and 1200 mg/kg
MI supplementation was normal, and showed fewer vacuoles in the cytoplasm compared with the fish
fed 0 mg/kg MI supplementation regardless of dietary carbohydrate levels (Figure 1A–F). The addition
of 400mg/kg and 1200 mg/kg MI significantly decreased the number of vacuoles in the cytoplasm of
liver cells regardless of dietary carbohydrate levels (p < 0.05, Figure 1G).
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Figure 1. Histological characteristics of liver (40×). (A) LC-0 mg/kg; (B) LC-400 mg/kg; (C)
LC-1200 mg/kg; (D) HC-0 mg/kg; (E) HC-400 mg/kg; (F) HC-1200 mg/kg; (G) lipid droplet area
of the section area. Double asterisks (**) represent a significant difference of p < 0.01 between same
level of MI groups. a, b and A, B Values on bars without a common superscript letter are significantly
different (p < 0.05).

3.5. The Expression of Genes Related to Lipid Metabolism

The expressions of FAS and PPAR-α genes in the liver were significantly affected by carbohydrate
levels, MI concentrations and their interaction (p < 0.05, Figure 2B,E). The expressions of DGAT,
SREBP, CPT, FAS, PPAR-α and ATGL were significantly affected by carbohydrate levels, and the
expressions of CPT, FAS, PPAR-α and ATGL were also significantly affected by MI concentrations
(p < 0.05, Figure 2A,C,D,F). Under 0 mg/kg MI supplementation, the expressions of DGAT, FAS, SREBP,
CPT and ATGL were higher in the HC group than those in the LC level (p < 0.05, Figure 2A–D,F).
No significant difference was observed in DGAT, and SREBP expressions in fish fed different levels
of MI supplementation (p > 0.05, Figure 2A,C). The highest FAS gene expression level was found
in the 0 mg/kg MI supplementation HC group (p < 0.05, Figure 2B). The expression levels of
lipid-decomposition-related genes (CPT, ATGL, PPAR-α) were significantly up-regulated with the
increase of MI supplementation regardless of dietary carbohydrate levels (p < 0.05, Figure 2D–F).
The PPAR-α expression level was affected by carbohydrate levels, and the expression in the HC
group was significantly higher than that in LC group with the same amount of MI addition (p < 0.05,
Figure 2E).
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Figure 2. Effects of myo-inositol at different carbohydrate levels on mRNA levels of genes involved
in lipid metabolism parameters in the liver of O. niloticus. Values are means (n = 3 replicate tanks)
with standard errors represented by vertical bars. Asterisk (*) represents a significant difference of
p < 0.05 between same level of MI groups. Double asterisks (**) represent a significant difference
of p < 0.01 between same level of MI groups. a, b, c and A, B Values on bars without a common
superscript letter are significantly different (p < 0.05) (a/A indicated the lowest value). (A) DGAT2:
diacyltransferase; (B) FAS: fatty acid synthetase; (C) SREBP: sterol regulatory element binding protein;
(D) CPT: carnitine palmityl transferase; (E) PPAR-α: peroxisome proliferator activated receptor-α;
(F) ATGL: triglyceride lipase.

3.6. The Expression of Carbohydrate-Metabolism-Related Genes

The expressions of GK and MIPS genes were affected by the interaction between carbohydrate
levels and MI concentrations (p < 0.05, Figure 3A,E). The level of gene expression of G6Pase was
only affected by carbohydrate levels (p < 0.05, Figure 3C). The expressions of GK, PK, G6Pase and
MIPS were significantly down-regulated with increasing dietary MI supplementation regardless of
dietary carbohydrate levels (p < 0.05, Figure 3A–C,E). The expression level of G6Pase was significantly
up-regulated in the HC group when the MI concentration in the dietary was 400 mg/kg (p < 0.05,
Figure 3C). The gene expression of G6PDH was significantly up-regulated with increasing dietary MI
levels in the LC group (p < 0.05, Figure 3D). There was no significant difference in the expression of
IMPA1 in fish fed different diets (p > 0.05, Figure 3F).
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errors represented by vertical bars. Asterisk (*) represents a significant difference of p < 0.05 between
same level of MI groups. a, b and A, B Values on bars without a common superscript letter are
significantly different (p < 0.05) (a/A indicated the lowest value). (A) GK: hexokinase; (B) PK: pyruvate
kinase; (C) G6Pase: glucose-6-phosphatase; (D) G6PDH: glucose-6-phosphate dehydrogenase; (E) MIPS:
myo-inositol-1-phosphate synthase; (F) IMPA1: myo-inositol monophosphatase.

