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Leprosy, caused by Mycobacterium leprae (M. leprae), is treated with a multidrug
regimen comprising Dapsone, Rifampicin, and Clofazimine. These drugs exhibit
bacteriostatic, bactericidal and anti-inflammatory properties, respectively, and control
the dissemination of infection in the host. However, the current treatment is not cost-
effective, does not favor patient compliance due to its long duration (12 months)
and does not protect against the incumbent nerve damage, which is a severe
leprosy complication. The chronic infectious peripheral neuropathy associated with
the disease is primarily due to the bacterial components infiltrating the Schwann
cells that protect neuronal axons, thereby inducing a demyelinating phenotype. There
is a need to discover novel/repurposed drugs that can act as short duration and
effective alternatives to the existing treatment regimens, preventing nerve damage
and consequent disability associated with the disease. Mycobacterium leprae is an
obligate pathogen resulting in experimental intractability to cultivate the bacillus in vitro
and limiting drug discovery efforts to repositioning screens in mouse footpad models.
The dearth of knowledge related to structural proteomics of M. leprae, coupled with
emerging antimicrobial resistance to all the three drugs in the multidrug therapy, poses
a need for concerted novel drug discovery efforts. A comprehensive understanding of
the proteomic landscape of M. leprae is indispensable to unravel druggable targets that
are essential for bacterial survival and predilection of human neuronal Schwann cells. Of
the 1,614 protein-coding genes in the genome of M. leprae, only 17 protein structures
are available in the Protein Data Bank. In this review, we discussed efforts made to model
the proteome of M. leprae using a suite of software for protein modeling that has been
developed in the Blundell laboratory. Precise template selection by employing sequence-
structure homology recognition software, multi-template modeling of the monomeric
models and accurate quality assessment are the hallmarks of the modeling process.
Tools that map interfaces and enable building of homo-oligomers are discussed in the
context of interface stability. Other software is described to determine the druggable
proteome by using information related to the chokepoint analysis of the metabolic
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pathways, gene essentiality, homology to human proteins, functional sites, druggable
pockets and fragment hotspot maps.

Keywords: Mycobacterium leprae, amino acid substitution, chokepoint reactions, drug binging sites, homology
(comparative) modeling, protein interface

INTRODUCTION

Mycobacterium leprae causes leprosy in about 200,000 people
each year globally. Leprosy is a dermato-neurological infectious
disease with varied clinical manifestations, often resulting in
peripheral sensorimotor/demyelinating neuropathy leading
to permanent nerve damage and disability. The World
Health Organization currently recommends a combinatorial
therapy [multidrug therapy (MDT)] with Dapsone, Rifampicin
(Rifampin) and Clofazimine to treat leprosy (Manglani and Arif,
2006). MDT has proven effective in reducing the prevalence
and controlling the incidence from about 5 million new cases
in the 1990s to ∼200,000 new cases from the year 2005 (after
India declared the elimination of leprosy). However, with the
emergence of single and multidrug-resistant strains of M. leprae,
novel therapies are essential to curb ongoing transmission of the
disease. Also, the current therapy duration with MDT is 1 year
leading to reduced treatment compliance and increased defaulter
rates globally (Cambau et al., 2018).

Mycobacterium leprae is phylogenetically the closest bacterial
species to Mycobacterium tuberculosis (M. tuberculosis).
However, the M. leprae has a reduced genome of 3.2 Mbp,
compared to 4.4 Mbp in M. tuberculosis, and survive with only
1,614 protein coding genes which are largely annotated based
the features of their homologues in M. tuberculosis and other
mycobacterial species (Cole et al., 2001). Dapsone interacts with
bacterial dihydropteroate synthase, an enzyme essential for folic
acid biosynthesis in bacteria. It is absent in humans (Cambau
et al., 2006). Rifampin interacts with RNA polymerase, an enzyme
critical for DNA dependent RNA synthesis (transcription) in
M. leprae. These drugs are either bacteriostatic or bactericidal.
However, they do not interfere with predilection of M. leprae for
human nerve cells, which is a significant cause for demyelinating
neuropathy in leprosy (Lockwood and Saunderson, 2012). Newer
antibacterial agents that can effectively treat the disease within a
short duration of time and prevent nerve damage are essential
to reduce morbidity associated with the disease (Rao and Jain,
2013). Currently known drugs for leprosy, their drug target
proteins and references related to their mechanisms of action are
listed in Table 1.

