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Abstract

Purpose: Previous studies have demonstrated that BOLD signals in gray matter in resting-state 

functional MRI (RSfMRI) have variable time lags, representing apparent propagations of fMRI 

BOLD signals in gray matter. We complemented existing findings and explored the corresponding 

variations of signal latencies in white matter.

Methods: We used data from the Brain Genomics Superstruct Project, consisting of 1412 

subjects (both sexes included) and divided the dataset into ten equal groups to study both the 

patterns and reproducibility of latency estimates within white matter. We constructed latency 

matrices by computing cross-covariances between voxel pairs. We also applied a clustering 

analysis to identify functional networks within white matter, based on which latency analysis 

was also performed to investigate lead/lag relationship at network level. A dataset consisting of 

various sensory states (eyes closed, eyes open and eyes open with fixation) was also included to 

examine the relationship between latency structure and different states.
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Results: Projections of voxel latencies from the latency matrices were highly correlated (average 

Pearson correlation coefficient = 0.89) across the subgroups, confirming the reproducibility and 

structure of signal lags in white matter. Analysis of latencies within and between networks 

revealed a similar pattern of inter- and intra-network communication to that reported for gray 

matter. Moreover, a dominant direction, from inferior to superior regions, of BOLD signal 

propagation was revealed by higher resolution clustering. The variations of lag structure within 

white matter are associated with different sensory states.

Conclusions: These findings provide additional insight into the character and roles of white 

matter BOLD signals in brain functions.
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1. Introduction

Functional magnetic resonance imaging (fMRI) studies were initially based on the detection 

of changes in blood oxygenation-level dependent (BOLD) signals after a task or stimulus. 

The technique was later extended to include the detection and analysis of spontaneous 

signal fluctuations [1]. Though initially regarded as noise, these spontaneous fluctuations 

were later analyzed to reveal intrinsic synchronizations of regions within the somatomotor 

system of the brain [2], and these result in long range, inter-regional low frequency 

temporal correlations in measured BOLD signals. Conventional analyses of these temporal 

correlations yield a metric widely referred to as functional connectivity (FC) which is 

derived by assuming exact synchronization of activities and BOLD signals in intrinsic 

brain networks. However, previous studies in rat and humans found that BOLD fluctuations 

are spatio-temporally organized across different brain circuits [3,4]. To characterize the 

spatiotemporal patterns of brain activities, Mitra and colleagues recently analyzed inter-

regional time latencies or lags in BOLD signals. They derived a time delay matrix from 

those lags corresponding to extrema in the cross-covariance functions of pairs of voxels. A 

highly reproducible, state-dependent latency projection (the summed lags relative to other 

voxels) spanning around 1 s, was found to correspond to spatially segregated functional 

networks [5,6]. Since then, much effort has been paid to comprehensively explore lead/lag 

relationships within the cerebral cortex [5], between the thalamus and the cerebral cortex 

[7], and the cerebellum [8]. Such relationships are important for appropriate data analysis 

and for the interpretation of functional interactions within and between networks.

In contrast to studies of BOLD signals in gray matter, BOLD signals in white matter have 

been ignored for most of the past 30 years and their existence has even been regarded 

as controversial. In many analyses of fMRI data from gray matter, signals within white 

matter are treated as nuisance regressors. However, recent growing evidence converges 

to support the conclusion that fluctuations in white matter BOLD signals encode neural 

activities [9–11], similar to gray matter. It is not clear whether BOLD signals in white 

matter reflect an intrinsic metabolic demand or are driven by activity in gray matter. Several 

studies have illustrated the characterisics of BOLD signals in white matter. For example, 

BOLD signals are robustly detectable in WM if appropriate analyses are used; conventional 
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GLM methods throw away sensitivity by using an inappropriate hemodynamic response 

function (HRF) [11,12]. Event related measurements show the HRF is different from GM 

but can be measured accurately [13,14]. WM BOLD activity can be evoked by stimulation 

in task-specific tracts or regions. The magnitude of WM signals in a task reflects those 

in GM engaged in the same task, and may be modulated by the same factors [15,16]. 

At rest, WM tracts show reproducible patterns of connectivity which are summarized in 

Functional Connectivity Matrices (FCMs) obtained by analyzing resting state correlations 

between segmented WM and GM parcellations [17]; the FCM relating WM to GM is 

altered in various pathologies including Alzheimer’s disease in a manner that correlates 

with behavioral measures [18]. Distinct, reproducible networks in WM emerge from data-

driven analyses in similar manner to cortical circuits [19]. Moreover, comparisons of partial 

and full correlations between GM regions with inclusion vs exclusion of WM shows the 

degree of engagement of specific WM tracts in the couplings between cortical volumes 

[20]. Peer and colleagues investigated the functional networks of white matter by applying 

simple clustering analysis on RSfMRI data of white matter regions [21]. Highly bilaterally 

symmetrical functional networks were identified. These and other studies suggest white 

matter BOLD signals should be incorporated into models of functional networks.

Despite this converging evidence for the functional role of BOLD signals in white matter, 

temporal properties of these signals have not been adequately investigated. White matter 

connects various gray matter areas of the brain to each other, and is responsible for 

transducing neural activity between regions. In light of recent advances in modeling of how 

networks communicate [22], examination of the timing relationships within white matter is 

particularly compelling.

Here we report studies of the latency structure of BOLD signals within white matter. The 

results are derived from the Brain Genomics Superstruct Project (GSP), a publicly available 

dataset consisting of a large cohort of healthy young subjects. We found that a highly 

reproducible latency projection also exists in white matter. Further latency analysis of inter- 

and intra- functional networks, identified by clustering on functional connectivity, revealed 

that some of the functional networks within white matter also exhibit similar spatiotemporal 

organizations to those in gray matter [5]. Moreover, using the BeijingEOEC dataset II, we 

found that variations of the lead/lag relationships within white matter were associated with 

different sensory states of the brain, suggesting a causal effect between them.

2. Methods

2.1. Subjects and MRI acquisitions

Resting-state data from 1412 healthy subjects (both genders included) were selected from 

the Brain Genomics Superstruct Project (GSP) [23]. All imaging data were acquired on 

matched 3 T Tim Trio scanners (Siemens Healthcare, Erlangen, Germany) at Harvard 

University and Massachusetts General Hospital using vendor-supplied 12-channel array 

head coils. The data for each subject consisted of a 6-min resting-state echo-planar imaging 

(EPI) scan with eyes open (38 slices, TR = 3 s, 3 × 3 × 3 mm isovoxels, interleaved slices) 

and an MPRAGE anatomical scan (1.2 × 1.2 × 1.2 mm resolution). Participants involved 

provided written informed consent in accordance with guidelines established by the Partners 
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Health Care Institutional Review Board and the Harvard University Committee on the Use 

of Human Subjects in Research [23].