3.7. Serum Lipid Contents and Liver TG Content Parameters

The contents of serum HDL-C and liver TG were significantly affected by the interaction between
carbohydrate levels and MI concentrations (p < 0.05, Table 6). The contents of serum TG, serum
HDL-C and liver TG were significantly affected by MI concentrations (p < 0.05). The content of serum
HDL-C was also influenced by the carbohydrate level (p < 0.05). The significantly lower serum TG
and liver TG contents were detected with increasing dietary MI supplementation regardless of dietary
carbohydrate levels (p < 0.05). The highest serum HDL-C content was found in the group of 1200 mg/kg
MI supplementation in the HC diet, and the contents of serum HDL-C in the groups of 400 mg/kg and
1200 mg/kg MI supplementation in the HC diet were higher than that in the LC diet (p < 0.05). No
significant difference was found in serum LDL-C when fish were fed with different diets (p > 0.05). Fish
fed the HC diet without MI supplementation showed the lowest content of serum T-CHO (p < 0.05).

Table 6. Serum and liver lipid content parameters of O. niloticus fed different experiment diets.

Diets Serum TG Serum HDL-C Serum LDL-C Serum T-CHO Liver TG

LC-0 2.05 ± 0.26 B 1.05 ± 0.08 2.72 ± 0.26 2.16 ± 0.96 0.31 ± 0.02 B

LC-400 1.77 ± 0.14 A,B 0.96 ± 0.07 2.87 ± 0.19 2.18 ± 0.13 0.22 ± 0.33 A

LC-1200 0.35 ± 0.12 A 1.15 ± 0.07 2.82 ± 0.10 2.19 ± 0.12 0.21 ± 0.03 A

HC-0 2.25 ± 0.09 b 1.21 ± 0.04 a 2.46 ± 0.12 1.90 ± 0.05 a 0.29 ± 0.13 b

HC-400 1.98 ± 0.20 b 1.58 ± 0.09 b,** 2.83 ± 0.21 2.47 ± 0.14 b 0.20 ± 0.02 a

HC-1200 1.31 ± 0.10 a 2.02 ± 0.13 c,** 2.93 ± 0.05 2.49 ± 0.11 b 0.21 ± 0.02 a

AN0VA (P)
MI 0.000 0.000 0.202 0.052 0.000

carbohydrates 0.734 0.000 0.655 0.662 0.074
MI × carbohydrates 0.389 0.002 0.567 0.112 0.030

Data were expressed as mean ± SEM (standard error of the mean) (n = 3). Values in the same line with different
superscripts are significantly different (p < 0.05). Values are means (n = 3 replicate tanks) with standard errors
represented by vertical bars. Double asterisks (**) represent a significant difference of p < 0.01 between same level of
MI groups. a, b, c and A, B Values on bars without a common superscript letter are significantly different (p < 0.05).
TG: triglycerides; HDL-C: high-density lipoproteincholesterol; LDL-C: low-density lipoproteincholesterol; T-CHO:
total cholesterol.

3.8. Immune-Related and Antioxidative Parameters

The activities of GSH-Px and ALT/GPT were significantly influenced by carbohydrate levels, MI
concentrations and their interactions (p < 0.05, Figure 4B,E). The activity of AKP was significantly
influenced by carbohydrate levels (p < 0.05, Figure 4F). The content of MDA was significantly
decreased with increasing dietary MI supplementation regardless of dietary carbohydrate levels
(p < 0.05, Figure 4A). The activities of GSH-Px, SOD, AST/GOT, ALT/GPT and ACP were significantly
increased with increasing dietary MI supplementation regardless of dietary carbohydrate levels
(p < 0.05, Figure 4B–E,G). The activity of AKP was significantly increased with increasing dietary MI
supplementation in the HC diet (p < 0.05, Figure 4F).
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 Figure 4. Effects of myo-inositol at different carbohydrate levels on immune-related parameters in
the liver of O. niloticus. Values are means (n = 3 replicate tanks) with standard errors represented
by vertical bars. Asterisk (*) represents a significant difference of p < 0.05 between same level of MI
groups. a, b and A, B Values on bars without a common superscript letter are significantly different
(p < 0.05) (a/A indicated the lowest value). (A) MDA: malonaldehyde. (B) GSH-Px: glutathione
peroxidase; (C) SOD: superoxide dismutase; (D) AST/GOT: spartate aminotransferase; (E) ALT/GPT:
glutamic-pyruvic transaminase; (F) AKP: alkaline phosphatase; (G) ACP: Acid phosphatas.