Knowledge of the structural components of the proteome
of M. leprae is critical for identifying drug target proteins and
deciphering their essential roles in the survival of the pathogen.
Key enzymes that catalyze chokepoint reactions can act as
potential drug targets for antimycobacterial discovery. However,
information related to 3D structures of these proteins is scarce
for M. leprae, necessitating a more focussed structural genomics
effort to unravel the druggable proteomic landscape of this
bacillus long known to humankind.

Software tools that predict stability and affinity changes in
drug-target proteins due to substitution mutations are discussed

in the context of antimicrobial resistance. While the emphasis
is on deciphering the druggable proteome, we provide a brief
overview of the structure-guided virtual screening tools and
methods that facilitate the chemical expansion of fragment-like
small molecules to lead-like or drug-like compounds in the active
or allosteric sites of the target protein.

Proteome Modeling in
Mycobacterium leprae and Its Relevance
to Structure-Guided Drug Discovery
Of the 1,614 annotated genes that are expressed in M. leprae,
the structures of only 17 proteins are available (see Table 2)
to date in the publicly available databases [Protein Data
Bank (PDB) (Berman et al., 2000)], as opposed to around
1,277 entries for Mycobacterium tuberculosis. Solving the
crystal/cryoEM structures of all the potential drug targets in
M. leprae requires costly and labor intensive effort. Given
the high sequence identity of many of the M. leprae proteins
with their homologous counterparts in M. tuberculosis with
solved structures in the PDB, employing computational
tools to perform comparative modeling of proteins in
M. leprae can be a robust alternative for acquiring a
preliminary understanding of the functional sites and small
molecule interactions.

Different groups have made several attempts to model
the proteins of M. leprae. Table 3 lists two web-resources
where such information is available. Computational protein
structure modeling can reduce the sequence-structure gaps
and enable genome-scale modeling of infectious pathogens
(Bienert et al., 2017). Although the paucity of structural
proteomics information for M. leprae in the publicly available
databases is a challenge, the software developed in the
Blundell laboratory will be useful in performing proteome scale
modeling pipeline (Vivace) for proteomes of Mycobacterial
pathogens and other bacterial species (Skwark et al., 2019).
Vivace optimizes template selection, enables sequence-structure
alignments, and constructs optimal quality models in both
apo- and ligand-bound states. To facilitate multi-template
modeling, protein structures from the entire PDB are initially
organized in a structural profile database named TOCCATA
(Ochoa-Montaño et al., 2015). Protein structures within
each profile are classified based on domain annotations in
CATH (Sillitoe et al., 2019) and SCOP (Andreeva et al.,
2020) databases, pre-aligned and functionally annotated with
information derived from UniProt (The UniProt Consortium,
2021) and PDB. The query protein sequence is aligned with
representative structures from each cluster using a sequence-
structure alignment tool named FUGUE (Shi et al., 2001).
FUGUE recognizes distant homologues by sequence-structure
comparison using environment-specific substitution tables and
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structure-dependent gap penalties. Alignments generated by
FUGUE are fed into Modeler 9.24 (Webb and Sali, 2016) for
model building. The ligands and other small molecules are
modeled into corresponding protein structure models at sites
recognized from the ligand-bound templates. Multiple models
are generated based on the number of cluster hits, ranging
from 3 to ∼1,000 models per query sequence in the M. leprae
proteome. These models are of different states (ligand-bound and
apomeric) and of varying quality based on the templates used in
each profile.