We further used resting-state data from 20 healthy subjects (11 females) in the BeijingEOEC 

dataset II [24,25] to investigate the influence of different sensory states on the lag structure 

in brain white matter. The following three resting-state sessions were acquired and counter-

balanced across the participants: 1) EC (eye closed), 2) EO (eye open), and 3) EOF (eyes 

open with a fixation). Each of the sessions lasted for eight minutes. During the three 

resting-state sessions, the participants were instructed to keep as motionless as possible and 

to think of nothing except for mind wandering. During the EOF session, the participants 

were instructed to fixate on a black crosshair in the center of a white screen. The functional 

images were obtained using an EPI sequence with the following parameters: 33 axial slices, 

thickness = 3 mm, gap = 0.6 mm, in-plane resolution = 64 × 64, TR = 2000 ms, TE 

= 30 ms, flip angle = 90°, FOV = 200 × 200 mm. In addition, a T1-weighted sagittal 

three-dimensional magnetization-prepared rapid gradient echo (MPRAGE) sequence was 

acquired, covering the entire brain: 128 slices, TR = 2530 ms, TE = 3.39 ms, slice thickness 

= 1.33 mm, flip angle = 7°, inversion time = 1100 ms, FOV = 256 × 256 mm, and 

in-plane resolution = 256 × 192. This study was approved by the ethics committee of state 

key laboratory of cognitive neuroscience and learning, Beijing Normal University. Written 

informed consent was obtained from each subject.

2.2. Functional and anatomical preprocessing

All images were preprocessed using the statistical parametric mapping software package 

SPM12 (www.fil.ion.ucl.ac.uk/spm/software). The initial four time points of each BOLD 

series were discarded to allow for equilibrium to be reached. First, the images were 

corrected for slice timing and head motion, and subjects with large head motion (maximum 

translation >2 mm or maximum rotation >2°) were excluded, resulting in a cohort of 1412 

subjects. Second, T1-weighted images were segmented into gray matter, white matter, and 

cerebrospinal fluid using the New Segment utility embedded in SPM12, and all these images 

were registered to the mean BOLD image output by the motion correction procedure. Third, 

the BOLD images were normalized into the Montreal Neurological Institute (MNI) space, 

along with the coregistered T1-weighted images as well as the gray matter and white 

matter segments. Fourth, linear trends (first order) from the BOLD images were removed to 

correct for signal drifts using the detrend function in matlab. Fifth, mean signals from the 

cerebrospinal fluid mask and whole-brain mask, and also Friston’s 24 regressors [26] were 

regressed out as nuisance covariates. After the nuisance regression, the temporal signals 

were low-pass filtered (using FFT) to retain frequencies between 0.01–0.1 Hz. Finally, 

BOLD images were spatially smoothed with an isotropic Gaussian filter (FWHM = 6 mm), 

where smoothing was performed separately on the white matter and the gray matter of each 

subject, to avoid mixing of signals.

2.3. Creation of group-level white matter mask

Following the preprocessing, the white matter mask of each subject was normalized to 

the MNI space and resampled to isotropic resolution of 3 mm. To obtain the masks for 

group-wise analysis, we used the segments for each subject. Each subject-level white matter 
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mask was generated using a threshold value of 0.95, and the strategy of majority voting 

was applied to generate the group-level mask. Voxels with a voting rate above 90% were 

included resulting in a group-level mask consisting of 9321 white matter voxels.

2.4. Latency analysis

We followed the method proposed by Mitra et al. [32] for our latency analyses. A schematic 

diagram of our latency analysis for this study is shown in Fig. 1. Details are included in the 

following sub-sections.

2.4.1. Generation of subject- and group-level correlation matrix—The time 

series of each voxel in WM mask were extracted. For each subject, Pearson’s correlation 

was computed for all pairs of voxels, resulting in a subject-level correlation matrix of size 

9321 × 9321. A group-level correlation matrix was defined to be the average of all the 

subject-level correlation matrices within the same group.

2.4.2. Construction of white matter functional networks—Functional networks of 

white matter were identified by clustering voxels on the basis of group-level correlation 

matrices generated as above [27–31]. K-means clustering with correlation as the distance 

metric and with twelve replicates was performed on the rows of each group-level correlation 

matrix, which allowed voxels with similar functional connectivity patterns to be grouped 

into the same cluster. In this study, K-means clustering was carried out for each subgroup, 

as well as for the entire dataset by pooling all the subjects together, which served as ground 

truth.

The cluster similarity between each subgroup and the ground truth was evaluated. We first 

computed an adjacency matrix, wherein each element in the matrix indicates whether any 

two voxels are in the same cluster or not, for each clustering result [31]. We then computed 

the Dice coefficients between the adjacency matrices from each subgroup and from the 

entire dataset.

2.4.3. Estimation of time delay between two time series—Briefly, given time 

series of two voxels, x1(t) and x2(t), a lagged cross-covariance was computed as,

Cx1x2(τ) = 1
T ∫ x1(t + τ) • x2(t)dt

where τ is the lag (in units of time), and T is the integration interval, a constant in our 

experiment. The value of τ at which Cx1×2(τ) exhibiting an extremum defines the temporal 

lag (delay) between signals x1 and x2. To determine the lag time value at a temporal 

resolution finer than the time of repetition, a parabolic interpolation was used, as described 

previously [5,34].

2.4.4. Generation of time delay matrix and latency projection—A latency matrix 

was computed for each subject and then averaged across each group to obtain group-level 

latencies, a matrix of size 9321 × 9321. A latency projection was then obtained by averaging 
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over the rows of the latency matrix. The latency projection represents the relative timing of 

each voxel with respect to the remaining voxels within white matter.

2.4.5. Generation of latency matrices among networks—To characterize the 

lead/lag relationships among networks, rows and columns of the latency matrix were first 

rearranged by clusters such that voxels of the same cluster were adjacent to each other, 

thus subdividing the latency matrix into K × K blocks. Second, intra-network voxels were 

reordered by their temporal orders derived from latency projections. Thus, diagonal blocks 

represent the lead/lag relations between intra-cluster voxels and off-diagonal blocks the 

lead/lag relations between inter-cluster voxels. Within each block of cluster pairs, the voxels 

with early timings relative to the remaining voxels in the same block were placed in the 

upper-left corner and voxels with later timings were placed in the lower-right corner.

2.4.6. State contrast of the latency structure within white matter—We 

examined statistical differences in the lag structure within white matter among the following 

three different resting sensory states, i.e., EO, EC, and EOF. A linear mixed-effects analysis 

[35] was adopted to study the main effect of the sensory states, along with the in-between 

paired effects. The modeling program, 3dLMEr from AFNI [36], was used to build the 

statistical model, in which variates of sensory states (EO, EC, and EOF), age, and gender 

were included. Cluster correction was employed for evaluating both main and paired effects. 

Clusters of statistical significance were identified based on their size. The threshold of 

cluster size regarded as statistically significant was determined by autocorrelation function 

modeling combined with a voxel-level threshold of p < 0.001. Specifically, we applied 

3dFWHMx on preprocessed fMRI data to estimate the parameters of the autocorrelation 

function (ACF), followed by 3dClustSim for identification of significant cluster-size, within 

which a corrected significance level was thresholded at p < 0.05 and uncorrected voxel-level 

at p < 0.001 [37].

3. Results

3.1. Latency projections in white matter

Latency projections within WM derived from the GSP dataset are shown in Fig. 2 wherein 

positive values indicate lags and negative values leads. This lead/lag relationship appears as 

signal propagations from the leads to the lags, thus apparent propagation. It can be seen that 

the distribution of the latencies was highly bilaterally symmetric. The white matter regions 

with the smallest and greatest lag values were the internal capsule (IC) and the posterior 

corona radiate (PCR), respectively. A gradual increase in lag value from the posterior 

thalamic radiation (PTR) to the optic radiation (OR) was also observed. The correlogram in 

Fig. 2–B shows the pair-wise correlation coefficient among the ten separate subgroups. The 

correlation value ranged from 0.859 to 0.908, which demonstrates high spatial similarities in 

latency projections across subgroups.

