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This study proposes a mathematical model for examining the COVID-19 and tuberculosis (TB) co-

dynamics thoroughly. First, the single infection dynamics: COVID-19 infection and TB infection 
models are taken into consideration and examined. Following that, the co-dynamics with TB and 
COVID-19 is also investigated. In order to comprehend the developed model dynamics, the basic 
system attributes including the region of definition, theory of nonnegativity and boundedness of 
solution are investigated. Further, a qualitative analysis of the equilibria of the formulated model 
equations is performed. The equilibria of both infection models are globally asymptotically stable 
if their respective basic reproductive number is smaller than one. As the associated reproductive 
number reaches unity, they experience the forward bifurcation phenomenon. Additionally, it is 
demonstrated that the formulated co-dynamics model would not experience backward bifurcation 
by applying the center manifold theory. Moreover, model fitting is done by using daily reported 
COVID-19 cumulative data in Ethiopia between March 13, 2020, and May 31, 2022. For instance, 
the non-linear least squares approach of fitting a function to data was performed in the fitting 
process using 𝑠𝑐𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑐𝑢𝑟𝑣𝑒_𝑓 𝑖𝑡 from the Python. Finally, to corroborate the analytical 
findings of the model equation, numerical simulations were conducted.

1. Introduction

A new coronavirus family termed SARS-CoV-2 that was initially found in China is the cause of a communicable disease called 
Coronavirus Disease 2019 (COVID-19) [1]. Since then, it has rapidly spread across the world, raising major global concerns. This 
disease often causes mild to severe respiratory illness in its victims. Older people and people having medical issues including cancer, 
tuberculosis (TB), chronic respiratory conditions, diabetes, and cardiovascular disease are more prone to get seriously sick [2,3]. 
The signs of COVID-19 might vary based on the type of variant acquired, ranging from mild symptoms to a potentially fatal disease. 
Its clinical symptoms include fever, fatigue, dry cough, headache, sore throat, diarrhoea, and loss of scent or taste, whereas the 
symptoms in serious cases are chest discomfort or pressure, shortness of breath, loss of speech, or inability to move [4].

On the other hand, TB is an ancient but persistent present common and fatal pathogenic bacterial illness caused by Mycobacterium 
tuberculosis (MTB). It can transmit through sneeze, cough, speak, kiss or spit from people with active pulmonary TB. Transmission 
can only occur from active TB-infected people but not latent TB. TB is curable and preventable [5]. It remains very critical due to 
the fact if people do not take their drugs efficiently or they do not take the correct drugs they’ll now no longer be cured. This is why 
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such a lot of people nonetheless die from TB due to the fact their TB is not always absolutely cured. Worldwide, TB is still the biggest 
cause of mortality. Approximately 1.5 million people deceased from TB in 2020, and around 10 million contracted TB worldwide 
according to WHO TB report of 2021 [5]. Recently, some studies have shown that individuals infected with latent and active TB have 
a high risk of COVID-19 infection [6].

Co-epidemics necessitate a critical comprehension of the relationships between the diseases, their prevalence, and their mitigation 
in order to successfully manage these diseases. In the recent time, this has happened with TB and COVID-19. Currently, the co-

infection of COVID-19 with comorbidities has been identified as the risk factors for increased COVID-19 cases and higher fatalities 
[7,8]. Both TB and COVID-19 are contagious diseases that predominantly affect the lungs, and they become serious public wellness 
problems and leave a dangerous mark on the next generation, particularly in sub-Saharan African countries and Asia. Patients who 
have both COVID-19 and TB may face poorer treatment outcomes, particularly if the TB medication is halted, because there is little 
prior experience with COVID-19 infection in TB sufferers. Cough, fever, and difficulty in breathing are common symptoms of both 
diseases. TB, however, has a prolonged incubation period with a later start of symptoms [9].

To achieve the relationships among COVID-19 and TB, many studies have been done [6,10–13]. For example, Chen et al. [6], 
found that TB might make people more susceptible to COVID-19 and make its symptoms more severe. According to the study given 
Petrone et al. [10], individuals who have TB and COVID-19 infection have a poor immunological response toward SARS-COV-2. In 
[11], it is demonstrated that the co-infection of individuals with both diseases are linked to increased mortality and deaths. Besides, 
as reported in [12], individuals who have ever experienced a TB infection are at a significant risk of dying if they get COVID-19. 
Additionally, as stated in [6], infected individuals with TB would be more likely to get COVID-19 regardless of how bad the condition 
is.

Infectious illness mathematical modeling has a long history and is increasingly utilized to comprehend transmission patterns, 
comprehend natural history more completely, organize research and public health treatments, assess treatments, and prepare for and 
react to outbreaks and epidemics. Since the COVID-19 outbreak, numerous mathematical models investigations have been conducted 
to look into the transmission dynamics by considering different scenarios [14–18] and the references cited therein. For instance, 
in [17], the authors formulated the COVID-19 model for evaluating and controlling its outbreak and used COVID-19 real data in 
Saudi Arabia for model validation. They verified the value of the presented model in analyzing the epidemic spread of COVID-19. 
Furthermore, various mathematical models for the COVID-19 co-infection with different illnesses have been proposed [19–21]. For 
example, Tchoumi et al. [21] proposed the first mathematical model which describes COVID-19 and malaria co-dynamics. They 
expanded the model to an optimal control and suggested that applying the protective measures for both diseases have a key role in 
reducing the spread compared to single prevention control measure.

Although some studies on COVID-19 and other illnesses co-infection have been conducted, recently, there is a limited number 
of studies for the dynamics of TB and COVID-19 co-infection models [22–25]. In particular, Omame et al. [22] proposed and 
examined a mathematical model of TB and COVID-19 co-dynamics using fractional order derivatives. They observed that minimizing 
the probability of contracting COVID-19 due to latent TB infection will reduce the burden of the COVID-19, and also their co-

infection from the population. On the other hand, a mechanistic mathematical model of TB and COVID-19 co-dynamics is constructed 
and examined in [23]. They investigated that the effects of applying optimal control measures for COVID-19 and TB co-infection 
dynamics. In [24], another model is also addressed and it is shown that increasing the contact rate worsen the coinfection, while 
reducing the contacts and increasing the treatments could mitigate their spread. In [25] the co-dynamics model which contain the 
vaccination class is proposed and analyzed. According to their findings, either TB or SARS-CoV-2 mitigation mechanisms significantly 
reduced the number of new co-infections. More recently, a coinfection model to study the effect of isolation and treatment on reducing 
COVID-19 infection is proposed in [26]. They found that while medication has an effect that often takes longer to manifest, isolation 
had a direct effect in lowering the incidence of COVID-19 infections.