Once modeled, each of the protein structure models
undergoes a rigorous quality assessment by employing methods
such as NDOPE, GA341 (Shen and Sali, 2006), GOAP
(Zhou and Skolnick, 2011), SOAP (Webb and Sali, 2016),
Molprobity (Chen et al., 2010) and secondary structure

agreement score (Eramian et al., 2006). Models with extensive
chain clashes, poorly resolved loops and improperly fitted
ligands are ranked low in the consensus quality scoring
process described in CHOPIN—a web resource for structural
and functional proteome of Mycobacterium tuberculosis
(Ochoa-Montaño et al., 2015).

Vivace is being used to model the proteome of M. leprae.
Sequence and structural features at the genome-scale are being
analyzed to identify essential enzymes that drive chokepoint
metabolic reactions. Models in apomeric, ligand-bound
and oligomeric (discussed in the later sections) states are
being generated and analyzed for surface topology, cavities
(Binkowski et al., 2003) and fragment hotspots (sites for
potential small molecule binding) (Radoux et al., 2016). The
schematic workflow shown in Figure 1 illustrates the modeling

TABLE 1 | Drugs and their corresponding target proteins in M. leprae.

Drug Target proteins/Ribosomal subunits Gene (gene name) References

Dapsone Dihydropteroate synthase (DHPS) folP1 (ML0224) Williams et al., 2000

Rifampin β-subunit of the DNA-dependent RNA polymerase rpoB (ML1891) Lin et al., 2017

Clofazimine Unknown - Lechartier and Cole, 2015

Fluoroquinolones DNA gyrase subunit A gyrA (ML0006) Blower et al., 2016

DNA gyrase subunit B gyrB (ML0005) Yamaguchi et al., 2016

Macrolides 50S subunit (23S rRNA in particular) - Ji et al., 1996

Minocycline 30S ribosomal subunit, blocking the binding of
aminoacyl-tRNA to the 16S rRNA

- Ji et al., 1996

Thioamides Enoyl-ACP-reductase inhA (ML1806) Wang et al., 2007

Bedaquiline Proton pump of ATP synthase atpE (ML1140) Guo et al., 2021

Epiroprim Dihydrofolate reductase folA (ML1518) Dhople, 2002

TABLE 2 | List of protein structures available for M. leprae in Protein Data Bank

Gene Id PDB Id Description References

ML2441 4EO9 Crystal structure of a phosphoglycerate mutase gpm1 from Mycobacterium leprae Baugh et al., 2015

ML0210 4ECP X-ray crystal structure of Inorganic Pyrophosphate PPA from Mycobacterium leprae Unpublished

ML0560 4J07 Crystal structure of a PROBABLE RIBOFLAVIN SYNTHASE, BETA CHAIN RIBH
(6,7-dimethyl-8-ribityllumazine synthase, DMRL synthase, Lumazine synthase) from Mycobacterium leprae

Unpublished

ML1382 5IE8 The pyrazinoic acid binding domain of Ribosomal Protein S1 from Mycobacterium tuberculosis* Huang B. et al., 2016

ML0482 1BVS RUVA Complexed to a Holliday Junction Roe et al., 1998

ML2684 3AFP Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form I)” Kaushal et al., 2010

ML2640 2CKD Crystal structure of ML2640 from Mycobacterium leprae Graña et al., 2007

ML0380 1LEP Three-Dimensional Structure of the Immunodominant Heat-Shock Protein Chaperonin-10 of
Mycobacterium Leprae

Mande et al., 1996

ML1962 3I4O Crystal Structure of Translation Initiation Factor 1 from Mycobacterium tuberculosis* Hatzopoulos and
Mueller-Dieckmann, 2010

ML2428A 5O61 The complete structure of the Mycobacterium smegmatis 70S ribosome* Hentschel et al., 2017

