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The brain is the most complicated organ in the human body with more than ten
thousand genes expressed in each region. The molecular activity of the brain is divergent
in various brain regions, both spatially and temporally. The function of each brain region
lies in the fact that each region has different gene expression profiles, the possibility
of differential RNA splicing, as well as various post-transcriptional and translational
modification processes. Understanding the overall activity of the brain at the molecular
level is essential for a comprehensive understanding of how the brain works. Fortunately,
the development of next generation sequencing technology has made it possible to
measure the molecular activity of a specific tissue as a daily routine approach of
research. Therefore, at the molecular level, the application of sequencing technology
to investigate the molecular organization of the brain has become a novel field, and
significant progress has been made recently in this field. In this paper, we reviewed the
major computational methods used in the analysis of brain transcriptome, including the
application of these methods to the research of human and non-human mammal brains.
Finally, we discussed the utilization of transcriptome methods in neurological diseases.

Keywords: brain transcriptome, WGCNA, neurodevelopmental disorders, differentially expressed genes,
cerebral cortex

INTRODUCTION

Humans and other mammalian species are very different in the aspect of several advanced
behaviors, such as language, cognition and sleep. How to explain the differences of these
behaviors at the molecular level remains a mystery. The most straightforward idea is that these
behavioral differences are the result of many behavior related genes in the human genome,
that are not found in other primates, or that the genes responsible for some human specific
behaviors and other mammalian animals are quite different in structure. Those differences,
at the gene level, lead to different functions responsible for the regulation of behavior.
This idea was rejected after obtaining some DNA and protein sequences from humans and
humanoid primates such as chimpanzees. For example, by comparing the cytochromes c protein
sequence of a human with that of a chimpanzee, most sequences were found to be identical.
This finding leads to a conjecture that the difference between humans and other species is
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not due to differences in their genomic sequences, but mainly
because of differences in their regulation and expression
(King and Wilson, 1975).

Although there are roughly 20,000 genes in the mouse
and human genome (Salzberg, 2018), and about 80% of these
genes have significant transcription signatures in the brain
(Lein et al., 2007). In the past decade, several important
studies have explored the spatio-temporal regulation of gene
expression during the brain development of mammals such
as mice (Thompson et al., 2014), humans (Colantuoni et al.,
2011; Kang et al., 2011; Hawrylycz et al., 2012; Miller et al.,
2014) and non-human primates (Bakken et al., 2016; Table 1),
using multiple dimensions of brain transcriptomes. Several brain
gene expression datasets have been released by different labs
or organizations (Lein et al., 2007; Johnson et al., 2009; Kang
et al., 2011; Shimogori et al., 2010; Hawrylycz et al., 2012; Bakken
et al., 2016). Brain transcriptome atlases have offered great
resources to understand the gene expression patterns among
different brain regions or during different development stages of a
mammalian brain (Mahfouz et al., 2017). With the accumulation
of microarray and next-generation sequencing (NGS) data, it
is time to explore how the brain is organized at the molecular
level. Furthermore, analyses of the transcriptional dynamics of
the human brain will afford valuable information to illuminate
the molecular activities of gene related brain disorders such as
autism (Wu et al., 2016).

Here, we reviewed the computational methods employed
to investigate the patterns of gene expression and functional
organization of the mammalian brain. We focus our discussion
on the analysis of spatio-temporal brain transcriptomes, and
we first describe different computational methods such as
differential expression (DE) analysis and network analysis.
We then describe normal gene networks identified in the
brains of mice, non-human primates and humans. Finally,
we discuss their potential application to better understand
brain diseases. These latest advances have provided a
deeper understanding of molecular activities in the brain.
Due space constraints, the discussion of this article does
not include the single-cell transcriptome, which is a very
important emerging field for brain transcriptome analysis.
Note that in this review we refer to “transcriptome” as
the expression profile of all sets of RNA molecules in
one cell or a population of cells and “gene expression
analysis” as the investigation of expression profiles using
computational approaches.