3.2. Functional networks and latency matrix

3.2.1. Functional networks within white matter—Functional networks within white 

matter identified by using Kmeans clustering are shown in Fig. S1. The numbers of clusters 
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that yield the most stable cluster segregations are 2, 4, 8, and 11 (denoted as asterisks in Fig. 

S1–A). These clusters are visualized in left, right, front and back views in Fig. S1–B.

3.2.2. Latency matrices among white matter functional networks—We 

examined lead/lag relationships among white matter functional networks (WMFN) on 

different numbers of clusters in a coarse-to-fine manner. Here the latency matrices of 

only 2, 4, and 8 clusters are shown in Figs. 3–4, with diagonal blocks representing 

intra-network lead/lag relationships, while off-diagonal blocks correspond to inter-network 

lead/lag relationships. Lead/lag relationships at the coarsest level (K = 2) of clustering are 

shown in the left of Fig. 3, in which the two networks clustered are in the top (green colored) 

and bottom (red colored) portions of the brain respectively. Note that a portion of the 

anterior corpus callosum was clustered into the bottom cluster. For the top cluster, a pattern 

ordering the intra-network latencies was readily identified (see yellow rectangle in Fig. 

3–A). This latency pattern resembles previous studies on functional networks of gray matter 

[5], indicating similar spatiotemporal properties such that top cluster appeared to contain 

temporally well-ordered early, medium and late components within WMFN. Meanwhile, for 

the bottom cluster, a reverse pattern to the top cluster’s intra-network lead/lag relationship 

was observed (see red rectangle in Fig. 3–A), indicating a reverse temporal ordering derived 

from the latency projection against that derived from within cluster. For inter-network 

lead/lag relationship, the latency patterns in the off-diagonal blocks were quite different 

from those found in gray matter previously. Part of the early voxels from the top cluster lag 

part of the early voxels from the bottom cluster. Clusters with K = 4 are shown in the right 

of Fig. 3. The top cluster obtained when K = 2 was further subdivided into two clusters, 

one covering the middle part of the original top cluster (named as TM, short for top-middle) 

and the other both ends of the original top cluster (named as TE, short for top-ends). 

Similarly, the bottom cluster obtained when K = 2 was further clustered into top (BT, short 

for bottom-top) and bottom (BB, bottom-bottom) components. It can be seen that there were 

well-ordered distributions of inter- and intra-network latencies between network TM (blue) 

and network TE (yellow), indicating the existence of reciprocal inter- and intra-network 

timings (see yellow rectangle in Fig. 3–D). At this clustering resolution, network BT (green) 

exhibited a clear reverse intra-network temporal order against the temporal order deduced 

from the latency projections (see red rectangle in Fig. 3–D). In network BB (red), the overall 

temporal order was unclear though some of the voxels led some of the voxels from other 

clusters.

To establish anatomical correspondences, clusters were named according to the largest WM 

fiber bundle they contained, including middle cerebellar peduncle (MCP), posterior limb of 

inter capsule (PLIC), retrolenticular part of internal capsule (RPIC), corpus callosum (CC), 

anterior corona radiata (ACR), posterior thalamic radiation (PTR), superior longitudinal 

fasciculus (SLF), and superior corona radiata (SCR), which are shown in Fig. 4–B. Latency 

analyses among these RSNs are displayed in Fig. 4–A, wherein reciprocal inter- and intra-

network propagations were observed among the lower-right blocks (see yellow rectangle 

in Fig. 4–A), consisting of SCR, ACR, PTR, and SLF, but no temporal relationships were 

clearly visible between network MCP and other networks except RPIC. CC consisted of a 
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major portion of the corpus callosum, the temporal relationships of which with MCP seemed 

disordered.

Contrasting with the results from GM [22] wherein no significant lead/lag relationships 

at the network level were identified between RSNs, latency analysis in WM revealed the 

existence of inter-RSN lead/ lag relationship, as indicated by asterisks in Fig. 5–A (one 

sample t-test on the mean value of each off-diagonal block, p < 0.05 with Bonferroni 

correction, N = 28), which suggested that propagations of BOLD signals between paired 

RSNs, indicated by each asterisk, appeared to be dominated by one direction. Thus, a 

dominant direction of BOLD signal propagation (indicated by black arrows while the other 

direction was indicated by blue arrows in Fig. 5–B), from inferior WM (including PLIC) 

to middle WM (including RPIC) and further to superior WM (including PTR, SCR, SLF, 

and PTR) was identified. Also identified were the signal propagations among the RSNs 

in superior WM, including CC, PTR, SCR, SLF, and PTR, but with weaker directional 

dominance, as shown in the right of Fig. 5–B. Latency matrices of other clusters are 

provided in Figs. S2 ~ S7 in the Supplementary Material.

3.3. Latency projections of different sensory states

Latency projections obtained during different sensory states are shown in Fig. 6. As can 

be seen, the spatial patterns of latency projections in white matter were largely preserved 

across different sensory states, which were also reminiscent of those obtained from the GSP 

dataset in Fig. 2. Pearson’s correlation analysis showed that the CC between EO and EC, 

EO and EOF, and EC and EOF were 0.798, 0.805 and 0.809 respectively. Close inspections 

revealed that, for all the three states, voxels with large lag values were mostly distributed in 

the corona radiata (CR), OR, and the four corners of ventricles, whereas voxels with small 

lag values were mainly concentrated around the IC. Notable differences in lag values among 

the three sensory states, however, were also clearly visible, especially in the IC and OR. 

Larger lag values tended to be concentrated around the OR for EC as compared with EO and 

EOF, while small lag magnitudes tended to be around the IC for EO and EOF.

Fig. 7 shows the regions exhibiting significant differences (defined by FWE-corrected p < 
0.05 and uncorrected p < 0.001) among the three different states for both main effect (Fig. 

7–A) and paired effects (Fig. 7–B, C). One prominent cluster was observed in the IC and 

another in the OR. Post hoc t-tests suggest a change of lag within these two regions between 

different sensory states, EC vs. EO (Fig. 7–B), and EC vs. EOF (Fig. 7–C). However, no 

significant regions were observed when contrasting EO and EOF.

Fig. 8 shows the change of latency within regions showing significant effects. As compared 

with EC, the most prominent change in latency with eyes open was a shift toward later 

values in the IC, while reverse changes, shifting toward earlier values, were observed in the 

OR (Fig. 6–A, B). Similar changes were also observed by contrasting EC with EOF (Fig. 

6–A, C). Despite the gross spatial similarity of latency projections seen in Fig. 6, the lag 

values within regions of significant effects changed reliably across different paired sensory 

states. Specifically, lag values within regions of significant effect changed from −0.46 s ~ 

0.44 s for EC to −0.16 s ~ 0.17 s for EO, and lag values within regions of significant effect 

changed from −0.46 s ~ 0 s (in EC) to −0.14 s ~ 0.07 s (in EOF).
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4. Discussion

We have described how latency projections [38] derived from time delay matrices were 

used to investigate the BOLD lag structure within white matter. The consistency of latency 

projections across ten subgroups consisting of large cohorts of younger healthy subjects 

attest to the high stability and reproducibility of the lag structure within white matter. 

Similar stability and reproducibility of lag structure were also observed in gray matter [5]. 