ML1485 4WKW Crystal Structure of a Conserved Hypothetical Protein from Mycobacterium leprae Determined by Iodide
SAD Phasing

Unpublished

ML2174 3R2N Crystal structure of cytidine deaminase from Mycobacterium leprae Baugh et al., 2015

ML1806 2NTV Mycobacterium leprae InhA bound with PTH-NAD adduct Wang et al., 2007

ML2684 3AFQ Crystal structure of the single-stranded DNA binding protein from Mycobacterium leprae (Form II) Kaushal et al., 2010

ML2069 4EX4 The Structure of GlcB from Mycobacterium leprae Unpublished

ML2640 2UYO Crystal structure of ML2640c from Mycobacterium leprae in an hexagonal crystal form Graña et al., 2007

ML2640 2UYQ Crystal structure of ML2640c from Mycobacterium leprae in complex with S-adenosylmethionine Graña et al., 2007

*The solved region of the protein structure is 100% in sequence identity with M. leprae.

Frontiers in Molecular Biosciences | www.frontiersin.org 3 May 2021 | Volume 8 | Article 663301

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-663301 May 3, 2021 Time: 16:56 # 4

Vedithi et al. Drug Discovery—Leprosy

TABLE 3 | Web resources with models of M. leprae proteins (modelled using single templates).

Web resource Description Availability References

ModBase A database of annotated comparative protein structure
models and associated resources

https://modbase.compbio.ucsf.edu/modbase-cgi/index.cgi Pieper et al., 2011

SwissModel
Repository

A database of annotated 3D protein structure models
generated by the SWISS-MODEL homology-modeling
pipeline

https://swissmodel.expasy.org/repository Bienert et al., 2017

procedures adopted by our group to model proteomes of
mycobacterial pathogens.

Approaches to Predict
Homo/Hetero-Oligomeric Complexes
Protein-protein interactions (homo/hetero) govern a majority
of the cellular processes. Structure determination of these
complexes is crucial for understanding their functions. Usually,
the experimental techniques used to unravel interacting protein
partners are time consuming, challenging and expensive.
There have been significant advances in the development
of computational methods and tools to identify interacting
pairs and predict the structures of protein-protein complexes
(Das and Chakrabarti, 2021).

The computational tools for predicting protein-protein
interactions developed over the years can be classified into the
knowledge-based or de novo prediction methods. If the structures
of the interacting partners are known, the interactions can be
predicted using template-based, or template free and/or restraint-
based docking. Template-based docking can provide the multi-
component modeled complex but requires the presence of multi-
component template structures (Ogmen et al., 2005; Mukherjee
and Zhang, 2011). If the homologous multi-component template
is unavailable, protein-protein docking approaches can be used
to sample the conformational space and predict the docked
complexes which are further scored using different schemes
to discriminate native-like conformations from a pool of
docked solutions. These different approaches for computational
modeling of protein interactions were recently reviewed by Soni
and Madhusudhan (2017).

Recently, tools have been developed which can make use of the
wealth of sequence information available for protein sequences
to predict/model interactions accurately. Machine learning
approaches including deep learning have played a significant
role in training models which can predict the interactions using
the features derived from protein sequences alone (Huang Y.-
A. et al., 2016; Du et al., 2017; Sun et al., 2017; Chen et al.,
2019). The inspection of co-evolving sites in two protein partners
can provide strong signals to elucidate interacting partners (Yu
et al., 2016). A recent method CoFex (Hu and Chan, 2017)
used co-evolutionary features to predict protein interactions.
Ensemble based approaches which use multiple machine learning
methods to vote for predictions have been reported to achieve
high sensitivity and accuracy (Zhang et al., 2019; Li et al., 2020).
Deep learning has also been employed to train a convolutional
neural network (CNN) to predict the protein interacting pairs
with high accuracy (Wang et al., 2019; Torrisi et al., 2020).