4. Discussion

In the present study, the HC diets significantly affected growth, immunity, carbohydrate
metabolism, lipid metabolism, and the health of liver tissue, which are similar to those observed in
the blunt snout bream (Megalobrama amblycephala), Nile tilapia (Oreochromis niloticus) and European
seabass (Dicentrarchus labrax) fed HC diets [5,23,24]. In the present study, the HC feed increased the
weight gain and HSI, but dietary MI supplementation decreased HSI. This result may be due to the
reason that HC diets can induce the synthesis of lipid from excess glucose in the liver [25–27]. Some
studies have suggested that dietary MI deficiency can cause high accumulation of triacylglycerol,
cholesterol, and non-esterified lipids in the mammalian liver, indicating that MI plays a crucial role in
lipid metabolism [11,28]. As expected, the fish crude lipid, vacuolization of the cytoplasm and TG
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content in the liver were decreased with the increase of dietary MI. The MI is a precursor of inositol
phosphates and is a vital second messenger signaling molecule in cellular processes, such as lipid
signaling, glucose, and insulin metabolism [11,29]. The results in the current study suggest that MI
can affect the lipid synthesis and metabolism in the body, thereby relieving lipid accumulation in
body [16,30,31]. The qPCR results showed that dietary MI supplementation could down-regulate the
expression of genes related with lipid synthesis (FAS) and up-regulate the expression of genes (CPT,
PPAR-α, ATGL) related with lipid metabolism. The FAS plays a key role in the opposite process of de
novo lipogenesis by converting acetyl-CoA and malonyl-CoA into fat [32,33].

PPAR-α has been identified as a critical regulator for hepatic lipid metabolism to control
the transcription of genes involved in fatty acids beta-oxidation, lipoprotein metabolism, glucose
metabolism, hepatic inflammation, and hepatocyte peroxisome proliferation [34]. CPT is the main
regulatory enzyme in mitochondrial fatty acid oxidation because it is the catalyzing enzyme of the
reaction from fatty acyl-CoAs into fatty acylcarnitines [35,36]. ATGL is a critical lipolysis lipase, and
the lack or low expression of ATGL would result in a defect of lipolysis and the accumulation of
triacylglycerols in tissues [37–41]. So, the results of the present study showed that MI could alleviate
lipid accumulation by promoting lipid decomposition and inhibiting lipid synthesis. A previous study
has suggested that MI can regulate lipid metabolism by mediating insulin resistance [42].

The decomposition of liver glycogen accelerated with the addition of MI regardless of carbohydrate
levels. This may be due to that MI could promote the decomposition of liver glycogen into glucose
and increase the glucose content by increasing protein kinase B (PKB)/Akt phosphorylation, increasing
the sensitivity of insulin and promoting the utilization of glucose [43–47]. However, the specific
molecular mechanism remains to be confirmed in future studies. The G6P is an essential intermediate
in carbohydrate metabolism. Most G6P comes from the glycolysis process catalyzed by GK or HK,
and continues the glycolysis reaction by the catalysis of PK. A part of G6P would act as the substrate
and enters the MIB pathway by the catalysis of MIPS and IMPA1. The other part of G6P enters the
pentose phosphate pathway by the catalysis of G6PDH [48–51]. In the present study, the HC diet
promoted glycolysis and gluconeogenesis, but these processes decreased with the addition of MI in the
feed. Simultaneously, the addition of MI promotes the activities of glucose in the pentose phosphate
pathway [52–54]. In the current study, MI might change glucose to the pentose phosphate pathway.
NADPH is mostly generated by the pentose phosphate pathway being one of the main intracellular
reducing agents and an essential co-factor required for the normal function of antioxidant cycles such
as the glutathione thioredoxin systems [49,55–57]. In the present study, when a large amount of lipid
accumulated in the body and caused lipid peroxidation, the addition of MI can promote more glucose
to enter the pentose phosphate pathway to increase the ratio of NADPH/NADP+, which would increase
the activity of the antioxidant system and maintain the cell health [56,58]. However, the MIPS and
IMPA1 tend to decrease with the addition of MI regardless of the carbohydrates level. It may be due
to the feedback regulation in the body, and the addition of MI in the feed meets the normal needs of
the body, and there is no need to synthesize excessive MI [8,59]. Therefore, the addition of MI to the
HC diet can promote the decomposition of liver glycogen into glucose, and then promote glucose
metabolism into pentose phosphate pathway, thus providing a large amount of energy for the body
and reducing power to alleviate the oxidative damage caused by HC diet.