The co-infections of TB and COVID-19, however, require additional attention because both diseases are continually spreading and 
taking more lives. Thus, our aim is to explore the co-dynamics of TB and COVID-19 to better understand their spread and control 
through mathematical modeling and its analysis by employing a system of related models with various aspects. A further objective 
is to look into and discover their co-interactions in order to minimize their spread and effects substantially to recommend the 
policymakers. For that, a novel mathematical model which integrates the epidemiological traits of TB and COVID-19 is constructed. 
For instance, our model differs from the previous models as we considered some conceivable transmission pathways and recovering 
from either or both diseases. Further, the influence of COVID-19 personal protection strategy on the disease load is also considered. 
Our model complements earlier co-infection models, and is validated by a model fit to daily reported COVID-19 data in Ethiopia by 
using a non-linear least squares method, 𝑠𝑐 𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑐 𝑢𝑟𝑣𝑒_𝑓 𝑖𝑡 function, from PYTHON.

The rest of the paper’s content is organized in the manner described below. Section 2 presents the details of model formulation. In 
Section 3, the sub-models of COVID-19 and TB alone are provided and analytically investigated. Further, the stability analysis of the 
co-infection model also performed in Section 3.3. To support the theoretical findings, the numerical simulations of the co-dynamics 
model are discussed in Section 4. Lastly, the paper’s conclusion is drawn in Section 5.

2. Model formulation

In this part, we develop the model with the intention of observing the transmission dynamics of COVID-19 and TB co-infection. 
2

To formulate our mathematical model, we take into considerations the following assumptions:
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i) Susceptible populations are those who are under the risk of acquiring COVID-19 and TB infections at a rate proportional to the 
density of COVID-19 and TB infected people, respectively,

ii) No vertical transmission exists, all influxes (recruits) are born healthy and without infectious immigrants, and all parameters are 
positive,

iii) Co-infected individuals can transmit both diseases. Further, a person is more likely to transmit if a contact has already happened 
because of the impaired immune system. A contact in this context is any process that can transmit a disease.

iv) Co-infected individuals can not transmit mixed infections at the same time, they transmit only single infection [23],

v) TB infected individuals have an increased risk of susceptibility to COVID-19 [6],

vi) Individuals co-infected with both diseases are associated with higher mortality [11].

The entire number of people at time 𝑡, indicated by 𝑁(𝑡), is divided into eight divisions to construct the model: susceptible 𝑆(𝑡) who 
have not yet contracted either disease, infected individuals with latent TB 𝐿(𝑡), infectious TB class 𝐼𝑡(𝑡), infectious COVID-19 class 
𝐼𝑐(𝑡), COVID-19 and latent TB co-infection class 𝐼𝑐 𝐿(𝑡), COVID-19-TB infectious class 𝐼𝑡𝑐(𝑡), TB recovered class 𝑅𝑡(𝑡), and COVID-19 
recovered class 𝑅𝑐(𝑡). Hence, the total human population is provided as

𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐼𝑐(𝑡) + 𝐼𝑡(𝑡) + 𝐼𝑐 𝐿(𝑡) + 𝐼𝑡𝑐(𝑡) + 𝑅𝑐(𝑡) + 𝑅𝑡(𝑡).

Susceptible individuals acquire TB after becoming in contact with individuals in the classes 𝐼𝑡, and 𝐼𝑡𝑐 . Hence, the force of 
infection related to TB is provided by

𝜆𝑡 =
𝛽𝑡(𝐼𝑡 + 𝐼𝑡𝑐)

𝑁
.

Further, susceptible individuals contract COVID-19 after becoming in contact with individuals in the classes 𝐼𝑐 , 𝐼𝑐 𝐿, and 𝐼𝑡𝑐 . Hence, 
the force of infection related with COVID-19 becomes

𝜆𝑐 = (1 − 𝜅 𝜌)
𝛽𝑐 (𝐼𝑐 + 𝜏(𝐼𝑡𝑐 + 𝐼𝑐 𝐿))

𝑁
.

The parameters 𝛽𝑐 and 𝛽𝑡 represents the transmission coefficient of COVID-19 and TB, respectively. Here, we considered the standard 
incidence type of the forces of infection [27]. The parameter 𝜏 ≥ 1 represents the infectivity of individuals become co-infected due 
to TB, and (1 − 𝜌𝜅) denotes effects of COVID-19 protection like physical distancing, sanitizer, washing hand, face mask, and self-

isolation, where 𝜌 (between 0 and 1) denotes efficacy of COVID-19 protection measure, and 𝜅 (between 0 and 1) is fraction of 
community applying COVID-19 protection measure.

Individuals infected with COVID-19 may contract TB at the rate 𝜔𝜆𝑡 and they become 𝐼𝑐 𝐿. The parameter 𝜔 ≥ 1 denotes the 
enhancement factor accounts for how infectiously susceptible people are to becoming TB after contracting COVID-19 disease. Indi-

viduals after being infected with TB join the latent TB infective class 𝐿 or 𝐼𝑐 𝐿, and then move on to the class of people with active TB 
(𝐼𝑡 or 𝐼𝑡𝑐 ) at a progression rate 𝜙𝑡 and 𝜂𝑐 , respectively. At the rate 𝜈𝜆𝑐 , TB recovered individuals acquire COVID-19 and become TB 
infected at the rate 𝜑𝜆𝑡. These types’ of transitions are widely used in many TB models and their co-dynamics [25,28–30], where 𝜈

and 𝜑 are the infectivity factor of TB recovered individuals to COVID-19 and TB respectively. Furthermore, we assume that COVID-19 
recovered individuals become TB infected at the rate 𝜆𝑡. Individuals having active TB may contract COVID-19 disease at the rate 
𝜎 𝜆𝑐 and join 𝐼𝑡𝑐 class. The parameter 𝜎 ≥ 1 denotes the modification parameter that shows the enhancement factor for individuals 
becoming COVID-19 infected as a result of TB. The descriptions of all transfers in the proposed model are shown in the schematic 
diagram given in Fig. 1. Further, the descriptions of the parameters in the model are summarized in Table 1. Following Fig. 1, we 
proposed the preceding governing system of ordinary differential equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�̇� =Λ− (𝜆𝑐 + 𝜆𝑡 + 𝜇)𝑆 ,

�̇� = 𝜆𝑡 𝑆 + 𝜂𝐿 𝐼𝑐 𝐿 + 𝜑𝜆𝑡 𝑅𝑡 + 𝜆𝑡 𝑅𝑐 − (𝜆𝑐 + 𝜙𝑡 + 𝑟𝐿 + 𝜇)𝐿,

�̇�𝑐 = 𝜆𝑐 𝑆 + 𝛼𝑐 𝐼𝑡𝑐 + 𝜈𝜆𝑐 𝑅𝑡 − (𝜔𝜆𝑡 + 𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐 ,

�̇�𝑡 = 𝜙𝑡 𝐿 + 𝜃𝐼𝑡𝑐 − (𝜎 𝜆𝑐 + 𝑟𝑡 + 𝛿2 + 𝜇)𝐼𝑡 ,

�̇�𝑐 𝐿 = 𝜆𝑐 𝐿 + 𝜔𝜆𝑡 𝐼𝑐 − (𝜂𝑐 + 𝜂𝐿 + 𝜇)𝐼𝑐 𝐿 ,

�̇�𝑡𝑐 = 𝜎 𝜆𝑐 𝐼𝑡 + 𝜂𝑐 𝐼𝑐 𝐿 − (𝛼𝑐 + 𝜃 + 𝛿3 + 𝜇)𝐼𝑡𝑐 ,

�̇�𝑐 = 𝑟𝑐 𝐼𝑐 − (𝜆𝑡 + 𝜇)𝑅𝑐 ,

�̇�𝑡 = 𝑟𝐿 𝐿 + 𝑟𝑡 𝐼𝑡 − (𝜑𝜆𝑡 + 𝜈𝜆𝑐 + 𝜇)𝑅𝑡 ,

(1)

with initial conditions{
𝑆(0) > 0, 𝐿(0) ≥ 0, 𝐼𝑐(0) ≥ 0, 𝐼𝑡(0) ≥ 0,

𝐼𝑐 𝐿(0) ≥ 0, 𝐼𝑡𝑐(0) ≥ 0, 𝑅𝑡(0) ≥ 0, 𝑅𝑐(0) ≥ 0.
(2)

3. Model analysis
3

In order to carryout the qualitative analysis of the model, initially we analyze the single infection models as given below.
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Fig. 1. A flow chart that shows the co-dynamics of COVID-19 and TB.

Table 1

Definitions of model parameters.

Parameters Parameter descriptions

Λ Influx rate

𝜇 Natural death rate

𝛿1 COVID-19 induced death rate

𝛿2 TB induced death rate

𝛿3 COVID-19-TB co-infection induced death rate

𝛽𝑐 COVID-19 transmission rate

𝛽𝑡 TB transmission rate

𝑟𝑐 COVID-19 recovery rate for individuals in 𝐼𝑐 class

𝑟𝑡 TB recovery rate for individuals in 𝐼𝑡 class

𝑟𝐿 Latent TB recovery rate

𝛼𝑐 TB recovery rate for individuals in 𝐼𝑡𝑐 class

𝜙𝑡 , 𝜂𝑐 Progression rate from latent classes to active TB

𝜂𝐿 , 𝜃 Recovery rates from COVID-19 for the classes 𝐼𝑐 𝐿 and 𝐼𝑡 𝑐, respectively

3.1. COVID-19 sub-model

By setting 𝐼𝑡(𝑡) = 𝐼𝑐 𝐿(𝑡) = 𝐼𝑡𝑐(𝑡) = 𝑅𝑡(𝑡) = 0 in system (1), we get the COVID-19 sub-model:

⎧⎪⎨⎪⎩
�̇� =Λ− (𝜆𝑐 + 𝜇)𝑆 ,

�̇�𝑐 = 𝜆𝑐 𝑆 − (𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐 ,

�̇�𝑐 = 𝑟𝑐 𝐼𝑐 − 𝜇𝑅𝑐 ,

(3)

where 𝜆𝑐 = (1 − 𝜅 𝜌)
𝛽𝑐 𝐼𝑐

𝑁
, 𝑁 = 𝑆(𝑡) + 𝐼𝑐(𝑡) + 𝑅𝑐(𝑡).

3.1.1. Nonnegativity of the solution

Theorem 1. Given the initial data (2), the sub-model (3) remain non-negative for all 𝑡 ≥ 0.

Proof. Having the first equation of the model (3), we get

𝑑 𝑆

𝑑 𝑡
= Λ − (𝜆𝑐 + 𝜇)𝑆 .

When the positive term Λ is omitted, the aforementioned equation reduces to
4

𝑑 𝑆

𝑑 𝑡
≥ −(𝜆𝑐 + 𝜇)𝑆 .
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Using integration to solve for variable 𝑆 results in

𝑆(𝑡) ≥ 𝑆(0)𝑒∫
𝑡
0
(

𝜆𝑐 (𝜉)+𝜇
)

𝑑 𝜉 ≥ 0,

which implies the nonnegativity of 𝑆(𝑡) for all time 𝑡.

Similarly, from the second and third equation of the model (3), we obtain

𝐼𝑐(𝑡) ≥ 𝐼𝑐(0)𝑒
∫ 𝑡
0

(
(1−𝜅 𝜌)𝛽𝑐

𝑆(𝜉)
𝑁

−(𝑟𝑐+𝛿1+𝜇)

)
𝑑 𝜉

≥ 0.

𝑅𝑐(𝑡) ≥ 𝑅𝑐(0)𝑒−𝜇 𝑡 ≥ 0.

Therefore, the solution to model (3) is non-negative for every 𝑡 ≥ 0. □

3.1.2. Region of invariance

Theorem 2. The region

Ω𝐶 =
{
(𝑆 , 𝐼𝑐 , 𝑅𝑐) ∈ℝ3

+ ∶ 𝑁(𝑡) ≤ Λ
𝜇

}
is positively invariant for the system (3).

Proof. By adding up the right-hand sides of the COVID-19 sub-model (3), we have

�̇� = Λ− 𝜇𝑁 − 𝛿1𝐼𝑐 . (4)

From the initial values (2), we have that 𝑁(0) ≥ 0. Further, it follows, from equation (4), that

�̇� ≤Λ− 𝜇𝑁 . (5)

Solving equation (5), we arrived at

𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + Λ
𝜇
(1 − 𝑒−𝜇𝑡).

For a large positive 𝑡, we have 0 ≤ 𝑁(𝑡) ≤ Λ
𝜇

. Thus, in the region

Ω𝐶 =
{
(𝑆 , 𝐼𝑐 , 𝑅𝑐) ∈ℝ3

+ ∶ 𝑁(𝑡) ≤ Λ
𝜇

}
,

every solution of model (3) initiating in Ω𝐶 stay there for all 𝑡 ≥ 0 [31,32]. That is, Ω𝐶 is positively invariant and attracts [33]. 
Hence, it is sufficient to study the dynamics of the COVID-19 sub-model (3) in Ω𝐶 [23,34,35]. □

3.1.3. Disease-free equilibrium and basic reproduction number

The disease free equilibrium (DFE) of the COVID-19 system (3) is calculated by equating it to zero and putting 𝐼𝑐 = 0. Then, we 
get

𝐸0
𝑐 = (𝑆0, 𝐼0

𝑐 , 𝑅0
𝑐 ) =

(
Λ
𝜇

,0,0
)

.