We also investigated white matter functional networks by applying a clustering technique on 

group-level functional connectivity matrices. Reproducible functional networks across the 

ten subgroups were obtained. We further explored how these spatially segregated functional 

networks are integrated with each other by analyzing inter- and intra-network lead/lag 

relationships. While some of the networks exhibited reciprocal in-between communication 

patterns, network-wise lead/lag relations were also revealed. A unidirectional propagation 

path of BOLD signals was identified from lead/lag analysis of higher resolution functional 

networks derived from finer grained clustering. We also examined the effects of different 

sensory states (EO, EC, EOF) to find out whether the latency structure was associated 

with specific neural inputs. Statistical analysis revealed appropriately localized differences 

between EO/EC, and between EOF/ EC, suggesting that the latency structure in white matter 

is affected by task-related neural activity.

4.1. White matter functional networks

A previous study [21] demonstrated the high reproducibility of bilaterally symmetrical 

WMFNs. We validated this finding with a much larger dataset. Bilaterally symmetrical 

WMFNs were also identified in our experiments. However, in the work of Peer et al., the 

identified WMFNs were organized into three layers (superficial, middle, and deep) with 

each directly overlaying the preceding one. This spatial overlapping was not observed in this 

study as our subject-level and subsequent group-level WM masks were generated by highly 

conservative thresholding (>0.95). As there are lingering concerns that WM BOLD signals 

may arise from the effects of partial volume averaging with adjacent GM and vasculature, 

such a tight threshold minimized this potential confound.

Historically, rsfMRI has been extensively used to identify functional networks in the cortex 

[27,39]. Here we complement previous studies by examining apparent functional networks 

in white matter. Our results expand beyond previous studies on WMFNs by using a much 

larger dataset and by quantifying the specific timings of BOLD signals throughout the brain.

4.2. Latency of intra- and inter-networks

Intra- and inter-network lead/lag measurements have been analyzed to describe the temporal 

relationships between spatially segregated resting state networks (RSNs) of gray matter 

[5]. Studies in human [5,6,40] and mice [41] have reported that BOLD signals propagate 

through the cerebral cortex along stereotypical spatiotemporal sequences to give rise to 

the network-level organization. Quasi-periodic patterns (QPPs) of low-frequency activity in 

BOLD signals were also found to contribute to functional connectivity [42].

In WM, three observations can be derived from network-level latency analyses.
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First, some WMFNs exhibited similar intra- and inter-network latency patterns to gray 

matter (indicated by yellow boxes in Figs. 3, 4, 5), suggesting similar spatiotemporal 

organizational principles governing these networks. For diagonal blocks, this pattern 

illustrates that each network has early, middle, and late components. With respect to off-

diagonal blocks, this pattern represents reciprocal communication between paired networks 

with no network leading or following the other. Building on a previous study of WMFNs 

[21], our findings reveal the spatiotemporal organization across RFNs. Future studies could 

explore factors that affect these results including the influences of different diseases on the 

functional integration of WMFNs.

Second, temporal orders within some networks (indicated by red boxes in Fig. 3) are 

dominated by the temporal order derived from the latency projection. Each latency block is 

reordered according to the temporal order obtained from the latency projection. Ideally, if 

the temporal order within each latency block is consistent with that deduced from the latency 

projection, which encompasses the global temporal order within white matter, large lags will 

be uniformly distributed in the top and right position of each latency block. However, these 

networks turned out to exhibit a reverse temporal order. These regions consist mainly of IC 

and the anterior part of corpus callosum (BT in Fig. 3–D). A preliminary discussion about 

this was included in Section 4.4.

Third, a dominant propagation direction of BOLD signals within WM can be identified, 

which suggests that most of the WM BOLD signals propagate along this path. The brain is 

deemed to be not merely a reflexive but rather a mainly intrinsic model actively interacting 

with the environment [43]. Functional organizations of the brain are sustained by its intrinsic 

activities, the spatial coherence of which has been found to transcend different levels of 

consciousness [44]. From this perspective, the operational model of the brain is to collect 

and interpret information from the environment, and respond to it whenever necessary. In 

this interacting progress, the WM is responsible for transferring neural information between 

the peripheral nervous system and central nervous system (CNS), or within the CNS. The 

signal propagation along the inferior-superior direction we observed may suggest that during 

a resting-state, the dominant mode of brain operations is primarily to collect and interpret 

information from the environment rather than respond to it. Note that the propagation path 

observed in this work only started from the PLIC instead of lower anatomical regions, e.g. 

MCP (with pons and medulla included). This may be attributed to the complex and thus 

plausible disorganized temporal organizations w MCP. In particular, with high clustering 

resolution (K = 14 in Fig. S7), the cerebellum WM was found to be separated from the 

MCP with the remaining part of the MCP taking the lead in time, which resulted in 

a unidirectional path pointing from the pons and medulla posteriorly to the cerebellum 

WM. At this resolution level, the pons and medulla exhibited weakly organized intra-RSN 

temporal organizations, and also the PLIC seemed to lag the pons and medulla though 

not overwhelmingly. Further investigations are warranted for clearer understanding of the 

temporal organizations in the MCP.

It should also be noted that our findings also showed similar observations to previous 

Electroencephalography (EEG) findings, which has been widely used to measure functional 

signals and further analyze their propagations in the human brain. For instance, two 
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directions of signal propagations are found in brainstem reticular formation, including 

descending reticulo-spinal projections for facilitating movement and postural muscle tone 

with multiple behaviors during wakefulness [45,46] and ascending projections into the 

forebrain for stimulating cortical activation [47–49]. Therefore, in a resting brain, ascending 

projections should dominate signal propagations presumably because little movement or 

postural muscle tone take place, which coincides with our findings that the dominant path 

in BOLD signal propagation is from the inferior to the superior. But further studies are 

warranted to investigate the directionality and relevance of the dominant path of signal 

propagations within WM in relation to different brain states, e.g. sleep vs. wakefulness.

Also, we want to point out that network-wise lead/lag relationship was not without precedent 

in GM [50], though not reported in [5]. Recent studies [51–53] converged to demonstrating 

primary propagation pattern moving from sensorimotor to association cortex, discrepancy 

between which and [5] may be attributed to the global signal regression (GSR). Future 

works could also explore the influence of GSR on the derived spatiotemporal organizations.

4.3. Influences of different sensory states on white matter latency structure

Given the observed effects of different sensory states on latency, it is reasonable to infer 

that these effects are potentially of neurophysiological origin. Though latency projections 

from different sensory states exhibited similar tendency of increasing lag values along OR, 

lag values changed significantly when contrasting EO with EC, and also EOF with EC. 

While comparisons between EO and EOF showed no significant changes in OR, WM BOLD 

signals in OR show close associations with visual tasks [13,17,54]. Ding et al. also found 

that visual stimulations significantly enhance the correlation between gray matter and OR 

[17], which may explain the lower estimated lag values in OR. The change of lag values due 

to different sensory states may suggest a different extent of engagement of OR, in which 

a smaller lag value in OR corresponds to more active engagement of OR in modulating 

visual information. Likewise, explanations may extend to the IC as well, as it consists of 

both ascending and descending fibers. This structure, situated close to the thalamus, routes 

information up to the corona radiata and down to the pons. If the IC is more actively 

engaged in a task, the time delays within the affected region may be shortened.