METHODS OF TRANSCRIPTOME
ANALYSIS OF THE BRAIN

Most methods of brain transcriptome analysis involve identifying
differentially expressed genes, either among normal tissues
of various brain regions, or between normal tissues and
disease tissues such as autism or schizophrenia. The next
step is to study the functions of these differentially expressed
genes, as well as network properties, such as their features
in the co-expression network. The characterization of these

properties lay the foundations to understanding the role of these
molecules in the brain.

Differential Gene Expression Analysis
The aim of differential gene expression analysis is to detect
changes of expression levels under different conditions using
statistical methods. For microarray data, there are well-
established methods such as limma (Ritchie et al., 2015), which
uses linear models to detect DE of transcriptomic data, as well as
to correct batch effects. For RNA-seq data, two models based on
the Poisson distribution and the Negative Binomial distribution
are frequently used (Soneson and Delorenzi, 2013). The detailed
comparisons of different methods, including the well-designed
R package “DESeq” (Anders and Huber, 2010) and “edgeR”
(Robinson et al., 2010), was discussed in a previous review
(Soneson and Delorenzi, 2013).

The rapid development of high-throughput techniques, such
as microarrays and NGS, makes it possible to assess the status
of a cell’s transcriptome at any given time (Barabási and Oltvai,
2004). Several methods are applied to analyze the transcriptome
data. Traditional methods involve comparisons of knockout with
wildtype samples, or of diseases with control groups. Several pilot
studies have provided a first glimpse of the brain transcriptome,
mainly with the DE gene methods, to compare knockout with
wildtype mice (Geschwind and Konopka, 2009). In the first step,
an analysis of DE is performed, and DE genes are identified.
Next, functional annotation of these DE genes can be assessed
by gene ontology (GO) enrichment or KEGG pathway analysis,
and enrichment of disease candidate genes can also be performed.
However, as the brain is a complex network system composing
of multiple cell types, it is claimed that DE analysis may not be
sufficient to obtain the underlying structure of gene expression
data from the central nervous system (Miller et al., 2008; Oldham
et al., 2008; Winden et al., 2009; Konopka, 2011).

Network Analysis
Network-based methods are proven to be more powerful than
absolute magnitudes of expression levels, in revealing gene
expression patterns (Oldham et al., 2006; Miller et al., 2014;
Hawrylycz et al., 2015, 2012), and have been found useful in
analyzing the inner workings of a cell (Wang and Huang, 2014).
Using network analysis, we can study higher order properties of
brain transcriptome.

Gene expression profiling data can be modeled as a network,
in which each gene corresponds to a node and gene pairs
are connected by an edge if their expression values are highly
correlated (Parikshak et al., 2015). In a network, degree is an
elementary characteristic of a node, and the degree distribution
indicates the probability that a selected node has exactly N
links. The nodes’ degrees in random networks follow a Poisson
distribution, while most biological networks approximate a scale-
free topology, which means that fewer nodes are highly connected
and most nodes have low connectivity. Biological networks
exhibit a high clustering feature and consist of a set of modules,
where several nodes form a densely connected community
have sparser connections with the rest of the network. Within
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TABLE 1 | Typical researches on the brain transcriptome of mammals.

Author Species Sample size Neuronal disorders related Data source link

Lein et al., 2007 Adult mouse A male, 56-day-old C57BL/6J mice http://mouse.brain-map.org/

Thompson et al., 2014 Developing
mouse

2,100 genes over seven stages of mouse
brain development

Bakken et al., 2016 Developing
macaque

(2 males, 2 females) at each of six prenatal
developmental stages (E40, E50, E70, E80,
E90, and E120)

ASD http://www.blueprintnhpatlas.org

Three male specimens at each of four
postnatal developmental stages
representing the neonate (0 months), infant
(3 months), juvenile (12 months) and
post-pubertal adult (48 months) were
profiled

Oldham et al., 2006 Human and
chimpanzee

Three adult humans and three adult
chimpanzees across six matched brain
regions

Konopka et al., 2012 Human,
chimpanzee
and rhesus
macaque

Frontal pole, caudate nucleus and
hippocampus of 9 human, 8 chimpanzee
and 4 macaque specimens.