To obtain basic reproductive number 𝑅0𝑐
for system (3), we used the next generation matrix method [36,37] so that 𝑅0𝑐

is calculated 
from the Jacobian matrix 𝐹 𝑉 −1 computed at 𝐸0

𝑐 .

Considering the infected compartment 𝐼𝑐 , system (3) rewritten as

�̇� = 𝑓 (𝑥) =  (𝑥) − (𝑥),

where

 =
[
(1 − 𝜅 𝜌)𝛽𝑐

𝑆 𝐼𝑐

𝑁

]
and  =

[
(𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐

]
.

As a result, when we evaluate the corresponding Jacobian matrices at 𝐸0
𝑐 , we get

𝐹 =
[
(1 − 𝜅 𝜌)𝛽𝑐

]
and 𝑉 =

[
𝑟𝑐 + 𝛿1 + 𝜇

]
.

Then, the next generation matrix is provided as,[ (1 − 𝜅 𝜌)𝛽𝑐

]

5

𝐹 𝑉 −1 =
(𝑟𝑐 + 𝛿1 + 𝜇)

,
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and thus the basic reproduction number for system (3) is

𝑅0𝑐
=

(1 − 𝜅 𝜌)𝛽𝑐

(𝑟𝑐 + 𝛿1 + 𝜇)
. (6)

Remark 1. The basic reproduction number can be defined as the expected number of secondary infectious cases generated by one 
infectious individual during his or her infectious period in a fully susceptible population [37].

3.1.4. Disease-free equilibrium and its stability analysis

Theorem 3. The equilibrium, 𝐸0
𝑐 , of system (3) is locally asymptotically stable (LAS) for 𝑅0𝑐

< 1 and unstable when 𝑅0𝑐
> 1.

Proof. To prove the theorem, we compute system (3) at 𝐸0
𝑐 , which is given by

𝐽𝐸0
𝑐
=
⎛⎜⎜⎝
−𝜇 −(1 − 𝜅 𝜌)𝛽𝑐 0
0 (1 − 𝜅 𝜌)𝛽𝑐 − (𝑟𝑐 + 𝛿1 + 𝜇) 0
0 𝑟𝑐 −𝜇

⎞⎟⎟⎠ ,

and its eigenvalues are the roots of

(−𝜇 − 𝜆)(−𝜇 − 𝜆)([(1 − 𝜅 𝜌)𝛽𝑐 − (𝑟𝑐 + 𝛿1 + 𝜇)] − 𝜆) = 0.

Thus, the eigenvalues are

𝜆1 = −𝜇 = 𝜆2 and 𝜆3 = (1 − 𝜅 𝜌)𝛽𝑐 − (𝑟𝑐 + 𝛿1 + 𝜇).

The eigenvalues 𝜆1 and 𝜆2 have negative real parts. We can rewrite the eigenvalue 𝜆3 as

𝜆3 = (1 − 𝜅 𝜌)𝛽𝑐 − (𝑟𝑐 + 𝛿1 + 𝜇) = (𝑟𝑐 + 𝛿1 + 𝜇)
(

(1 − 𝜅 𝜌)𝛽𝑐

(𝑟𝑐 + 𝛿1 + 𝜇)
− 1

)
= (𝑟𝑐 + 𝛿1 + 𝜇)(𝑅0𝑐

− 1),

which have negative real part if and only if 𝑅0𝑐
< 1. Thus, all the eigenvalues of the Jacobian matrix 𝐽𝐸0

𝑐
are negative for if 𝑅0𝑐

< 1. 
As a result, system (3) has a LAS DFE, 𝐸0

𝑐 , when 𝑅0𝑐
< 1 and unstable if 𝑅0𝑐

> 1. □

Theorem 4. The DFE of the TB sub-model (3) is globally asymptotically stable (GAS) whenever 𝑅0𝑡
< 1.

Proof. Define the Lyapunov function as

𝑉 = 𝐼𝑐 .

The time derivative of 𝑉 becomes

�̇� = 𝐼𝑐

= 𝜆𝑐 𝑆 − (𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐

= [(1 − 𝜅 𝜌)𝛽𝑐
𝑆

𝑁
− (𝑟𝑐 + 𝛿1 + 𝜇)]𝐼𝑐

≤ [(1 − 𝜅 𝜌)𝛽𝑐 − (𝑟𝑐 + 𝛿1 + 𝜇)]𝐼𝑐

= (𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐 (𝑅0𝑐
− 1)

≤ 0, for 𝑅0𝑐
≤ 1.

It can be seen that �̇� ≤ 0 for 𝑅0𝑐
≤ 1, with �̇� = 0 if and only if 𝐼𝑐 = 0. Substituting 𝐼𝑐 = 0 into (3) shows that 𝑆 ⟶ Λ

𝜇
as 𝑡 ⟶∞. 

Thus, the largest compact invariant set in 
{
(𝑆 , 𝐼𝑐 , 𝑅𝑐) ∈ Ω𝐶 ∶ �̇� = 0

}
is 𝐸0

𝑐 . Therefore, using LaSalle’s invariance principle [38], every 
solution of (3), with initial conditions in Ω𝐶 approaches 𝐸0

𝑐 , as 𝑡 ⟶∞ for 𝑅0𝑐
≤ 1. □

3.1.5. Existence and stability of endemic equilibrium of system (3)

We now investigate the existence and stability of the endemic equilibrium (EE) for COVID-19 sub-model (3).
6

Theorem 5. The COVID-19 sub-model has a unique EE if and only if 𝑅0𝑐
> 1.
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Proof. To determine the EE equilibrium of system (3), we have to calculate given below:

⎧⎪⎨⎪⎩
Λ− (𝜇 + 𝜆∗

𝑐 )𝑆∗ = 0,

𝜆∗
𝑐 𝑆∗ − (𝑟𝑐 + 𝛿1 + 𝜇)𝐼∗

𝑐 = 0,

𝑟𝑐 𝐼∗
𝑐 − 𝜇𝑅∗

𝑐 = 0,

(7)

where 𝜆∗
𝑐 = (1 − 𝜅 𝜌)𝛽𝑐

𝐼∗
𝑐

𝑁∗ = (1 − 𝜅 𝜌)𝛽𝑐

𝐼∗
𝑐

𝑆∗ + 𝐼∗
𝑐 + 𝑅∗

𝑐

.