4.4. Latency structure of white matter in relation to vascular physiology

BOLD signals result from variations of regional blood concentrations of oxy- and deoxy-

hemoglobin. Hence the latency structure may be determined by the anatomy of the venous 

drainage system within white matter. Previously in gray matter, the venous drainage system 

was shown to be not relevant to the latency structure [5]. Indeed, for gray matter, the 

superficial venous system drains into the superior sagittal sinus from an inferior to superior 

direction, while the superior sagittal sinus drains the venous blood from superior to inferior 

regions. However, the distribution of the lag values does not follow the flow direction of the 

superficial venous drainage system, which therefore rules out the possibility that the latency 

structure merely reflects the vascular architecture. Likewise, generally in white matter, the 

deep venous drainage system removes venous blood from anterior (via the inferior sagittal 

sinus, the internal cerebral vein, and the basal vein) to posterior (the straight sinus, the 

great cerebral vein) directions. Again, the distribution of the lag values within white matter 
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are inconsistent with this flow. From our analyses a unidirectional path of BOLD signal 

propagation was revealed, from inferior to superior. Moreover, the lag values in the IC and 

the OR were significantly associated with different sensory states, which is not explicable in 

terms of the deep venous drainage system.

As we based our study on fMRI BOLD signals, we cannot exclude hemodynamic effects 

on latency projections. It was revealed by a previous study that bundle-level hemodynamic 

delays between superficial and deep WM could be of seconds, wherein deeper regions in 

WM showed larger lags [13]. A reasonable extension of this finding is that hemodynamic 

response functions in WM shared different delays even among neighboring voxels. This 

intrinsic property may give rise to the observed latency projection. Actually, our findings 

of latency structure exhibited similar tendency of delays especially in the distributions 

of lead/lag values, wherein large lags (positive values) were mostly located in deep WM 

including four corners near the ventricle, OR, and CR. This lead/lag distribution may be 

attributed to the arterial structure for blood supply of WM. Despite that BOLD effect 

is directly related to the concentrations of deoxyhemoglobin in venous blood [55], over-

supplied oxygenated blood due to uncoupled regional cerebral blood flow (CBF) and 

cerebral metabolic rate of oxygen consumption [56,57] was provided via arteries. The 

arterial supply of WM consists of subcortical arteries [58], for blood supply of subcortical 

WM, and medullary arteries [59,60], for blood supply of deep WM. Subcortical arteries 

penetrate straight through the cortex to supply for subcortical WM, while medullary arteries 

also penetrate straight through the cortex but to supply for deep WM with longer time 

of delay than that of subcortical arteries. This arterial structure may be the physiological 

basis of the observed latency structure. On the other hand, the regional variations of lags 

in IC and OR may be attributed to the changes of regional neurovascular coupling due to 

different underlying neural activities across different sensory states, leading to early shifting 

of localized BOLD signals from eye closed to eye open. Since both arterial supplies of GM 

and WM branch off from pial arteries, it lingers that BOLD effect from WM may be the 

concomitant effect of GM, regionally neuronal activations of which will induce retrograde 

propagation of vasodilation to the area of pial arteries [61], thus yielding the BOLD effect 

of WM in return. However, it should be noted that the increases in CBF that are evoked by 

neural activity are highly site-specific [62]. For example, in the olfactory bulb, stimulated 

specific glomeruli produce increased flow in capillary involving the activated glomerulus, 

but not capillaries that are even less than 100 μm away in quiescent areas [63]. Hence, 

neural activity from GM cannot induce concomitant BOLD effect in WM. In fact, it has 

been shown that changes in brain state from eye closed to eye open were reflected in 

different extents of increased FDG uptakes in GM and WM [64], suggesting actual changes 

in neural activity between these two brain states. To provide further evidence, a recent study 

[65] based on simultaneous MRI and PET of healthy human subjects revealed a correlation 

between functional and metabolic measures in WM, suggesting that functional involvement 

of WM in cortical processing was associated with metabolic demands of underlying neural 

activities. Compared with that in GM, WM has been found to contain a significantly higher 

glia-to-neuron ratio [66]. Also, a recent study argued that oligodendrocyte activities make 

up a significant portion of the metabolic demands in maintaining membrane potentials for 

proper functioning [67] or supporting metabolic demand of neurons [68], which may be the 
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primary source of metabolic demands. Therefore, the latency structure may be related to the 

structure of arterial supply of WM and regional variations of lags across brain states may be 

attributed to different underlying neural activities.

However, we also need to note that the arterial structure alone, if attributable, could not 

explain the total variations of the latency matrix. In fact, if we applied principal component 

analysis (PCA) on the latency matrices of the ten subgroups from GSP dataset (refer 

to Fig. S8 in supplementary material for PCA results), principal components with the 

largest two eigenvalues, explaining in average ~ 45% and ~ 20% variances of the latency 

matrix, respectively, were identified. This suggested that there existed more than one latency 

processes contributing to the latency matrices reflecting voxel-wise temporal organizations 

within WM.

The networks showing reversed inter-network against intra-network temporal ordering (red 

boxes in Fig. 3, RPIC in Fig. 4, and also white matter in cerebellum (network 3) in Fig. 

S7) was consisted mainly of IC (the network RPIC, which also includes other part of IC, is 

named according to the largest bundle it contains). Here we provide a speculative example of 

this observation. By performing latency analysis among voxels within RPIC, it can be seen 

that the latency projection of RPIC are well-ordered (top panels in Fig. S9–A). We could 

further divide the network into two regions as seeds (middle and bottom panels in Fig. S9–

A), an early seed (defined by thresholding the above latency projection at lags <0) and a late 

seed (defined by thresholding the above latency projection at lags >0). Seed-based latency 

maps were computed to evaluate the relative lags between each seed and the remaining 

voxels within WM (top and middle panels in Fig. S9–B). It can be seen from the difference 

map (bottom panels of Fig. S9–B, paired-sample ttest, p < 0.05 with FDR correction) that 

early region of RPIC showed smaller lag with respect to the most remaining voxels of 

WM than late region, which suggested a propagation pattern when early region initiated not 

only the intra-network propagation to late region within RPIC but also the inter- network 

propagation to other networks (top panel in Fig. S9–C wherein E and L represent early 

and late regions of RPIC, respectively, and T1 ~ T3 represents three nodes from superior 

networks). A latency matrix of the propagation pattern could be created (middle panel in 

Fig. S9–C; the lead/lag values among T1 ~ T3 are left blank since these values did not 

affect the derived relative timing between E and L), which is a simplified version of the 

observed results in Fig. S9–A,B (Note the larger lags of the node T1 ~ T3 with respect to 

node L than to node E). From this latency matrix, a correct relative timing between E and L 

(green timing line in bottom panel in Fig. S9–C) can be derived if we used only the lead/lag 

relationship in green rectangle, i.e., to include their temporal orders from within RPIC. If 

the temporal orders between nodes E and L are derived in a global sense (the rectangle 

in the middle panel of Fig. S9–C), a reversed temporal order against the intrinsic one is 

derived (red timing axis in bottom panel in Fig. S9–C). Speculatively, this observation may 

be related with multisensory integration [69,70] concerning the transmission and integration 

of different sensory signals, e.g. information from E and L is required in T1 ~ T3, but L 

should be activated by E before the propagation from L to T1 ~ T3 can be started (Fig. 

S9–C). In fact, IC may possess the specialty to show this type of temporal organization 

since both ascending and descending axons densely abound in IC to connect the cerebral 

hemispheres with subcortical structures, the brainstem, and the spinal cord. While the 
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functional networks derived from K-means failed to distinguish these two types of axons, a 

tractography based parcellation method may help to identify the ascending and descending 

targets, thus promoting a better understanding of this type of temporal organization in a 

physiological sense.