Miller et al., 2014 Prenatal human Four prenatal human specimens (15pcw,
M; 16pcw, F; 21pcw1, F; 21pcw2, F)

http://www.brainspan.org/

Wu et al., 2016 Postnatal
human

42 controls and 55 ASD from age 2 to 81. ASD

Kang et al., 2011 Developing
human

57 human brains spanning from embryonic
period to late adulthood

http://hbatlas.org/

Colantuoni et al., 2011 Developing
human

269 samples of human prefrontal cortex

Li et al., 2018 Developing
human

1230 samples from 48 brains http://development.psychencode.org/

Miller et al., 2008 Adult human 31 individuals, comprising nine controls,
and 22 AD (data 1) 30 individuals, died of
natural causes (data 2)

AD

Hawrylycz et al., 2012 Adult human A 24-year-old African American male (Brain
1) A 39-year-old African American male
(Brain 2) A 57-year old Caucasian male
(Brain 3)

http://human.brain-map.org/

Hawrylycz et al., 2015 Adult human 6 adult humans http://human.brain-map.org/

Wang et al., 2018 Adult human 1866 individuals Major psychiatric disorders
including ASD, schizophrenia,
and bipolar disorder

http://resource.psychencode.org/

functional modules, cellular functions are executed by clustered
molecules (Barabási and Oltvai, 2004).

Co-expression of genes is defined as genes with similar
expression patterns. Common measures of gene co-expression
include Pearson correlation, Spearman correlation, Euclidean
distance, and the angle between a pair of observed vectors
(D’haeseleer et al., 2000; Horvath and Dong, 2008). In a gene co-
expression network, modules refer to sets of highly co-regulated
genes (Barabási and Oltvai, 2004). To identify gene modules,
several clustering methods have been employed, including
hierarchical clustering, model-based clustering, k-means, etc.
(Figure 1). Genes within a module work together to achieve a
distinct function.

One major goal of co-expression network analysis is to
identify gene modules (Barabási and Oltvai, 2004). Gene co-
expression patterns of the brain are mainly evaluated by

correlation-based measurements (Mahfouz et al., 2017). By
detecting similar gene expression patterns to disease genes,
in silico prediction can be made with the gene co-expression
approach. To discover clusters of co-expressed genes within
a set of samples, a commonly used unsupervised method is
hierarchical clustering (Mahfouz et al., 2017). One method
used to identify co-expression modules is Pearson correlation,
the most popular co-expression measure (Wang and Huang,
2014), as the distance measurement for hierarchical clustering.
Hard thresholding is then applied to produce a network
(Li et al., 2016).

One widely used method for co-expression network
construction is weighted correlation network analysis
(WGCNA), which was first introduced by Zhang and
Horvath (2005). It is an informative method for detecting
biologically relevant patterns using high-dimensional data sets,
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FIGURE 1 | Identification of network modules. (A) Illustration of different clustering methods. (B) Modules identified by clustering of genes.

and it allows for the assessment of the relation of modules
to experimental traits (Zhang and Horvath, 2005). Genes
with strongly covarying patterns are grouped into modules
across the sample set. Identified modules are characterized
by module eigengenes, and hub genes refer to genes that
are highly correlated with the eigengenes. WGCNA is a
systems biology method used to construct modules of gene
co-expression with an unsupervised clustering approach
and has been broadly applied to transcriptome analysis
of the mammalian brain (Oldham et al., 2006; Hawrylycz
et al., 2012; Thompson et al., 2014; Bakken et al., 2016).
WGCNA searches for gene modules of co-expression
with high topological overlap (Zhang and Horvath, 2005).
First, a soft thresholding power is chosen to calculate
adjacency, which is further transformed into a topological
overlap matrix. Then, the dendrogram of genes can be
produced through hierarchical clustering. Finally, modules
are identified using a dynamic tree cut method for branch cutting
(Langfelder and Horvath, 2008).