However, in-silico approaches can often give false positive
or negative results as well, hence one also needs validation
strategies to assess the quality of predicted interactions. Efforts in
the community such as CASP (Critical Assessment of Structure
Prediction) and CAPRI (Critical Assessment of Prediction of
Interfaces) competitions, aim to assess the field and the state-
of-the-art methods and their ability to “correctly” model protein
structures and their interactions, respectively. They define and
use multiple scores for assessing the quality of protein structure
and interfaces in the modeled complexes. CASP14 is the present
ongoing competition, where deep learning approach-AlphaFold2
has outperformed and were able to accurately predict the protein
structures (AlQuraishi, 2019).

To illustrate the modeling process adopted by Vivace, Figure 2
depicts the models of three potential drug targets in M. leprae,
the menB [1,4-dihydroxy-2-naphthoyl-CoA synthase (ML2263)],
menD [2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-
1-carboxylate synthase (ML2270)] and coaA [Pantothenate
kinase (ML1954)].

The gene product of menB converts o-succinylbenzoyl-CoA
(OSB-CoA) to 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA)
and its homologue in M. tuberculosis (Rv0548c) is reported as
essential (DeJesus et al., 2017). We built the model using the
structure of its orthologous protein in M. tuberculosis (PDB Id:
4QII) as the template with sequence identity of 93% and sequence
coverage of 100% (Figure 2A). The gene product of menD
catalyzes the thiamine diphosphate-dependent decarboxylation
of 2-oxoglutarate. Its homologue in M. tuberculosis (Rv0555) is
noted to be essential for bacterial survival. We modeled menD
of M. leprae using the structure of the M. tuberculosis orthlogue
(PDB Id: 5ESD) as the template with the sequence identity of
86% and sequence coverage of 99% (Figure 2B). Finally, we
modeled coaA which synthesizes coA from (R)—Pantothenate.
CoaA has been recognized as a drug target in tuberculosis
(Chiarelli et al., 2018). We modeled coaA using its orthologue in
M. tuberculosis (PDB Id: 2GET) as the template with sequence
identity of 93% and sequence coverage of 98% (Figure 2C).

Structural Implications of Substitution
Mutations
Development of drug resistance is recognized as one of the
major hurdles to disease management and control. For M. leprae,
it is even more challenging as it relies on mouse footpad
models (Vedithi et al., 2018). Antimicrobial resistance was noted
in Dapsone, Rifampicin and Ofloxacin (a second-line drug).
Treating and managing the disease is a big hurdle due to
emerging drug resistance for these three drugs and lack of
alternative effective treatments.
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FIGURE 1 | Workflow for modeling mycobacterial proteomes and developing web databases.

FIGURE 2 | Oligomeric models of three potential drug targets in M. leprae. (A) The homohexameric model of M. leprae menB complexed with Salicylyl CoA. (B) The
homotetrameric model of M. leprae menD bound to magnesium ions. (C) The homodimeric model of M. leprae coaA in complex with coenzyme A derivative.
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The drug-resistance mutations when mapped on to the three-
dimensional structure of the drug target can provide crucial
insights into effects on protein structure and function. There
are several available software/web servers that can predict the
impacts of mutation on protein stability and interactions with
other proteins, ligands and nucleic acids. We have provided
a list of some of the commonly used software tools for
investigating the effects of mutations on protein structure and
function (Table 4).