From system (7), solving for 𝑆∗, 𝐼∗
𝑐 and 𝑅∗

𝑐 , we get the EE of sub-model (3)

𝑆∗ =
Λ(𝑟𝑐 + 𝜇)𝑅0𝑐

𝜇[(1 − 𝜅 𝜌)𝛽𝑐 (𝑅0𝑐
− 1) + (𝑟𝑐 + 𝜇)𝑅0𝑐

]
,

𝐼∗
𝑐 =

𝜇(𝑅0𝑐
− 1)

𝜇 + 𝑟𝑐

𝑆∗,

𝑅∗
𝑐 =

𝑟𝑐

𝜇
𝐼∗

𝑐 .

(8)

It is easily observed from (8) that the sub-model (3) has a unique EE when 𝑅0𝑐
> 1, but does not have any EE when 𝑅0𝑐

< 1. □

The next result arises from Theorem 2 provided in [37].

Theorem 6. (Local stability of EE:) The unique EE, 𝐸∗
𝑐 , of system (3) is LAS if 𝑅0𝑐

> 1 otherwise unstable.

3.1.6. Bifurcation analysis

This section presents the direction of the bifurcation, forward or backward, i.e., the exchange of stability for DFE with an EE based 
on threshold value 𝑅0𝑐

. A model with globally stable equilibrium means it does not show the phenomenon of backward bifurcation, 
which occurs when a stable DFE coexists with a stable EE [21,23,34,35]. We use the center manifold theory as described in Theorem 
4.1 from [39]. It is first necessary to simplify and change variables in order to apply this theory.

Denote 𝑥 = (𝑥1, 𝑥2, 𝑥3)𝑇 = (𝑆 , 𝐼𝑐 , 𝑅𝑐)𝑇 . Then system (3) is rewritable as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑 𝑥1
𝑑 𝑡

= 𝑓1(𝑥) = Λ− (1 − 𝜅 𝜌)𝛽𝑐

𝑥1𝑥2
𝑥1 + 𝑥2 + 𝑥3

− 𝜇𝑥1,

𝑑 𝑥2
𝑑 𝑡

= 𝑓2(𝑥) = (1 − 𝜅 𝜌)𝛽𝑐

𝑥1𝑥2
𝑥1 + 𝑥2 + 𝑥3

− (𝑟𝑐 + 𝛿1 + 𝜇)𝑥2,

𝑑 𝑥3
𝑑 𝑡

= 𝑓3(𝑥) = 𝑟𝑐 𝑥2 − 𝜇𝑥3.

(9)

Considering the case 𝑅0𝑐
= 1, and selecting 𝛽∗

𝑐 as the bifurcation parameter, we get

𝛽𝑐 = 𝛽∗
𝑐 =

(𝑟𝑐 + 𝛿1 + 𝜇)
1 − 𝜅 𝜌

.

The linearization of system (9) at 𝐸0
𝑐 and 𝛽𝑐 = 𝛽∗

𝑐 is given by

𝐽(𝐸0
𝑐 ,𝛽∗

𝑐 )
=
⎛⎜⎜⎝
−𝜇 −(𝑟𝑐 + 𝛿1 + 𝜇) 0
0 0 0
0 𝑟𝑐 −𝜇

⎞⎟⎟⎠ .

Clearly, the eigenvalues of 𝐽(𝐸0
𝑐 ,𝛽∗

𝑐 )
are −𝜇, 0, and −𝜇. This implies 𝐸0

𝑐 is non-hyperbolic. Hence, we can apply the Castillo-Chavez 
and Song [39] to investigate the dynamics of the system (9) near 𝛽𝑐 = 𝛽∗

𝑐 . Indeed, we carry on as follows.

Representing the right eigenvector of the system (9) by 𝑤 = (𝑤1, 𝑤2, 𝑤3)𝑇 and solving for

𝐽(𝐸0
𝑐 ,𝛽∗

𝑐 )
⋅ 𝑤 = 0,

we get the right eigenvectors

𝑤1 = −
(𝑟𝑐 + 𝛿1 + 𝜇)

𝑟𝑐

𝑤3, 𝑤2 =
𝜇

𝑟𝑐

𝑤3, 𝑤3 = 𝑤3 > 0.

Likewise, representing the left eigenvector of the system (9) by 𝑣 = (𝑣1, 𝑣2, 𝑣3) and solving for
7

𝑣 ⋅ 𝐽(𝐸0
𝑐 ,𝛽∗

𝑐 )
= 0,
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we get the left eigenvectors

𝑣1 = 0, 𝑣3 = 0, 𝑣2 = 𝑣2 > 0.

The two eigenvectors must fulfill the condition 𝑣 ⋅ 𝑤 = 1, i.e.,

𝜇

𝑟𝑐

𝑣2𝑤3 = 1.

Direction of the bifurcation: The coefficients of the bifurcation at 𝐸0
𝑐 are given as

𝑎 = ∑3

𝑘,𝑖,𝑗=1
𝑣𝑘 𝑤𝑖 𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖 𝜕𝑥𝑗

(𝐸0
𝑐 , 𝛽∗

𝑐 )

𝑏 = ∑3

𝑘,𝑖=1
𝑣𝑘 𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖 𝜕𝛽𝑐

(𝐸0
𝑐 , 𝛽∗

𝑐 ).

Since 𝑣1 = 0 and 𝑣3 = 0, all that is required are the partial derivatives of 𝑓2, where

𝑓2 =
𝛽𝑐 𝑥1𝑥2

𝑥1 + 𝑥2 + 𝑥3
− (𝑟𝑐 + 𝛿1 + 𝜇)𝑥2.

Computing the 2nd order partial derivatives of 𝑓2 at (𝐸0
𝑐 , 𝛽∗

𝑐 ), we have the followings nonzero derivatives:

𝜕2𝑓2
𝜕𝑥3𝜕𝑥2

(𝐸0
𝑐 , 𝛽∗

𝑐 ) = −(1 − 𝜅 𝜌)
𝛽∗

𝑐 𝜇

Λ
, and

𝜕2𝑓2

𝜕𝑥2
2

(𝐸0
𝑐 , 𝛽∗

𝑐 ) = −2(1 − 𝜅 𝜌)
𝛽∗

𝑐 𝜇

Λ
.

Furthermore,

𝜕2𝑓2
𝜕𝑥2𝜕𝛽𝑐

(𝐸0
𝑐 , 𝛽∗

𝑐 ) = (1 − 𝜅 𝜌).