4.5. Acquisition length in relation to reliability of latency projection

Reliable group-level RSFC can be obtained with acquisition length of 5–13 min, wherein 

reliability increased with acquisition length [71]. It should be noted that, however, longer 

time of acquisition tends to incur greater imaging artefacts, due to e.g. head motion or 

cognitive instability, which eventually compromised the benefit brought by long acquisition 

time. Hence, sampling error can be reduced by averaging across several scans rather than 

a very long duration scan. A detailed investigation of the influences of factors including 

correlation magnitude, data length, and temporal resolution, on time delay estimation can 

be found in [34], though using either surrogate time series or multiple-session individual 

real data [34,72]. In spite of the sampling error in estimated lags, latency analysis based 

on current method [5] could give rise to differences between groups [73–75] using typical 

scanning parameters (e.g. TR = 2000 ms, acquisition length = 8 min or 10 min). Here we 

evaluate the influences of acquisition length, along with the sample size, on the reliability 

of group-level latency projection. We selected the first subgroup from the GSP dataset and 

performed latency analysis but with various acquisition lengths, ranging from 1 to 6 min, at 

various sample sizes (n = 10, 20, 40, 80). For each combination of the acquisition length and 

sample size, latency analysis was repeated 10 times. Pearson’s correlations were evaluated 

between the original latency projection from this group and the latency projection from 

each of the combinations. As clearly shown in Fig. S10, the reliability increases with the 

acquisition length at all sample sizes; when the acquisition time was beyond 4 min, the 

curves tend to be flat, indicating that additional benefit brought by acquisition time longer 

than 4 min tends to be small.

4.6. Clinical implications of WM latency analysis

WM, especially the corpus callosum, has a causal role for building up inter-hemispheric 

FCs [76] by transducing neuronal information in myelinated axons. The unique and pivotal 

role of WM has important implications to studies of brain development, aging and many 

neurodegenerative diseases. For instance, in multiple sclerosis the myelin that covers 

neuronal fibers is impaired, so signal communications between brain regions are thus less 

efficient. In such a clinical scenario, analyzing the WM latency may assist in evaluating 

the altered spatiotemporal organization within WM so that possible breakdowns of intra- 

and inter-RSN integrations may be identified. Similarly, in Alzheimer’s Disease (AD) which 

involves degenerations of myelin that are potentially associated with age-related deficits in 

memory [77], analyzing the WM latency might add to the repertoire of potential biomarkers 

for early diagnosis of AD.

5. Conclusion

In summary, based on a large fMRI dataset acquired from youngsters, we investigated 

in this study resting state WM latency structure, which represents apparent propagations 

Guo et al. Page 14

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of fMRI BOLD signals. We found there are lead/lag relationships among WM networks, 

and different sensory states entail different latency structures. Also, we have identified a 

unidirectional path of signal propagations within the brain WM, which is suggestive of a 

special mode of brain functional operations. This study offers a new perspective for looking 

into the temporal organization of the brain particularly WM, which may have important 

implications to studies of brain development, aging and neurodegenerative diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This work was supported by the National Institutes of Health(NIH) grant R01 NS093669 (J.C.G) and R01 
NS113832 (J.C.G). Also, we sincerely thank Dr. Zhaohua Ding for his insights in our discussion.

References

[1]. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional 
magnetic resonance imaging. Nat Rev Neurosci 2007;8(9):700–11. [PubMed: 17704812] 

[2]. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex 
of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–41. [PubMed: 
8524021] 

[3]. Majeed W, Magnuson M, Keilholz SD. Spatiotemporal dynamics of low frequency fluctuations in 
BOLD fMRI of the rat. J Magn Reson Imaging 2009;30(2):384–93. [PubMed: 19629982] 

[4]. Majeed W, Magnuson M, Hasenkamp W, Schwarb H, Schumacher EH, Barsalou L, et al. 
Spatiotemporal dynamics of low frequency BOLD fluctuations in rats and humans. Neuroimage 
2011;54(2):1140–50. [PubMed: 20728554] 

[5]. Mitra A, Snyder AZ, Hacker CD, Raichle ME. Lag structure in resting-state fMRI. J Neurophysiol 
2014;111(11):2374–91. [PubMed: 24598530] 

[6]. Mitra A, Snyder AZ, Blazey T, et al. Lag threads organize the brain’s intrinsic activity. Proc Natl 
Acad Sci 2015;112(17):E2235–44. [PubMed: 25825720] 

[7]. Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME. Propagated infra-slow intrinsic 
brain activity reorganizes across wake and slow wave sleep. Elife 2015;4: e10781. [PubMed: 
26551562] 

[8]. Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C, Newbold DJ, et al. Spatial and temporal 
organization of the individual human cerebellum. Neuron 2018;100(4): 977–93. [PubMed: 
30473014] 

[9]. Gawryluk JR, Mazerolle EL, D’Arcy RC. Does functional MRI detect activation in white matter? 
A review of emerging evidence, issues, and future directions. Front Neurosci 2014;8:239. 
[PubMed: 25152709] 

[10]. Grajauskas LA, Frizzell T, Song X, D’Arcy RC. White matter fMRI activation cannot be 
treated as a nuisance regressor: overcoming a historical blind spot. Front Neurosci 2019;13:1024. 
[PubMed: 31636527] 

[11]. Gore JC, Li M, Gao Y, Wu TL, Schilling KG, Huang Y, et al. Functional MRI and resting 
state connectivity in white matter-a mini-review. Magn Reson Imaging 2019;63:1–11. [PubMed: 
31376477] 

[12]. Huang Y, Bailey SK, Wang P, Cutting LE, Gore JC, Ding Z. Voxel-wise detection of functional 
networks in white matter. Neuroimage 2018;183:544–52. [PubMed: 30144573] 

[13]. Li M, Newton AT, Anderson AW, Ding Z, Gore JC. Characterization of the hemodynamic 
response function in white matter tracts for event-related fMRI. Nat Commun 2019;10(1):1–11. 
[PubMed: 30602773] 

Guo et al. Page 15

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Wang T, Wilkes DM, Li M, Wu X, Gore JC, Ding Z. Hemodynamic response function in brain 
white matter in a resting state. Cereb Cortex Commun 2020;1(1):tgaa056.

[15]. Mishra A, Li M, Anderson AW, et al. Concomitant modulation of BOLD responses in white 
matter pathways and cortex. NeuroImage 2020;216:116791. [PubMed: 32330682] 

[16]. Li M, Ding Z, Gore JC. Identification of white matter networks engaged in object (face) 
recognition showing differential responses to modulated stimulus strength. Cereb Cortex 
Commun 2020;1(1):tgaa067.

[17]. Ding Z, Huang Y, Bailey SK, et al. Detection of synchronous brain activity in white matter 
tracts at rest and under functional loading. Proc Natl Acad Sci 2018;115(3): 595–600. [PubMed: 
29282320] 

[18]. Gao Y, Sengupta A, Li M, et al. Functional connectivity of white matter as a biomarker of 
cognitive decline in Alzheimer’s disease. Plos one 2020;15(10): e0240513. [PubMed: 33064765] 

[19]. Huang Y, Yang Y, Hao L, et al. Detection of functional networks within white matter using 
independent component analysis. NeuroImage 2020;222:117278. [PubMed: 32835817] 

[20]. Li M, Gao Y, Gao F, Anderson AW, Ding Z, Gore JC. Functional engagement of white matter in 
resting-state brain networks. NeuroImage 2020;220:117096. [PubMed: 32599266] 

[21]. Peer M, Nitzan M, Bick AS, Levin N, Arzy S. Evidence for functional networks within the 
human Brain’s white matter. J Neurosci 2017;37(27):6394–407. [PubMed: 28546311] 

[22]. Mitra A, Raichle ME. How networks communicate: propagation patterns in spontaneous brain 
activity. Philos Trans Royal Soc B Biol Sci 2016;371(1705): 20150546.