Our own group have developed over the past decade
the mCSM suite of computer programmes that use ML/AI
approaches to predict the impacts of amino acid mutations
not only on protomer stability (Pires et al., 2014a) but also
on protein-protein, protein nucleic acid and protein-ligand
interactions (Pires et al., 2016; Pires and Ascher, 2017).
Recently, there have been further developments in the field
where machine learning (ML)-based methods are gaining

popularity. Many more recent ML methods also use features
derived from protein structure and/or sequence to predict
the effect of mutations (Hopf et al., 2017). A recent review,
summarizes the performance of different ML methods and
emphasizes the need for selecting reliable training dataset
and informative features (Fang, 2020). Deep learning is an
advanced training which is composed of multiple layers to
learn different features from the input data and is proven
to learn from the high-dimensional data. Recently, a method
called DeepCLIP (Grønning et al., 2020) has been proposed
which can predict protein binding to RNA using only
sequence data. Another recently developed deep learning
framework-MuPIPR (Zhou et al., 2020) (Mutation Effects in
Protein–protein Interaction Prediction Using Contextualized
Representations), can predict the effects of mutation on protein-
protein interactions in terms of changes in buried surface area
and binding affinity.

TABLE 4 | Some of the commonly used tools for predicting the effect of mutations on protein structure and function.

Software Description Availability References

SIFT Amino acid substitution effect on protein function https://sift.bii.a-star.edu.sg/ Ng and Henikoff, 2003

PolyPhen-2 Amino acid substitution effect on protein structure and
function using protein sequence

http://genetics.bwh.harvard.edu/pph2/ Adzhubei et al., 2010

SNPs3D Amino acid substitution effect on protein structure and
function using SVM based model

http://snps3d.org/ Yue et al., 2006

MutPred2 Machine learning approach to quantify pathogenicity of
mutation

http://mutpred.mutdb.org/index.html Pejaver et al., 2020

PROVEAN Impact of mutation on protein function by using multiple
sequence alignment

http://provean.jcvi.org/index.php Choi and Chan, 2015

mCSM Effect of mutation on protein structure and interactions
using graph-based signatures

http://biosig.unimelb.edu.au/mcsm/ Pires et al., 2014a

SDM2 Effect of mutation on protein structure and interactions
using environment-specific amino-acid substitution
frequencies

http://marid.bioc.cam.ac.uk/sdm2 Pandurangan et al., 2017, 2

DUET Consensus prediction of mCSM and SDM2 for protein
stability

http://biosig.unimelb.edu.au/duet/ Pires et al., 2014b

PoPMuSiC-2 Effects of mutation on protein stability using statistical
potentials

http://dezyme.com/en/Services Dehouck et al., 2009

FoldX Change in free energy using force fields-based method http://foldxsuite.crg.eu/ Schymkowitz et al., 2005

Hunter Predicting protein stability upon mutation using side
chain interactions

http://bioinfo41.weizmann.ac.il/hunter/ Potapov et al., 2010

MAESTRO Measures changes in free energy upon mutation using
machine learning

https://pbwww.che.sbg.ac.at/?page_id=416 Laimer et al., 2015

I-Mutant3.0 SVM based prediction of protein stability change upon
mutation using either sequence and/or structure

http://gpcr2.biocomp.unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.cgi

Capriotti et al., 2008

MUPro SVM and neural network-based prediction of changes
in protein stability

http://mupro.proteomics.ics.uci.edu/ Cheng et al., 2006

iStable Change in free energy using SVM based predictor http://predictor.nchu.edu.tw/istable/ Chen et al., 2013

MutaBind Change in free energy using force fields, statistical
potentials and side-chain optimisation methods

https://www.ncbi.nlm.nih.gov/research/mutabind/
index.fcgi/

Li et al., 2016

BeAtMuSiC Impact of mutations on protein-protein interactions
using statistical potentials

http://babylone.ulb.ac.be/beatmusic/ Dehouck et al., 2013

SNAP2 Predict functional impacts of mutations using neural
network-based model

https://rostlab.org/services/snap2web/ Hecht et al., 2015

Envision Supervised, stochastic gradient boosting algorithm to
quantify the effect of mutation

https:
//envision.gs.washington.edu/shiny/envision_new/

Gray et al., 2018

EVmutation Unsupervised statistical method to predict effect of
mutations using residue dependencies between
positions