To ascertain the type of the bifurcation, we need to calculate and find out the sign for 𝑎 and 𝑏, which are bifurcation coefficients 
evaluated at the DFE (𝐸0

𝑐 ). Hence, we obtain

𝑎 = 𝑣2

[
2𝑤2𝑤3

𝜕2𝑓2
𝜕𝑥2𝜕𝑥3

+ 𝑤2
2

𝜕2𝑓2

𝜕𝑥2
2

]

= −2𝑣2
𝜇(𝑟𝑐 + 𝛿1 + 𝜇)

Λ
(

𝑤3𝑤2 + 𝑤2
2
)

< 0,

𝑏 = 𝑣2

(
𝑤2

𝜕2𝑓2
𝜕𝑥2𝜕𝛽𝑐

)
= (1 − 𝜅 𝜌)𝑣2𝑤2 > 0.

Because 𝑎 < 0 and 𝑏 > 0, according to Theorem 4.1 given in [39], the COVID-19 infection model (3) doesn’t exhibit the backward 
bifurcation phenomenon at 𝑅0𝑐

= 1. Thus, we can have the next conclusion.

Theorem 7. The unique EE, 𝐸∗
𝑐 , of system (3) is GAS if 𝑅0𝑐

> 1.

The appearance of forward/transcritical bifurcation indicates that having 𝑅0𝑐
< 1, is a necessary and possibly sufficient condition 

to control the load of the disease from the populations.

3.2. TB sub-model

By making 𝐼𝑐 (𝑡) = 𝑅𝑐(𝑡) = 𝐼𝑐 𝐿(𝑡) = 𝐼𝑡𝑐(𝑡) = 0 in system (1), we get the TB sub-model:

⎧⎪⎪⎨⎪⎪⎩

�̇� =Λ− (𝜇 + 𝜆𝑡)𝑆 ,

�̇� = 𝜆𝑡 𝑆 + 𝜑𝜆𝑡 𝑅𝑡 − (𝜙𝑡 + 𝑟𝐿 + 𝜇)𝐿,

�̇�𝑡 = 𝜙𝑡 𝐿 − (𝑟𝑡 + 𝛿2 + 𝜇)𝐼𝑡 ,

�̇�𝑡 = 𝑟𝐿 𝐿 + 𝑟𝑡 𝐼𝑡 − (𝜑𝜆𝑡 + 𝜇)𝑅𝑡 ,

(10)

where 𝜆𝑡 =
𝛽𝑡 𝐼𝑡

𝑁
with 𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐼𝑡(𝑡) + 𝑅𝑡(𝑡).

Theorem 8. Given the initial condition (2), solutions of the TB sub-model (10) remain positive for all time 𝑡 > 0 and the biologically feasible 
8

region
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Ω𝑇 =
{
(𝑆 , 𝐿, 𝐼𝑡 , 𝑅𝑡) ∈ℝ4

+ ∶ 𝑁(𝑡) ≤ Λ
𝜇

}
,

is positively invariant and globally attracting for system (10).

Proof. Adding the right hand side of the TB sub-model (10), the total population satisfy

�̇�(𝑡) = Λ − 𝜇𝑁 − 𝛿2𝐼𝑡 ≤ Λ− 𝜇𝑁 . (11)

Note that, from the initial values (2), we have 𝑁(0) ≥ 0. Hence, for every finite time 𝑡 > 0, the total population is non-negative and 
bounded. Indeed, the differential equation (11) gives us:

𝑁(𝑡) ≤ Λ
𝜇

,

as 𝑡 ⟶ +∞. Hence, the region of definition for system (10) is

Ω𝑇 =
{
(𝑆 , 𝐿, 𝐼𝑡 , 𝑅𝑡) ∈ℝ4

+ ∶ 𝑁(𝑡) ≤ Λ
𝜇

}
,

and it is positively invariant as well as attracts the solution starting in Ω𝑇 . Thus, it is sufficient to study the TB sub-model (10)

dynamics in Ω𝑇 . □

3.2.1. Basic reproduction number for TB sub-model

The DFE point of the TB sub-model (10) is obtained when 𝐿 = 𝐼𝑡 = 0 and is given by

𝐸0
𝑡 = (𝑆0, 𝐿0, 𝐼0

𝑡 , 𝑅0
𝑡 ) =

(
Λ
𝜇

,0,0,0
)

.

Following the approach in [37], and considering the infected compartments 𝑥 = (𝐿, 𝐼𝑡)𝑇 , system (10) rewritten as

�̇� =  (𝑥) − (𝑥),

where

 =
⎡⎢⎢⎢⎣

𝛽𝑡

(𝑆 + 𝜑𝑅𝑡)𝐼𝑡

𝑁

0

⎤⎥⎥⎥⎦ and  =
[

(𝜙𝑡 + 𝑟𝐿 + 𝜇)𝐿

−𝜙𝑡 𝐿 + (𝑟𝑡 + 𝛿2 + 𝜇)𝐼𝑡

]
.

Hence, the corresponding Jacobian matrices evaluated at 𝐸0
𝑡 are given as

𝐹 =
[
0 𝛽𝑡

0 0

]
and 𝑉 =

[
𝜙𝑡 + 𝑟𝐿 + 𝜇 0

−𝜙𝑡 𝑟𝑡 + 𝛿2 + 𝜇

]
.

As a result we obtain

𝑉 −1 =

⎡⎢⎢⎢⎢⎣
1

𝜙𝑡 + 𝑟𝐿 + 𝜇
0

𝜙𝑡

(𝜙𝑡 + 𝑟𝐿 + 𝜇)(𝑟𝑡 + 𝛿2 + 𝜇)
1

𝑟𝑡 + 𝛿2 + 𝜇

⎤⎥⎥⎥⎥⎦
.

Thus, the next generation matrix is provided by

𝐹 𝑉 −1 =
⎡⎢⎢⎢⎣

𝛽𝑡 𝜙𝑡

(𝜙𝑡 + 𝑟𝐿 + 𝜇)(𝑟𝑡 + 𝛿2 + 𝜇)
𝛽𝑡

𝑟𝑡 + 𝛿2 + 𝜇

0 0

⎤⎥⎥⎥⎦ .

The dominant eigenvalue of 𝐹 𝑉 −1 is the basic reproduction number for TB sub-model, i.e.,

𝑅0𝑡
=

𝛽𝑡 𝜙𝑡

(𝜙𝑡 + 𝑟𝐿 + 𝜇)(𝑟𝑡 + 𝛿2 + 𝜇)
. (12)

Next, we examine the local and global asymptotic stability of the DFE, 𝐸0
𝑡 , of TB sub-model (10), to determine if the small 

deviations from the equilibrium point will increase or decrease with time.

