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Abstract: Background: Vascular access surveillance of dialysis patients is a challenging task for
clinicians. We derived and validated an arteriovenous fistula failure model (AVF-FM) based on
machine learning. Methods: The AVF-FM is an XG-Boost algorithm aimed at predicting AVF failure
within three months among in-centre dialysis patients. The model was trained in the derivation set
(70% of initial cohort) by exploiting the information routinely collected in the Nephrocare European
Clinical Database (EuCliD®). Model performance was tested by concordance statistic and calibration
charts in the remaining 30% of records. Features importance was computed using the SHAP method.
Results: We included 13,369 patients, overall. The Area Under the ROC Curve (AUC-ROC) of
AVF-FM was 0.80 (95% CI 0.79–0.81). Model calibration showed excellent representation of observed
failure risk. Variables associated with the greatest impact on risk estimates were previous history
of AVF complications, followed by access recirculation and other functional parameters including
metrics describing temporal pattern of dialysis dose, blood flow, dynamic venous and arterial
pressures. Conclusions: The AVF-FM achieved good discrimination and calibration properties by
combining routinely collected clinical and sensor data that require no additional effort by healthcare
staff. Therefore, it can potentially enable risk-based personalization of AVF surveillance strategies.

Keywords: machine learning; artificial intelligence; vascular access surveillance; arteriovenous
fistula; end stage kidney disease; dialysis; kidney failure

1. Introduction

Arteriovenous fistula (AVF) represents the gold standard vascular access (VA) for
haemodialysis (HD). Over time, AVFs may develop dysfunction and lower blood flow due
to a series of biological changes that can lead to the formation of a stenosis and subsequent
thrombosis. This event has a severe impact on the clinical status of dialysis patients; in the
best scenario, endovascular and surgical interventions can restore a satisfactory AVF flow;
if not, a central venous catheter (CVC) needs to be placed for interim dialysis access.

Considering the strong negative impact of AVF failure on patient survival, morbidity
and quality of life, recent guidelines focused on potential strategies for AVF preservation.
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The National Kidney Foundation’s (NKF) (KDOQI) Guidelines [1], recommend AVF peri-
odical physical examination (PE), or ultrasound evaluation as primary monitoring methods
to detect access dysfunction. However, there is no evidence on the advantages to routine
AVF surveillance by measuring intra access blood flow (Qa) [1,2] to improve access patency;
nevertheless, its assessment should be considered [3,4].

The controversy concerning the best surveillance strategy to ascertain and evaluate
venous stenoses has not yet been solved [5]. The rationale for surveillance is based on
the hypothesis that progressive stenosis can be accurately detected by reduced Qa and
increased venous pressure (VP) before VA thrombosis occurs [4,6].

Even though both Qa surveillance and ultrasound examination, coupled with pre-
emptive correction of hemodynamically significantly reduces the risk of thrombosis and ac-
cess loss [7–12], false positive tests would lead to unnecessary intervention procedures [13]
which may ultimately promote further neointimal hyperplasia [14]. No current surveillance
method is without pitfalls. Major concerns for Qa surveillance relate to low reproducibility
in clinical practice which corresponds to a minimal detectable change as large as 25%, ques-
tionable cost-effectiveness as the sole surveillance strategy [15] and suboptimal inter-rater
agreement across different measurement techniques [16]. Furthermore, the accuracy in
identifying stenosis with Qa varies according to patient characteristics and location [15,17].
On the other hand, ultrasound examination requires significant operator training and
skill, may not be readily available in all clinical contexts and may not yield conclusive
indications for interventions [18,19]. Structured physical examination has been proposed
as a convenient alternative monitoring method. The assessment of PE accuracy in detecting
and locating AVF stenosis has shown mixed results; whereas few studies have shown ac-
ceptable accuracy in either the diagnosis of outflow and of inflow stenosis [20,21] compared
with angiography; few others [22,23] reached opposite conclusions. In addition, a meta-
analysis of randomized control trial (RCT) studies showed that blood flow measurement
was superior in predicting outcomes [24–26]. Furthermore, PE is operator-dependent [27],
and has limited long-term prediction power thus explaining why, in a large majority of the
cases, many patients may need more frequent surveillance when assuming a rapid AVF
deterioration. Taken together, the impact of PE alone on actual prevention of thrombosis is
limited [28].

An excellent surveillance method should be quick, easy, accurate, non-invasive, non-
operator-dependent and cost-effective. It is clear, that none of the existing methods can
fulfil such expectations alone and a one-fits-all approach is not be able to adequately
capture the diversity of AVF functional trajectories between and within patients.