https://marks.hms.harvard.edu/evmutation/
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In-silico Saturation Mutagenesis
Using the tools described above, computational efforts exploiting
recent growth in the availability of computing power can be
immensely helpful to perform saturation mutagenesis, which can
be used as a surveillance tool for drug resistance in leprosy.
These mutational scanning exercises can provide crucial insights
into the structure-function relationships by exploring all possible
substitutions at a given site. This can provide a glimpse into
the functional consequences of mutations in antimicrobial-
resistance phenotypes. The extensive quantitative data from
computational saturation mutagenesis experiments can guide
experimental approaches and prove helpful for validation and/or
engineering purposes. Recently published HARP (a database
of Hansen’s Disease Antimicrobial Resistance Profiles) database
(Vedithi et al., 2020) is a comprehensive repository of in-silico
mutagenesis experiments for three important drug targets for
M. leprae namely dihydropteroate synthase, RNA polymerase and
DNA gyrase. A consensus impact for all the possible mutations
on protein stability and function of these drug targets is provided
in this database.

Druggability
Mycobacterium leprae genome is reduced to 3,268,203 bp
preserving only 1,614 ORFs (Cole et al., 2001; Liu et al., 2004)
of the Mycobacterial genus. The genome reduction is due to
evolutionary adaptation of this intracellular obligate bacillus to
Schwann and macrophages cells. Gene essentiality in M. leprae is
deciphered based on essentiality of homologous genes, mainly in
M. tuberculosis that are determined by experiments (Sassetti et al.,
2003; DeJesus et al., 2017). Because of the evolutionary loss of
non-essential genes by pseudogenization, only 65% of the existing
total of M. leprae genes have been demonstrated to be essentials
(Borah et al., 2020). In order to identify potential drug targets,
a chokepoint reaction analysis helps to find proteins that are
either consumers of unique substrates, or are unique producers
of metabolites. It is predicted that the inhibition of chokepoint
proteins produces an interruption of essential cell functions (Yeh
et al., 2004). Determining the druggability of protein targets is
important to avoid intractable targets. A druggable protein has
the ability to bind with high affinity to a drug. In leprosy, the

dihydropteroate synthase (DHPS), RNA polymerase (RNAP) and
DNA gyrase (GYR) are known druggable proteins as they are
the targets of Dapsone, Rifampicin and Ofloxacin, respectively.
Nevertheless, protein druggability properties can be predicted by
different bioinformatics tools based on the 3D structure /model
of the protein. For example, the α-1,2-mannosyltransferase
and mannosyltransferase proteins related to lipoarabinomannan
pathway were identified as a possible drug targets using CASTp
(Computer Altas of Surface Topography of proteins) (Gupta
et al., 2020). CASTp determines the volume and the area of
each cavity and pocket. Furthermore, for each pocket the solvent
accessible surface and the molecular surface are calculated. Small-
molecule virtual screening is another in-silico strategy used
to ascertain druggability of the protein target. This approach
provides an understanding of the physicochemical features of
the binding sites and potential ligands that bind at these sites.
In Mycobacterium tuberculosis, 2,809 proteins are identified as
druggable using this in-silico approach (Anand and Chandra,
2014). Mammalian cell entry proteins of the class mce1A-E have
been reported in M. leprae to facilitate bacterial entry into human
nasal epithelial cells (Fadlitha et al., 2019).Mce1A has a significant
role in the cell predilection and a comprehensive understanding
of the structure and druggability of this protein can provide
insights into host pathogen interactions and transmission in
leprosy (Sato et al., 2007). In the case of ML2177c, this
gene encodes for uridine phosphorylase and shows significantly
high expression during leprosy infection. This is predicted
as druggable using fragment-hotspot-map analysis (Malhotra
et al., 2017). The fragment hotspots contain a juxtaposition of
charge and lipophilicity that are essential for effective ligand
binding through both enthalpic and entropic contributions. The
hotspot map software uses different molecular probes (toluene,
aniline and phenol) to calculate affinity maps that provide a
visual guide of the pocket (Radoux et al., 2016). Figure 3
illustrates the recommended pathway to target prioritization in
mycobacterial drug discovery.