Besides the popular WGCNA, there are also a number
of different methods that have been developed for cluster
analysis and further detecting network modularity analysis
(Figure 1). The K-mean clustering method sets the number
of clusters (K) before clustering, and then, based on the
calculation of distance (typically Euclidean distance), all different
modules are detected (Jain, 2010). However, different cluster
initialization may lead to different final clustering. Another
plausible approach is based on probability models, the network
nodes of which are calculated based on the probability
distribution of the genes (Yeung et al., 2001). The model-based

method can capture correlation and dependence between
attributes, and is implemented in the R package “mclust”
(Yeung et al., 2001).

ANALYSIS OF NORMAL MAMMALIAN
BRAINS

Mouse Brain
For decades, mice have been used as a model organism to
study human biology and diseases (Breschi et al., 2017). It
is claimed that transcriptional patterns between orthologous
organs of different species are more similar than those
between different organs from the same species (Brawand
et al., 2011; Barbosa-Morais et al., 2012; Merkin et al., 2012;
Breschi et al., 2017). Therefore, mouse brain transcriptome
data are very useful to complement the study of the human
brain and neuronal disorders, as a series of processes of
primate brain development are conserved across mammals
(Bakken et al., 2016).

Using voxel expression data, Thompson et al. (2014)
explored the temporal co-expression patterns of the mouse
brain in the diencephalon over three time periods: “embryonic,”
“postnatal” and “all.” They analyzed the “all” period and found
that genes in two modules showed strong upregulation in
the diencephalon at P14 and P28. They further examined
the postnatal cluster and found that a set of well-known
oligodendrocyte genes were not widely distributed until P14. An
especially interesting temporal expression pattern was that P14
exhibited strong thalamus-specific expression of predominantly
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TF genes. The authors inferred that this may coincide with
eye opening and the initial reception of visual stimulation
by the thalamus.

Non-human Primate Brain
Despite the fact that humans and mice share many core biological
processes and genetic elements, many human brain features are
poorly modeled in rodents (Bakken et al., 2016) due to the
extended periods of primate brain development. Compared with
rodents, humans and monkeys are more similar on expression
trajectories of brain development (Bakken et al., 2016). In
addition, the comparison of co-expression patterns between
human and chimpanzee brains, showed that many hub genes
in the human brain are conserved in the chimpanzee brain
(Oldham et al., 2006).

Bakken et al. (2015) explored the spatio and temporal
expression patterns of a postnatal brain of a rhesus monkey.
Five brain regions were considered for the genome-wide
gene expression at birth, infancy, childhood and young
adulthood. They identified 27 modules in total. Correlating
each module eigengene with age and brain region, they
found several age-related modules, with a gradual shift of
gene expression postnatally. They also identified cortical
area-specific expression modules such as the primary visual
cortex enriched module (M6). They explored the expression
of M6 genes, and confirmed the previous finding that, in
rhesus monkey and adult human brains, the gene expression
pattern in the primary visual cortex is distinct from that of
other brain regions.

However, in the cerebral cortex, there are prominent
differences between humans and chimpanzees, consistent with
the expansion of the cortex in the human lineage (Oldham
et al., 2006). Moreover, Zhu et al. (2018) compared the
development of the nervous system between humans and
macaques, and detected a cup-shaped pattern of transcriptomic
differences between the two species. In addition, they also
identified human-distinct gene co-expression modules,
indicating the difference of molecular mechanisms for
species divergence, which could play a role in mental
disorders. Therefore, to reveal human-specific features
of the brain at the molecular level, it is necessary to use
human brain transcriptome instead of a non-human primate
brain transcriptome.

Human Brain
Human brain development is a complex process and
depends on the precise regulation of gene expression
(Rakic, 2009; Rubenstein, 2011). Using transcriptome data
of highly differential stability genes, Hawrylycz et al. (2015)
constructed a consensus gene co-expression network and
found several modules with the most neuronal function-related
annotations. Allocating genes to each of the identified modules
according to the gene’s correlation to the corresponding
module eigengene, they detected a number of modules
which were remarkably selective for certain brain regions.
Interestingly, when assessing the module preservation

between humans and mice, they found that some neuron-
related modules were well preserved, whereas many of
the most non-neuronal modules were poorly preserved.
Nevertheless, several genes differ in their expression patterning
across species even in highly preserved modules. Modules
associated with neurons were better conserved than modules
associated with glia.