In principle, an automatic triage system based on routinely recorded data requiring
no additional effort by healthcare professionals may be used to personalize surveillance
strategies based on expected risk stratification.

To this end, we sought to develop and validate a risk model based on the machine
learning methods predicting the occurrence of AVF failure within three months.

2. Materials and Methods
2.1. General Description of the Arteriovenous Fistula Failure Model (AVF-FM)

The AVF Failure Model (AVF-FM) aims at predicting the occurrence of a composite
AVF failure endpoint (see, Endpoint Definition below) within three months based on
routinely recorded clinical information readily available in health information systems for
dialysis patients.

The model is based on the XGBoost algorithm, an iterative method where, at each
iteration, a new sub-model is added to correct the prediction error of the previous iteration.
Each sub-model is an ensemble of decision trees. A decision tree can be roughly described
as a flowchart-like structure in which each internal node represents a “discrimination test”
on a given attribute (e.g., any clinical parameter or demographic characteristics); each
branch of the decision tree represents the result of the discrimination test (i.e., passed
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or not), and each leaf node represent the probability of the outcome. This probability
represents the prevalence of events occurring in each leaf in the training set.

The iterative process ends in accordance with a pre-specified stopping rule (e.g.,
maximum number of iterations or minimal acceptable average prediction error). The
structure of the model is computed as a function optimization process combining the
minimization of both training error and model complexity.

We selected XGBoost since it is characterized by a good prediction accuracy in a
broad variety of problems coupled with short computational time. Furthermore, SHapley
Additive exPlanations (SHAP) analysis [29] enables intuitive model interpretation through
an accurate and efficient estimation of the contribution of each input variable to the risk.

2.2. AVF-FM Training

The AVF-FM was derived using the information collected in the European Clinical
Database (EuCliD®, Fresenius Medical Care, Deutschland GmbH, Wendel, Germany), a
large, multinational, database including in-centre dialysis patients [30].

We enrolled all HD/HDF adult patients in Italy, Spain, and Portugal with at least five
treatments performed using AVF as vascular access, in the period January 2015–October
2019 and at least three months of follow-up. Furthermore, we considered only AVFs with
more than three months of maturation. The unit of analysis for model development and test-
ing was the patient-quarter. The final dataset included all eligible patient quarters (January,
April, July and October) for each year. The ascertainment period for feature computation is
represented in Figure 1. To ensure sufficient data completeness, we excluded patients with
less than 90 days of ascertainment period before the index date for computation.
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2.3. Measures
2.3.1. Endpoint Definition

We used a composite endpoint to define AVF failure. EuCliD® has a dedicated module
for record AVF failure event. However, reporting in this module may be incomplete. In
order reduce the impact of reporting bias, we used a set of proxy variables suggestive
of AVF failure. Therefore, we considered as an AVF failure any switch to a different
vascular access, the occurrence of procedures aimed at re-establishing AVF patency (e.g.,



Int. J. Environ. Res. Public Health 2021, 18, 12355 4 of 12

angiography with percutaneous angioplasty, stent placement or surgical AVF revision) and
hospitalization due to AVF complications. The exact operative definition of the endpoint
variable is described in Supplementary Table S1.

2.3.2. Input Variables

The following classes of variables were considered for model input:

- Socio-demographic and anthropometric parameters;
- Biochemical parameters;
- Vital Signs;
- Dialysis Treatment parameters;
- AVF-related parameters;
- Comorbidities.

We ascertained diabetes by the occurrence of suggestive ICD10 codes according to
the Charlson Comorbidity Index (CCI) definition [31]. Additionally, we extracted age,
biological sex, dialysis vintage and number of patient’s dialysis access.

2.3.3. Features Generation

We computed several metrics (minimum, maximum, average, standard deviation,
slope) for continuous variables (e.g., dynamic venous and arterial needle pressure). Each
metric was computed considering different time periods (e.g., last 7, 30, 90 days before
index date).

2.3.4. Features Selection

All features have been included in the first model iteration (Supplementary Table S2).
Features that provided trivial contribution to model prediction based on feature importance
statistics were excluded from the following training iterations. The final model included a
total of 46 features derived from 28 variables (Table 1).

Table 1. Patients Characteristics.