Structure-Guided Virtual Screening
Structure-guided virtual screening is a cost-effective
computational tool for preliminary screening of proteins
that are potential drug targets with chemical libraries ranging

FIGURE 3 | Workflow for drug target prioritization in M. leprae.
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from small core fragments to large macrocyclic compounds in
size and scaling from a few hundred molecules to billions (used
in ultra-large-scale virtual screening campaigns). Since physical
synthesis of drug molecules is not required, millions of virtual
chemical entities can be swiftly docked into the active site of the
protein structure/model and appropriate chemical scaffolds that
fit with high scores and form relevant stabilizing interactions can
be shortlisted for experimental validations. Virtual screening can
be applied to novel drug discovery and also in drug repositioning
experiments (screening with existing approved drugs to identify
new target-protein interactions). A repurposing screen of LipU,
a lipolytic protein that is conserved across mycobacterial species
and noted to be essential for survival of M. leprae, revealed high
docking scores for anti-viral drugs and anti-hypertensive (Kaur
et al., 2019). Molecular docking software, such as Glide (Friesner
et al., 2006), CCDC-GOLD (Jones et al., 1997), Autodock
(Goodsell and Olson, 1990), Ledock (Wang et al., 2016), FlexX
(Kramer et al., 1999), and SwissDock (Grosdidier et al., 2011)
are used in virtual screening campaigns. Each algorithm has a
unique scoring function to assess the fitness, number of stable
interatomic interactions, and changes in energy landscape.

DISCUSSION AND CONCLUSION

Here, we have reviewed the tools and the advances made
in protein structure prediction, modeling of genomes and
impacts of amino acid replacements on protein structure
and function. We have discussed these areas particularly
focusing on the mycobacterial genomes, more specifically
M. leprae. Given the paucity of information related to structural
proteomic studies in leprosy, we discussed a multi-task protein
modeling pipeline that enables proteome-scale template-based
modeling of individual proteins encoded by various annotated
genes in M. leprae. Homology-based structural and functional
annotation of these protein models (Ochoa-Montaño et al.,
2015; Skwark et al., 2019) using appropriate computational
tools for modeling and druggability assessment can expedite
characterization of the structural proteome of M. leprae and
accelerate structure-guided novel drug discovery to combat nerve
damage associated with leprosy.

Using the latest advancements in the field of protein
structure bioinformatics, we describe our attempts to perform
proteome scale modeling of mycobacterial genomes using in-
house databases and pipelines. The modeled protein monomers
or (homo/hetero) oligomers are subjected to multiple state-
of-the-art validation scores. These models can be very helpful

and provide useful insights to understand protein structure and
function, identify drug targets and unravel their functional roles
in the pathogen. The structures of selected drug targets can
also help in experimental design and prioritizing the protein
targets for validation.

The emergence of drug resistance to the multidrug therapy is
a major challenge in treating mycobacterial infections especially
leprosy where structural features of drug-target interactions are
poorly understood. To complement the computational findings,
our group has employed cryoEM methods to understand the
impact of mutations on the structure of catalase peroxidase in
M. tuberculosis (Munir et al., 2019, 2021). Protein sequences and
structures can be used to model the impacts of drug resistance
mutation on protein structure and function. We have described
various software available for predicting the impacts of mutations
using protein sequence or structure or both. In-silico saturation
mutagenesis experiments can guide the experimental design and
help in saving the time and labor required to conduct laboratory
experiments on animal models. Structure-based drug design
(Blundell et al., 2002; Blundell and Patel, 2004) is a way forward
and is a promising approach to design new drugs and treatments.
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