3.2.2. Disease-free equilibrium and its stability analysis
9

Theorem 9. The TB sub-model (10) has a LAS DFE, 𝐸0
𝑡 , whenever 𝑅0𝑡

< 1, and unstable otherwise.
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Proof. First, let as linearize the system (10) at DFE (𝐸0
𝑡 ) to get:

𝐽𝐸0
𝑡
=

⎛⎜⎜⎜⎜⎝
−𝜇 0 −𝛽𝑡 0
0 −𝑘1 𝛽𝑡 0
0 𝜙𝑡 −𝑘2 0
0 𝑟𝐿 𝑟𝑡 −𝜇

⎞⎟⎟⎟⎟⎠
,

where

𝑘1 = 𝜙𝑡 + 𝑟𝐿 + 𝜇 and 𝑘2 = 𝑟𝑡 + 𝛿2 + 𝜇. (13)

It is obvious that 𝜆1 = −𝜇 = 𝜆4 are the two negative eigenvalues of 𝐽𝐸0
𝑡
. The remaining eigenvalues of 𝐽𝐸0

𝑡
are obtained from the block 

matrix

𝐽1𝐸0
𝑡
=
(
−𝑘1 𝛽𝑡

𝜙𝑡 −𝑘2

)
,

and they are the roots of

𝑃 (𝜆) = 𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, (14)

where

𝑎1 = 𝑘1 + 𝑘2,

𝑎2 = 𝑘1𝑘2(1 − 𝑅0𝑡
).

It can be clearly seen that, 𝑎1 > 0 and 𝑎2 > 0 for 𝑅0𝑡
< 1. Again, applying Routh-Hurwitz stability criterion [40,41], the characteristic 

polynomial (14) have the roots with negative real part, if 𝑅0𝑡
< 1. If 𝑅0𝑡

> 1, then 𝑎3 < 0 and the equilibrium 𝐸0
𝑡 becomes unstable. 

Hence, the DFE 𝐸0
𝑡 of the TB sub-model (10) is LAS for 𝑅0𝑡

< 1. □

Theorem 10. (Global stability of DFE:) For 𝑅0𝑡
< 1, the DFE of the TB sub-model (10) is GAS.

Proof. Define the Lyapunov function

𝑉 = 𝑘2𝐿 + 𝛽𝑡 𝐼𝑡 ,

where 𝑘1 and 𝑘2 are given in (13).

The time derivative of 𝑉 becomes

�̇� = 𝑘2�̇� + 𝛽𝑡 �̇�𝑡

= 𝑘2[𝜆𝑡 𝑆 + 𝜑𝜆𝑡 𝑅𝑡 − 𝑘1𝐿] + 𝛽𝑡[𝜙𝑡 𝐿 − 𝑘2𝐼𝑡]

= 𝑘2

[
𝛽𝑡 𝐼𝑡

𝑁
[𝑆 + 𝜑𝑅𝑡] − 𝑘1𝐿

]
+ 𝛽𝑡[𝜙𝑡 𝐿 − 𝑘2𝐼𝑡]

≤ 𝑘2

[
𝛽𝑡 𝐼𝑡

𝑁
𝑁 − 𝑘1𝐿

]
+ 𝛽𝑡[𝜙𝑡 𝐿 − 𝑘2𝐼𝑡]

= 𝛽𝑡 𝜙𝑡 𝐿 − 𝑘1𝑘2𝐿

= 𝑘1𝑘2𝐿 (𝑅0𝑡
− 1)

≤ 0, for 𝑅0𝑡
≤ 1.

It can be seen that �̇� ≤ 0 for 𝑅0𝑡
≤ 1, with �̇� = 0 if and only if 𝐿 = 𝐼𝑡 = 0. Substituting (𝐿, 𝐼𝑡) = (0, 0) into (10) shows that 𝑆 ⟶ Λ

𝜇
as 

𝑡 ⟶∞. Therefore, the largest compact invariant set in 
{
(𝑆 , 𝐿, 𝐼𝑡 , 𝑅𝑡) ∈ Ω𝑇 ∶ �̇� = 0

}
is 𝐸0

𝑡 and using LaSalle’s invariance principle, 𝐸0
𝑡

is globally asymptotically stable in Ω𝑇 for 𝑅0𝑡
≤ 1. □

3.2.3. Existence and stability of the endemic equilibrium of the TB sub-model

In this subsection, we determine the non zero point for all population components in the TB sub-model.
10

Theorem 11. The TB sub-model (10) has only one EE whenever 𝑅0𝑡
> 1.
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Proof. To proof the theorem, we proceed as follows by solving succeeding system of equations:

Λ− (𝜇 + 𝜆∗
𝑡 )𝑆∗ = 0

𝜆∗
𝑡 𝑆∗ + 𝜑𝜆∗

𝑡 𝑅∗
𝑡 − 𝑘1𝐿∗ = 0

𝜙𝑡 𝐿∗ − 𝑘2𝐼∗
𝑡 = 0

𝑟𝐿 𝐿∗ + 𝑟𝑡 𝐼∗
𝑡 − (𝜇 + 𝜑𝜆∗

𝑡 )𝑅∗
𝑡 = 0,

(15)

where 𝜆∗
𝑡 =

𝛽𝑡 𝐼∗
𝑡

𝑁∗ =
𝛽𝑡 𝐼∗

𝑡

𝑆∗ + 𝐿∗ + 𝐼∗
𝑡 + 𝑅∗

𝑡

and 𝑘1, 𝑘2 are given in (13).

A few algebraic calculations later, from equation (15), one can get

𝑆∗ = Λ
𝜆∗

𝑡 + 𝜇
,

𝐿∗ =
Λ𝑘2𝜆∗

𝑡 (𝜑𝜆∗
𝑡 + 𝜇)

(𝜆∗
𝑡 + 𝜇)(𝜑𝜆∗

𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)
,

𝐼∗
𝑡 =

Λ𝜙𝑡 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)
(𝜆∗

𝑡 + 𝜇)(𝜑𝜆∗
𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)

,

𝑅∗
𝑡 =

Λ𝜆∗
𝑡 (𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡)

(𝜆∗
𝑡 + 𝜇)(𝜑𝜆∗

𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)
,

(16)

where

𝜆∗
𝑡 =

𝛽𝑡 𝐼∗
𝑡

𝑆∗ + 𝐿∗ + 𝐼∗
𝑡 + 𝑅∗

𝑡

. (17)

Note that

𝛽𝑡 𝐼∗
𝑡 =

𝛽𝑡Λ𝜙𝑡 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)
(𝜆∗

𝑡 + 𝜇)(𝜑𝜆∗
𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)

. (18)

Also, using equation (16) we have

𝑆∗ + 𝐿∗ + 𝐼∗
𝑡 + 𝑅∗

𝑡 = Λ
𝜆∗

𝑡 + 𝜇
+

Λ𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)
(𝜆∗

𝑡 + 𝜇)(𝜑𝜆∗
𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)

[
𝑘2 + 𝜙𝑡 + 𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡

]
.