[23]. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human 
cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011;106(5):2322–45. 
[PubMed: 21795627] 

[24]. Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X, et al. Spontaneous brain activity in the default mode 
network is sensitive to different resting-state conditions with limited cognitive load. PLoS One 
2009;4:e5743. [PubMed: 19492040] 

[25]. Zou Q, Long X, Zuo X, Yan C, Zhu C, Yang Y, et al. Functional connectivity between the 
thalamus and visual cortex under eyes closed and eyes open conditions: A resting-state fMRI 
study. Hum Brain Mapp 2009;30:3066–78. [PubMed: 19172624] 

[26]. Friston KJ, Holmes A, Poline JB, et al. Detecting activations in PET and fMRI: levels of 
inference and power. Neuroimage 1996;4(3):223–35. [PubMed: 9345513] 

[27]. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The 
organization of the human cerebral cortex estimated by intrinsic functional connectivity. J 
Neurophysiol 2011;106:1125–65. [PubMed: 21653723] 

[28]. Craddock RC, James GA, Holtzheimer 3rd PE, Hu XP, Mayberg HS. A whole-brain fMRI 
atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 2012;33:1914–28. 
[PubMed: 21769991] 

[29]. Blumensath T, Jbabdi S, Glasser MF, Van Essen DC, Ugurbil K, Behrens TE, et al. 
Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 
2013;76:313–24. [PubMed: 23523803] 

[30]. Moreno-Dominguez D, Anwander A, Knosche TR. A hierarchical method for whole-brain 
connectivity-based parcellation. Hum Brain Mapp 2014;35:5000–25. [PubMed: 24740833] 

[31]. Peer M, Nitzan M, Goldberg I, Katz J, Gomori JM, Ben-Hur T, et al. Reversible functional 
connectivity disturbances during transient global amnesia. Ann Neurol 2014;75:634–43. 
[PubMed: 24623317] 

[32]. Konig P. A method for the quantification of synchrony and oscillatory properties of¨ neuronal 
activity. J Neurosci Methods 1994;54:31–7. [PubMed: 7815817] 

[34]. Raut RV, Mitra A, Snyder AZ, Raichle ME. On time delay estimation and sampling error in 
resting-state fMRI. Neuroimage 2019;194:211–27. [PubMed: 30902641] 

[35]. Chen G, Saad Z, Britton JC, Pine DS, Cox RW. Linear mixed-effects modeling approach to 
FMRI group analysis. Neuroimage 2013;73:176–90. [PubMed: 23376789] 

[36]. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance 
neuroimages. Comput Biomed Res 1996;29(3):162–73. [PubMed: 8812068] 

Guo et al. Page 16

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[37]. Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent 
have inflated false-positive rates. Proc Natl Acad Sci U S A 2016;113(28): 7900–5. [PubMed: 
27357684] 

[38]. Nikolic D. Non-parametric detection of temporal order across pairwise measurements of time 
delays. J Comput Neurosci 2007;22:5–19. [PubMed: 16998643] 

[39]. Power JD, Cohen AL, Nelson SM, et al. Functional network organization of the human brain. 
Neuron 2011;72(4):665–78. [PubMed: 22099467] 

[40]. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically organized in 
time. Proc Natl Acad Sci 2017;114(48):12827–32. [PubMed: 29087305] 

[41]. Matsui T, Murakami T, Ohki K. Transient neuronal coactivations embedded in globally 
propagating waves underlie resting-state functional connectivity. Proc Natl Acad Sci U S A 
2016;113:6556–61. [PubMed: 27185944] 

[42]. Abbas A, Belloy M, Kashyap A, et al. Quasi-periodic patterns contribute to functional 
connectivity in the brain. Neuroimage 2019;191:193–204. [PubMed: 30753928] 

[43]. Raichle ME. Two views of brain function. Trends Cogn Sci 2010;14(4):180–90. [PubMed: 
20206576] 

[44]. Raichle ME. The restless brain. Brain Connect 2011;1(1):3–12. [PubMed: 22432951] 

[45]. Peterson BW, Pitts NG, Fukushima K. Reticulospinal connections with limb and axial 
motoneurons. Exp Brain Res 1979;36:1–20. [PubMed: 467530] 

[46]. Siegel JM. Behavioral functions of the reticular formation. Brain Res 1979;180: 69–105. 
[PubMed: 114277] 

[47]. Steriade M, Oakson G, Ropert N. Firing rates and patterns of midbrain reticular neurons during 
steady and transitional states of the sleep-waking cycle. Exp Brain Res 1982;46:37–51. [PubMed: 
7067790] 

[48]. Jones BE, Yang T-Z. The efferent projections from the reticular formation and the locus coeruleus 
studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 1985;242:56–
92. [PubMed: 2416786] 

[49]. Jones BE. Reticular formation. Cytoarchitecture, transmitters and projections. In: Paxinos G, 
editor. The rat nervous system. Sydney: Academic Press Australia; 1995. p. 155–71.

[50]. Liao W, Mantini D, Zhang Z, et al. Evaluating the effective connectivity of resting state networks 
using conditional Granger causality[J]. Biol Cybern 2010;102(1): 57–69. [PubMed: 19937337] 

[51]. Yousefi B, Keilholz S. Propagating patterns of intrinsic activity along macroscale gradients 
coordinate functional connections across the whole brain. NeuroImage 2021;231:117827. 
[PubMed: 33549755] 

[52]. Gu Y, Sainburg LE, Kuang S, et al. Brain activity fluctuations propagate as waves traversing the 
cortical hierarchy. Cereb Cortex 2021;31(9):3986–4005. [PubMed: 33822908] 

[53]. Raut RV, Snyder AZ, Mitra A, et al. Global waves synchronize the brain’s functional systems 
with fluctuating arousal. Sci Adv 2021;7(30). eabf2709.

[54]. Ding Z, Xu R, Bailey SK, Wu TL, Morgan VL, Cutting LE, et al. Visualizing functional 
pathways in the human brain using correlation tensors and magnetic resonance imaging. Magn 
Reson Imaging 2016;34:8–17. [PubMed: 26477562] 

[55]. Zong X, Kim T, Kim SG. Contributions of dynamic venous blood volume versus oxygenation 
level changes to BOLD fMRI. Neuroimage 2012;60(4):2238–46. [PubMed: 22401759] 

[56]. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative 
metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci 
1986;83(4):1140–4. [PubMed: 3485282] 

[57]. Fox PT. The coupling controversy. Neuroimage 2012;62(2):594–601. [PubMed: 22306802] 

[58]. Nonaka H, Akima M, Hatori T, et al. The microvasculature of the cerebral white matter: 
arteries of the subcortical white matter. J Neuropathol Exp Neurol 2003;62 (2):154–61. [PubMed: 
12578225] 

[59]. Nonaka H, Akima M, Hatori T, et al. Microvasculature of the human cerebral white matter: 
arteries of the deep white matter. Neuropathology 2003;23(2):111–8. [PubMed: 12777099] 

Guo et al. Page 17

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[60]. Takahashi S, Mugikura S, Murata T, et al. Medullary arteries of the cerebrum: anatomy and 
pathology with classification of ischemic cerebral injuries/infarcts in terms of medullary artery 
circulation[C]. Eur Congr Radiol ECR 2013.