Using data from 16 regions comprised of six brain structures
across pre- and postnatal development periods, Kang et al.
(2011) created a gene co-expression network and identified
29 modules related to different spatio-temporal profiles. They
found that 90% of the expressed genes were differentially
regulated at the whole-transcript or exon level across brain
regions or brain development periods. Among these modules,
M8 showed the highest expression levels in the early fetal
neocortex and hippocampus, and then a progressive drop
in expression levels until infancy. The hub genes of M8
are involved in the development of the neocortex and the
hippocampus projection neurons. In addition, they identified
two temporally regulated modules, with opposite developmental
trajectories: M20 showed decreased expression while M2
showed increased expression, with the shift just before birth,
which indicates that environmental influences are probably
associated with the transcriptional changes at this period of
brain development.

Furthermore, using gene expression data of 11 neocortex
areas in human and macaque brains, Pletikos et al. (2014)
analyzed the spatial expression patterns among areas across
development periods. They first applied the ANOVA approach to
identify differentially expressed genes among neocortex regions,
at each development period and proposed an hourglass model
of interareal transcriptional divergence over time, indicating
that the spatial pattern of interareal divergence is primarily
driven by a number of functional areas. In addition, to gain
insight into the organization of the neocortex transcriptomes,
they further performed WGCNA with samples from two periods
(fetal development period and from adolescent period onward)
of increased interareal differences and identified 122 modules
and 207 modules, respectively. Most of the fetal modules showed
temporally specified areal patterns and lost their prominent
areal differences postnatally. In contrast, adolescent and adult
modules were more stable over time, and showed less complex
spatial patterns.

Moreover, Li et al. (2018) integrated transcriptome, DNA
methylation, and histone modifications data from 16 brain
regions, and revealed a cup-shaped pattern of regional divergence
during prenatal and postnatal development. Specifically, they
identified a group of gene co-expression modules associated
with dynamic spatiotemporal trajectories and uncovered that
many modules are enriched with specific cell types or disease-
associated genes.

Using organoids from human pluripotent cells, Amiri et al.
(2018) modeled the cerebral cortical development between 5
and 16 weeks post-conception. They identified the networks of
genes and enhancer modules and found that some enhancer
modules converged with gene modules, indicating the regulation
of co-expressed genes by enhancers across time.
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MENTAL DISORDERS

Integrating co-expression network analysis to traditional
differential gene expression analysis uncovered features of
normal mammalian brains and expanded our knowledge of the
spatio-temporal event in mammalian brain development
over the last decade. Moreover, in order to reveal the
molecular mechanisms of neuronal disorders, such as
Autism spectrum disorder (ASD), Alzheimer’s disease (AD),
Schizophrenia, etc., co-expression networks are applied to
compare healthy and diseased brains, which would also
reveal important biological pathways in these disorders and
provide potential biomarkers or therapeutic targets (Keo
et al., 2017; Seyfried et al., 2017; Mostafavi et al., 2018;
Rajarajan et al., 2018).

Utilizing gene expression analysis to decode the mechanism
of mental disorders is a powerful tool as it is large-
scale, high-throughput and cost-efficient. ASD is a group of
neurodevelopmental disorders characterized by deficits in social
functioning and repetitive, restricted behaviors or interests
(Bourgeron, 2015). Previous findings show that ASD genes
are enriched only in pathways during early fetal development
(Parikshak et al., 2013). In the networks of a postnatal rhesus
brain, Bakken et al. (2015) found that ASD gene enriched
modules show significant enrichment in the neocortex. Gene
expression in one of these modules was high in the neonatal
cortex and striatum but low during infant and juvenile
development periods. Combining dense temporal sampling
of prenatal and postnatal periods, Bakken et al. (2016)
demonstrated a high-resolution transcriptional atlas of macaque
(Macaca mulatta) brain development with fine anatomical
division of cortical and subcortical regions associated with
human neuronal disease. They found that many ASD genes
exhibited a coordinated expression in postmitotic neurons both
prenatally and postnatally. They also found that in neuronal
progenitor-enriched modules, MCPH genes were enriched in
early- to mid-fetal ages. No enrichment of intellectual-disability-
associated genes was observed in any modules. Using 109
cortex miRNA samples, Wu et al. (2016) applied WGCNA
and identified 11 modules. By examining the relationship
between module eigengene and ASD traits, they detected three
modules significantly correlated with ASD, and successfully
predicted and validated two transcription factors which regulate
neuronal genes in ASD.