Variables Values

Socio-Demographics, vital signs and Comorbidities
Age (years), median (IQR) 70 (58–78)
Male, n (%) 8971 (67.1)
Body temperature, median (IQR) 36.1 (35.9–36.3)
Renal Replacement Therapy Vintage (months), median (IQR) 17.3 (5.3–59.3)
AVF vintage (months), median (IQR) 9.3 (3.7–42.7)
Diabetes mellitus, n (%) 4959 (37.1)
Complicated Diabetes, n (%) 4238 (31.7)
Biochemical parameters
Albumin (g/dL), mean (IQR) 3.9 (3.6–4.1)
C-reactive protein (mg/L), mean (IQR) 5.1 (2.1–12)
Ferritin (ng/mL), median (IQR) 391 (204–615)
Glucose (mg/dL), median (IQR) 113 (94–152)
PTH (pg/mL), median (IQR) 245 (143–392)
HD treatment parameters
Treatment time (min), median (IQR) 240 (239–242)
Ultrafiltration (L), median (IQR) 3.3 (2.8–4)
Effective blood flow (mL/min), median (IQR) 397 (357–428)
Effective processed blood volume (L), median (IQR) 95.7 (85.1–103.9)
Kt/V, mean (SD) 1.8 (0.4)
Recirculation, median (IQR) 13.9 (11.4–17.7)
Characteristics of AVF in use
Days since the last use of previous vascular access, median (IQR) 74 (38–115)
Number of vascular accesses used in the past 6 months, mean (SD) 1.3 (0.5)
Number of treatments with AVF in the past 6 months, mean (SD) 88.6 (56.3)
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Table 1. Cont.

Variables Values

AVF hemodynamic properties
Dynamic venous pressure: Mean (mmHg), median (IQR) 182 (165–202)
Dynamic arterial pressure: Mean (mmHg), median (IQR) −200 (−216–−181)
AVF failure history and previous adverse events
Number of failures: current AVF, mean (SD) 0.6 (1.5)
Days since the last failure, mean (SD) 168 (88.6)
Number of previous thrombosis, mean (SD) 0.4 (1)
Other active vascular access, mean (SD) 0.4 (0.7)
History of vascular access complications, mean (SD) 0.5 (1.4)

All variables were included in the AVF Failure Model. IQR, interquartile range; SD, standard deviation; AVF, arteriovenous fistula.

2.3.5. Missing Variables Handling

Missing values for the input variables are automatically managed by XGBoost, so no
data manipulation was required. The algorithm has proven greater accuracy compared
to the standard statistical sample or model based missing data handling methods, as well
as other machine learning techniques such as random forest or Bayesian ridge methods.
A detailed explanation of how XGboost handles missing variables for a wide range of
missingness patterns is beyond the scope of the manuscript and it has been thoroughly
described in previous technical publications [32]

2.4. Statistical Analysis and Model Performance Evaluation

Model derivation was conducted in a randomly selected partition representing 70%
of the original dataset. The final set of variables was obtained as the result of backward
stepwise feature selection [33]. Model performance and calibration have been evaluated in
the remaining 30% of patients. Model performance was evaluated by concordance statistic
and calibration charts. Discrimination was quantified by calculating the area under the
receiver operating characteristic curve (ROC AUC) Calibration was visually inspected by
plotting observed outcomes incidence by predicted risk score. To evaluate model stability,
both training and test has been repeated over 30 random resampling. All statistics are
reported as pooled estimates (inverse variance method) and 95% confidence intervals of
metrics obtained in the 30 resampling exercises obtained by fixed effect meta-analysis. The
importance of input variables for risk prediction was computed using SHAP method. All
analysis was performed with Python version 3.7.10, MetaXL® and SAS 9.4®.

3. Results
3.1. Derivation & Test Dataset

The final dataset consisted of 13,369 patients, which provided 113,592 patients-quarters.
AVF failure incidence density was 6.6 events/100 patient-quarters or 26.4 events/100 pa-
tient years. The AVF failure incidence density in the test set was 6.38 (95% CI: 6.33–6.43). A
breakdown of AVF failure events by type is reported in supplementary Table S3. Baseline
characteristics of participants are shown in Table 1.

3.2. Discrimination and Calibration in the Validation Sample

The final model had a very good discrimination accuracy. The Area Under the ROC
Curve (AUC-ROC) for the AVF-FM was 0.80 (95% CI 0.79–0.81). Model calibration showed
excellent representation of observed failure risk (Figure 2).
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Based on model calibration we established three thresholds identifying 4 risk classes:
prevalence and observed event incidence for each risk group is summarized in Table 2.

Table 2. Arteriovenous fistula risk score classes.