[61]. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci 2021:1–12. [PubMed: 
33303973] 

[62]. Silva AC, Koretsky AP. Laminar specificity of functional MRI onset times during somatosensory 
stimulation in rat. Proc Natl Acad Sci U S A 2002;99:15182–7. [PubMed: 12407177] 

[63]. Chaigneau E, Oheim M, Audinat E, Charpak S. Two- photon imaging of capillary blood flow in 
olfactory bulb glomeruli. Proc Natl Acad Sci U S A 2003;100: 13081–6. [PubMed: 14569029] 

[64]. Thompson GJ, Riedl V, Grimmer T, et al. The whole-brain “global” signal from resting state 
fMRI as a potential biomarker of quantitative state changes in glucose metabolism. Brain 
Connect 2016;6(6):435–47. [PubMed: 27029438] 

[65]. Guo B, Zhou F, Li M, et al. Correlated functional connectivity and glucose metabolism in brain 
white matter revealed by simultaneous MRI/PET. bioRxiv. 2021.

[66]. Hofmann K, Rodriguez-Rodriguez R, Gaebler A, Casals N, Scheller A, Kuerschner L. Astrocytes 
and oligodendrocytes in grey and white matter regions of the brain metabolize fatty acids. Sci 
Rep 2017;7:10779. 10.1038/s41598-017-11103-5. [PubMed: 28883484] 

[67]. Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci 2012;32. 10.1523/
JNEUROSCI.3430-11.2012. 356 LP–371. [PubMed: 22219296] 

[68]. Philips T, Rothstein JD. Oligodendroglia: metabolic supporters of neurons. J Clin Invest 
2017;127(9):3271–80. [PubMed: 28862639] 

[69]. Owen JP, Marco EJ, Desai S, et al. Abnormal white matter microstructure in children with 
sensory processing disorders[J]. Neuroimage Clin 2013;2:844–53. [PubMed: 24179836] 

[70]. Narayan A, Rowe MA, Palacios EM, et al. Altered cerebellar white matter in sensory processing 
dysfunction is associated with impaired multisensory integration and attention[J]. Front Psychol 
2021;11:4057.

[71]. Birn RM, Molloy EK, Patriat R, et al. The effect of scan length on the reliability of resting-state 
fMRI connectivity estimates. Neuroimage 2013;83:550–8. [PubMed: 23747458] 

[72]. Raut RV, Mitra A, Marek S, Ortega M, Snyder AZ, Tanenbaum A, et al. Organization of 
propagated intrinsic brain activity in individual humans. Cereb Cortex 2020;30(3):1716–34. 
[PubMed: 31504262] 

[73]. Nguyen RD, Smyth MD, Zhu L, et al. A comparison of machine learning classifiers for pediatric 
epilepsy using resting-state functional MRI latency data[J]. Biomed Rep 2021;15(3):1–9.

[74]. Nguyen RD, Kennady EH, Smyth MD, et al. Convolutional neural networks for pediatric 
refractory epilepsy classification using resting-state functional magnetic resonance imaging[J]. 
World Neurosurg 2021;149:e1112–22. [PubMed: 33418117] 

[75]. Rudas J, Martínez D, Castellanos G, et al. Time-delay latency of resting-state blood oxygen 
level-dependent signal related to the level of consciousness in patients with severe consciousness 
impairment[J]. Brain Connect 2020;10(2):83–94. [PubMed: 32195610] 

[76]. Roland JL, Snyder AZ, Hacker CD, et al. On the role of the corpus callosum in interhemispheric 
functional connectivity in humans. Proc Natl Acad Sci 2017;114 (50):13278–83. [PubMed: 
29183973] 

[77]. Wang F, Ren SY, Chen JF, et al. Myelin degeneration and diminished myelin renewal contribute 
to age-related deficits in memory. Nat Neurosci 2020;23(4): 481–6. 10.1038/s41593-020-0588-8. 
[PubMed: 32042174] 

Guo et al. Page 18

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic illustrating the workflow of latency analysis. (A) Time series of two ROIs, i 

and j. An ROI could be a single voxel or a submask of a WM mask. Mean time series 

will be used if a submask was selected as an ROI. (B) Estimation of lag value of two 

ROIs. Lagged cross covariance was computed first, followed by parabolic interpolation to 

determine the latency value corresponding to maximum cross covariance. Latencies from all 

paired ROIs constitute the latency matrix, which is necessarily anti-symmetric. (C) Latency 

projection was obtained by averaging along the rows of the latency matrix. The value of 

each ROI was mapped back to the original WM mask. Temporal orders or each ROI can 

be derived from the latency projection. (D) Computation of correlations among all ROIs 

results in a symmetric correlation matrix. A Kmeans clustering procedure was applied on 

the group-level correlation matrix to obtain RSNs in WM. (E) The RSNs were utilized to 

group entries in the latency matrix into latency blocks. These latency blocks were ordered 

by incorporating the temporal orders derived from the latency projection, wherein early 

ROIs were placed near the left and top corner while late ROIs the right and bottom corner 

of the latency block. Repeating this operation yielded an ordered latency matrix at the 

RSN-level, in which off-diagonal blocks represented inter-RSN lead/lag relationship and 

diagonal blocks the intra-RSN lead/lag relationship.
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Fig. 2. 
High reproducible latency projection from one group of the ten equal size groups. (A) 

Voxel-wise latency projections of TD obtained from the first group within white matter. 

(B) Pair-wise spatial correlations in latency projections between the ten subgroups studied. 

The mean and standard deviation within the upper triangular region, demarcated by the blue 

triangle, of the correlogram are 0.887 and 0.013, respectively). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)

Guo et al. Page 20

Magn Reson Imaging. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Latency matrices and clustering results when K = 2 (A ~ C) and K = 4 (D ~ F).
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Fig. 4. 
Latency matrix and clustering result when K = 8. (A) Latency matrix. (B) Names of clusters. 

Clusters are arranged according to their spatial positions.
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Fig. 5. 
Identification of dominant paths of signal propagation. (A) Results of one-sample t-test. 

Blocks indicated by asterisks showed significant (p < 0.05, with Bonferroni correction of 

N = 28) non-zero mean lags, suggesting dominant direction of signal propagations. (B) 

Paths showing directional dominance. Black arrows indicate the dominant direction, i.e. 

most voxels from target (pointed) RSN lag those from source (originated) RSN, and blue 

arrows the other direction. Sizes of black arrows are fixed and sizes of the blue arrows are 

proportionated accordingly by the ratio of count of negatives over count of positives in each 

latency block. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)
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Fig. 6. 
Latency projections in white matter obtained in the Beijing EOEC dataset II. (A) EC. (B) 

EO. (C) EOF. Note that the distributions patterns across the three different states are grossly 

consistent.
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Fig. 7. 
Distributions of white matter voxels with significant effects among different sensory states. 

(A) Main effect (mixed effect). (B) Paired effect of EC and EO. (C) Paired effect of EC and 

EOF.
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Fig. 8. 
Distributions of latencies in white matter with significant paired effect. (A) EC (top panel) 

vs. EO (bottom panel). (B) EC (top panel) vs. EOF (bottom panel).
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