Alzheimer’s disease is the most common cause of
neurodegenerative dementia (Verheijen and Sleegers, 2018).
Using 19 cortical regions, Wang et al. (2016) constructed
region-specific co-expression networks, and rank-ordered
co-expression modules and brain regions based on their
association with AD pathological traits. They found that
temporal lobe gyri exhibited the largest and earliest gene
expression abnormalities. Mostafavi et al. (2018) applied a
network-based method and identified specific genes that were
associated with AD-related traits. By integrating clinical,
neuropathology and gene expression data, they detected a
co-expression module which is related to both cognitive decline
and β-amyloid burden. Furthermore, they identified two

genes in the module, INPPL1 and PLXNB1, as potential AD
therapeutic targets.

Gandal et al. (2018a) analyzed the transcriptome of five
major psychiatric disorders, including ASD and schizophrenia,
and identified a number of shared and disorder-specific co-
expression modules. They found an up-regulated module, which
is associated with astrocyte, and several down-regulated modules,
which are annotated as neuronal or mitochondrial, across ASD,
schizophrenia, and bipolar disorder, suggesting pathways of
molecular convergence of major neuropsychiatric illness.

Nevertheless, the PsychENCODE consortium integrated
multiomics data and provides a comprehensive resource for
the functional genomics of the human brain (Wang et al.,
2018). For example, Gandal et al. (2018b) integrated RNA-seq
and genotypes in brain samples with ASD, schizophrenia,
and bipolar disorder, and detected gene co-expression
modules related to each disorder. They found that one
module, associated with the microglial cell marker, is up-
regulated in ASD, and down-regulated in schizophrenia
and bipolar disorder, suggesting a previously unrevealed
neural-immune mechanism.

Integration of co-expression data with clinical traits enables
the identification of novel disease related modules and hub
genes, which provide potential therapeutic targets for related
neuronal disorders.

CONCLUSION AND FURTHER
DIRECTION

Transcriptomic data of the mammalian brain provides eminent
opportunities to illuminate how the brain works in the molecular
level. The current status of this field has provided us with
great insight on the molecular developmental patterns of the
brain, and we expect more primate brains to be included in
future research. Additionally, other molecular activities such
as microRNA and non-coding RNAs should be profiled at
the brain-wide scale as well. In this article, we summarized
the progress made by various researchers in the analysis of
brain transcriptome in recent years. In addition to traditional
DE analysis, network-based methods offer an unsupervised
perspective to analyze large scale data from mouse to human
brains, as well as data of different developmental stages
of each species. Moreover, systems-level analysis assembles
correlates single genes and enables the discovery of key
pathways. As the rapid development of NGS in the past
decade has accelerated the research on transcriptomics of the
brain, the knowledge obtained from this field can facilitate
deciphering the complexity of the brain and help us gain
valuable insight into the organization of the brain’s functions.
Nevertheless, the use of network-based methods integrated
with clinical traits and experimental validation (Mostafavi
et al., 2018) demonstrates a blueprint for investigating complex
neuronal diseases.

One major limitation of bulk sample transcriptome analysis
is that it can’t provide insight into the behavior of different
cell types, which is a critical aspect of brain research. Similarly,
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the analysis methodologies developed for bulk samples may not
be suitable for analyzing single-cell data with algorithms of a
network. In this mini-review, the recent emerging single-cell
sequencing data is not covered due to the space constraints.
The analysis of differentially expressed genes between different
cell types or of the marker between different cell types would
be an important topic in the future. Research in this area
is progressing rapidly (Zeisel et al., 2015; Tasic et al., 2016,
2018; Fan et al., 2018; Kelley et al., 2018; Zhong et al., 2018),
and we look forward to some critical improvements for the
identification of cell types related to differentially expressed
genes in the future.
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