Risk Class Prevalence (%) AVF Failure Risk * Risk Rate Ratio

Low 45.0 (95% CI: 44.9–45.1) 1.61 (95% CI: 1.57–1.64) Ref.
Moderate 38.9 (95% CI: 38.8–39.0) 5.29 (95% CI: 5.22–5.36) 3.29 (95% CI: 3.2–3.38)

High 15.7 (95% CI: 15.7–15.8) 21.46 (95% CI: 21.23–21.68) 13.37 (95% CI: 13.04–13.72)
Very high 0.4 (95% CI: 0.3–0.4) 65.76 (95% CI: 63.16–68.45) 41.18 (95% CI: 39.29–43.17)

Risk classes are defined based on three action thresholds of the AVF-FM risk score. Prevalence of each risk class, event rates and risk ratios
were estimated in 30 test set obtained as random partition of the original cohort with a 70–30 split. Figures represent pooled estimates
(inverse variance method) from 30 random samplings of the of the original cohort. Source figures for each random sampling is reported
in Supplementary Table S4. * The AVF Failure Risk is the Positive Predictive Value (events/100 patient-quarters) computed for patients
classified in a given risk class; that is PPV = P (Failure|Class). Note: AVF, Arteriovenous fistula.

3.3. Feature Analysis

The 20 most important data features contributing to performance of AVF failure
risk score model, are shown in Figures 3 and 4. Previous history of AVF complications
occurred on the vascular access under consideration was the most impactful variable,
followed by recirculation and other functional parameters including metrics describing
temporal pattern of spKt/V, blood pump flow (Qb), dynamic venous and arterial pressures.
Furthermore, AVF vintage, diastolic blood pressure, serum albumin and C-reactive protein
were ranked among the top-20 risk contributors.
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4. Discussion

The wide scale implementation of electronic health record technology has led to an
important and unprecedented accumulation of clinical data, and patient information is
immediately accessible to computer systems. We exploited the wealth of information stored
in the EuCliD® system to derive a machine-learning algorithm for the prediction of AVF
failure within three months.

The model showed good discrimination and excellent calibration. To enhance the
interpretation and usability of risk estimates yielded by the model we selected three thresh-
olds identifying four distinct risk classes. The largest group was represented by very low
risk patients for whom the expected incidence of the composite AVF failure endpoint was
remarkably lower than the observed incidence in the whole target population. On the other
side of the spectrum there is a small group of patients accounting for less than 1% of the
target population with extremely high risk of clinically significant AVF disfunctions within
three months. This risk classification can be used to design personalized clinical manage-
ment workflows. For example, routine monitoring using dialysis parameters and physical
examination may suffice for the very low risk group, thus reducing the costs, resource
requirements and importantly, unnecessary interventions. Conversely, the very high-risk
patient group may be candidate for a more intensive surveillance and clinical review proto-
col to rule out conditions deserving immediate interventions. In-between, we found two
risk classes with moderate and high risk of AVF failure, respectively. For both such classes,
the optimal surveillance strategy could be designed to suit the needs and resources of the
local clinic, regions, or larger geography. Importantly, accurate risk estimation makes the
process of AVF surveillance optimization transparent and reproducible.

Feature analysis disclosed key information to inspect model functioning and enhance
score interpretation. Among the 46 input variables, the main contribution to model perfor-
mance was the past history of failures for the AVF in use, a condition associated with both
constitutional proneness to thrombosis and increased AVF vulnerability due to previous
surgical interventions aimed at re-establishing patency [34]. In fact, AVF stenosis are one
of the most common reasons for repeated endovascular or surgical intervention and are a
well-known problem in AV access maintenance. The high re-intervention rate observed
(i.e., 2.46 ± 1.40 procedures/patient/year) [35], clearly explains the importance of past
history of failure events as a key variable for our model.

One important finding of our study was that the majority of the 15 most important
variables in the model were represented by metrics tapping functional parameters of the
AVF under examination, namely recirculation rate, dynamic arterial and venous access
pressures, effective blood flow and spKt/V. Access recirculation was the second most
important contributing feature to risk estimates in our model. The measurement of ac-
cess recirculation has been used as a non-invasive method based by ultrasound dilution
technique (or dilutional-based method) to determine access blood flow (Qa) [36], and
stenosis identification. A high degree of access recirculation is one of the factors more
importance to identify AVF inflow problems among HD patients and was routinely used
for screening of stenosis in 64% from facilities in northern Italy [37]. Access recirculation
and poor HD adequacy assessed by spKt/V, may help indicate AV access dysfunction [1].
A recent study by Robert et al. [38] concluded that routine measurements of spKt/V was a
quick and straightforward method for early detection of hemodynamically significant AV
fistula stenosis.