The contents of lipidemia can reflect whole-body lipid metabolism state was detected [60,61].
The TG is the product of one glycerol molecule and three fatty acid molecules esterification. Under
a normal condition, the serum TG content maintains the dynamic balance, but a large amount of
TG would accumulate when lipid metabolism was disturbed [62]. The contents of T-CHO, HDL-C
and LDL-C in the serum can reflect lipid metabolism and transport capacity of the liver [62–64].
Physiologically, HDL-C is good cholesterol due to having an anti-atherogenic effect, because HDL-C
is responsible for transporting CHO from extrahepatic tissues to liver for metabolism to prevent
free CHO deposition in blood [60,65,66]. The results showed that the addition of MI in the HC diet
can improve the transportation of CHO from blood and other peripheral tissues to the liver, which
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effectively improved the absorption and transportation of CHO on the HC diet in O. niloticus [60].
Therefore, the reason why dietary MI decreased the lipid accumulation might be that additional MI
accelerated the transportation of CHO back to the liver and promoted the lipolysis reaction.

The results of the present study demonstrate that the HC diet caused lipid deposition, which
triggered lipid peroxidation and oxidative stress and then induced liver function damage. Similar
findings have been found in hybrid grouper (Epinephelus fuscoguttatus ♀× E. lanceolatus ♂), Surubim
(Pseudoplatystoma reticulatum × P corruscans) and Oreochromis niloticus [1,5,67]. The accumulation of
large amounts of lipid will damage the liver structure, physiological function and lipid metabolism
disorder, which would lead to excessive free radicals and finally cause oxidative damage to the
body [68,69]. SOD is a vital antioxidant enzyme and can eliminate excess free radicals, reduce and
inhibit lipid peroxidation, and protect cells from oxidative damage [70,71]. GSH-Px is a vital peroxidase
widely existing in the body, which can protect the structure and function of cell membranes from
interference and damage of oxides because it can reduce the toxic peroxides to nontoxic hydroxyl
compounds [72–74]. In the present study, the SOD and GSH-Px activities were significantly improved
with the increase of MI supplementation regardless of dietary carbohydrate levels. At the same time,
the MDA content was significantly decreased with the increase of MI supplementation regardless
of dietary carbohydrate levels. This may be because that dietary MI decreased the accumulation of
lipid in the liver which was easy to cause oxidative stress, so the antioxidant capacity of the body
had a corresponding increase [75,76]. Moreover, the activities of GST/GOT and ALT/GPT were the
most sensitive indicators of liver cell damage, which is increased by dietary MI, this indicates that the
addition of MI alleviates the damage of liver cells and avoids the formation of fatty liver [77]. AKP
and ACP are essential enzymes for growth metabolism, homeostasis and health [17,78,79]. Therefore,
the activities of AKP and ACP in the liver tissue also indirectly reflect the health of the liver [80].
The activities of AKP and ACP were consistent with the results of antioxidant-related enzymes in the
present study. These results further demonstrate that dietary MI can help avoid oxidative stress caused
by lipid peroxidation, increase the antioxidant capacity and thus maintain the normal structure and
function of the liver cells [11,15].

5. Conclusions

The HC diet could cause the accumulation of lipid in the liver of Oreochromis niloticus, destroy the
physiological function and structure of the liver, form fatty liver, and finally affect fish growth and
survival. In the present study, additive MI in the diet could significantly improve the growth
performance increase the crude protein content and decreased the crude lipid content of fish.
The addition of MI could effectively decrease the lipid accumulation induced by the HC diet by
accelerating the transportation of CHO back to the liver and promoting the lipid decomposition.
Moreover, supplemented MI also changed the glucose metabolism and promoted the activities of
the pentose phosphate pathway in the liver to produce more amount of NADPH, which could help
enhance the antioxidant capacity of the liver to prevent it from oxidative stress caused by HC diet.
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