Similarly, hemodynamic metrics representing the trajectory of dynamic venous and
arterial pressures in the dialysis access circuit along time were strong contributors of risk
estimates. Alteration of metrics representing the temporal profile of dynamic venous and
arterial pressures suggest a high predictive risk of AVF failure. Abnormal dynamic arterial
pressure (DAP) may be suggestive of access inflow problems while alterations of dynamic
venous pressure (DVP) is associated with outflow stenosis. The incidence of inflow stenosis
in patients with AVF from the cases referred to interventional facilities can reach rates
of 40% with significant effects in reducing dialysis blood pump flow (Qb) [39]; therefore,



Int. J. Environ. Res. Public Health 2021, 18, 12355 9 of 12

combining several AVF dysfunction predictors during the same surveillance evaluation is
of paramount importance.

Of note, all such measures are automatically recorded by sensors installed on HD
machines and have been used, alone or in conjunction for AVF monitoring [1]. The great
advantage of such metrics over routine access flow measurement (Qa) relates to their
continuous, effortless availability, since they are measured without any interruption in the
patient’s dialysis process, and without time-consuming procedures. Despite Qa has been
shown to outperform each of these functional parameters taken alone, this is the first study
showing the potential of their combined use for AVF functional assessment. Given that
Qa may be consistently available for a minority of patient, we did not include it in the
input matrix for model generation. Whether the combination of our risk estimates and Qa
provides additional predictive power in selected patients is a matter of further research.

Furthermore, given the strong dependency of risk estimates on AVF functional pa-
rameters, our model is sensitive to their changes in AVF and can be used to track risk
trajectories over time without any additional data collection burden to the healthcare staff.

Our study has several strengths. The large sample size gathered from multiple dialysis
centres across several countries ensured capturing wide diversity in clinical practice and
case-mix, two necessary pre-condition for reproducibility and generalizability in machine
learning. Additionally, we could leverage on a wide array of clinical variables to character-
ize patients’ health status including laboratory test results, socio-demographic information,
medication, dialysis treatment parameters, comorbidities and data continuously recorded
by the dialysis machine during each dialysis session. The evidence regarding risk factors
associated with AVF patency loss is still limited. Most studies have small sample size, and
a limited set of variables was available [40]. On the contrary, we were able to evaluate
the association of AVF patency loss with over 100 clinical parameters and their temporal
dynamics, an unprecedented wealth of information. One additional benefit of XGBoost-
based algorithm is their inherent explainability, which ensures transparency in clinical
decision making. For each patient the model produces SHAP metrics which represent the
importance of clinical parameters on risk estimates, allowing independent assessment by
the attending physician.

On the other hand, we should acknowledge some limitations as well. Our endpoint
definition is a composite outcome including thrombosis, switch to another vascular access,
interventions aimed at re-establishing patency in outpatient setting and day hospital ad-
mission related to intervention to re-establish patency of the AVF. Despite our operational
definition is consistent with the endpoint criteria for AVF patency loss described in the
Recommended standards for reports dealing with arteriovenous hemodialysis accesses issued by
the International Society of Vascular Surgery [41], we rely on data reported by healthcare
professionals in clinical practice. Therefore, we cannot rule out the possibility that infor-
mation bias affected our results. Additionally, our definition reflects medical treatment
decision and therefore we cannot exclude that inappropriate surgical intervention have
been conducted. This may be reflected in our risk estimates (A detailed description of
the endpoint definition is reported Supplementary Table S2). Furthermore, all patients
included in our analysis received treatment in the NephroCare network. Despite the
multicentre, cross-country design of the study, whether the accuracy and calibration of
the AVF-FM can be replicated in centres outside the NephroCare network is a matter of
further research.

5. Conclusions

The fundamental principle for performing routine vascular access monitoring and
surveillance is timely identification and correction of significant stenosis, thus prolonging
patency. Current monitoring and surveillance methods remain operator dependent, may
be inefficient and may potentially lead to unnecessary interventions.

The AVF Failure Model has shown promising discrimination performance by combin-
ing routinely collected clinical as well as sensor data; therefore, the AVF Failure Model can
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potentially enable risk-based personalization of AVF surveillance strategies. Whether the
use of the AVF Failure Model in clinical practice would translate in more efficient care and
prolonged access survival is a matter of further clinical testing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph182312355/s1, Supplementary Table S1: Detailed description of the endpoint definition;
Supplementary Table S2: All variables included in the first training iteration; Supplementary Table S3:
breakdown of AVF Failure causes in our study; Supplementary Table S4: Distribution of AVF-FM
risk classes in 30 re-samplings of the test set.
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