This implies

𝑆∗ + 𝐿∗ + 𝐼∗
𝑡 + 𝑅∗

𝑡 = Λ
(𝜑𝜆∗

𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2) + 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)(𝑘2 + 𝜙𝑡 + 𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡)
(𝜆∗

𝑡 + 𝜇)(𝜑𝜆∗
𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2)

. (19)

Substituting (18) and (19) into (17), we have

𝜆∗
𝑡 =

𝜙𝑡 𝛽𝑡 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)
(𝜑𝜆∗

𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2) + 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)(𝑘2 + 𝜙𝑡 + 𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡)
.

This gives us

𝜆∗
𝑡 = 0 or 𝜑𝜆∗

𝑡 [𝜇𝑘2 + 𝜙𝑡(𝛿2 + 𝜇)] + 𝜇𝑘1𝑘2 + 𝜆∗
𝑡 (𝜑𝜆∗

𝑡 + 𝜇)(𝑘2 + 𝜙𝑡 + 𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡) − 𝜙𝑡 𝛽𝑡(𝜑𝜆∗
𝑡 + 𝜇) = 0.

Here, 𝜆∗
𝑡 = 0 gives the DFE point. From the second equation we obtain

𝐴(𝜆∗
𝑡 )

2 + 𝐵𝜆∗
𝑡 + 𝐶 = 0, (20)

where

𝐴 = 𝜑[𝑘2 + 𝜙𝑡 + (𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡)]

𝐵 = 𝜑[𝜇𝑟𝑡 + 𝑘1𝑘2(1 − 𝑅0𝑡
)] + 𝜇[𝑘2 + 𝜙𝑡 + (𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡)]

𝐶 = 𝜇𝑘1𝑘2(1 − 𝑅0𝑡
).

(21)
11
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As it is observed from (21), 𝐵 > 0 and 𝐶 > 0 for 𝑅0𝑡
< 1. This implies that there does no positive root(s) of (20) exists. For 𝑅0𝑡

> 1, we 
have that 𝐶 < 0, and 𝐵 either positive or negative. This implies the existence of a unique positive root of (20). □

3.2.4. Bifurcation analysis

By using the center manifold theory described in [39], the global stability of the TB sub-model (10) is investigated using the same 
technique as in Section 3.1. It is first necessary to simplify and change variables in order to apply this theory.

Denoting 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑇 = (𝑆 , 𝐿, 𝐼𝑡 , 𝑅𝑡)𝑇 , the infection model (10) can be altered to take the form 𝑑 𝑥

𝑑 𝑡
= 𝑓 (𝑥), as follows

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑑 𝑥1
𝑑 𝑡

= 𝑓1(𝑥) = Λ− 𝛽𝑡

𝑥1𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

− 𝜇𝑥1,

𝑑 𝑥2
𝑑 𝑡

= 𝑓2(𝑥) = 𝛽𝑡

𝑥1𝑥3
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

+ 𝛽𝑡

𝜑𝑥3𝑥4
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

− (𝜙𝑡 + 𝑟𝐿 + 𝜇)𝑥2,

𝑑 𝑥3
𝑑 𝑡

= 𝑓3(𝑥) = 𝜙𝑡 𝑥2 − (𝑟𝑡 + 𝛿2 + 𝜇)𝑥3,

𝑑 𝑥4
𝑑 𝑡

= 𝑓4(𝑥) = 𝑟𝐿 𝑥2 + 𝑟𝑡 𝑥3 − 𝛽𝑡

𝜑𝑥3𝑥4
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

− 𝜇𝑥4.

(22)

By selecting 𝛽∗
𝑡 as the bifurcation parameter and 𝑅0𝑡

is set to 1, we get

𝛽𝑡 = 𝛽∗
𝑡 =

(𝜙𝑡 + 𝑟𝐿 + 𝜇)(𝑟𝑡 + 𝛿2 + 𝜇)
𝜙𝑡

.

Given below is the linearized matrix for system (22) at 𝐸0
𝑡 and 𝛽𝑡 = 𝛽∗

𝑡 .

𝐽(𝐸0
𝑡 ,𝛽∗

𝑡 )
=

⎛⎜⎜⎜⎜⎝
−𝜇 0 −𝛽∗

𝑡 0
0 −(𝜙𝑡 + 𝑟𝐿 + 𝜇) 𝛽∗

𝑡 0
0 𝜙𝑡 −(𝑟𝑡 + 𝛿2 + 𝜇) 0
0 𝑟𝐿 𝑟𝑡 −𝜇

⎞⎟⎟⎟⎟⎠
.

Clearly, 𝜆1 = −𝜇 = 𝜆4 are negative. The rest are obtained from

𝜆2 + (𝜙𝑡 + 𝑟𝐿 + 𝑟𝑡 + 𝛿2 + 2𝜇)𝜆 = 0,

which are 𝜆2 = 0 and 𝜆3 = −(𝜙𝑡 + 𝑟𝐿 + 𝑟𝑡 + 𝛿2 + 2𝜇). This implies, at 𝛽𝑡 = 𝛽∗
𝑡 , the DFE, 𝐸0

𝑡 , is a non-hyperbolic.

Next, we proceed the method as follows. Representing the right eigenvector of the system (22) by 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)𝑇 and 
solving for

𝐽(𝐸0
𝑡 ,𝛽∗

𝑡 )
⋅ 𝑤 = 0,

we get the right eigenvectors

𝑤1 = −
𝑘1𝑘2

𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡

𝑤4, 𝑤2 =
𝜇𝑘2

𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡

𝑤4, 𝑤3 =
𝜇𝜙𝑡

𝑟𝐿 𝑘2 + 𝑟𝑡 𝜙𝑡

𝑤4, 𝑤4 = 𝑤4 > 0.

Similarly, representing the left eigenvector of the system (22) by 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) and solving for

𝑣 ⋅ 𝐽(𝐸0
𝑡 ,𝛽∗

𝑡 )
= 0,

we get the left eigenvectors

𝑣1 = 0, 𝑣4 = 0, 𝑣2 =
𝜙𝑡

𝜙𝑡 + 𝑟𝐿 + 𝜇
𝑣3, 𝑣3 = 𝑣3 > 0.

Both eigenvectors must fulfill:

𝑣 ⋅ 𝑤 = 𝑣3𝑤4

(
𝑟𝑡 + 𝛿2 + 𝜇

𝜙𝑡 + 𝑟𝐿 + 𝜇
+ 1

)
𝜇𝜙𝑡

𝑟𝐿(𝜙𝑡 + 𝑟𝐿 + 𝜇) + 𝑟𝑡 𝜙𝑡

= 1.

Direction of the bifurcation: The coefficients of the bifurcation at 𝐸0
𝑡 are given as:

𝑎 = ∑4

𝑘,𝑖,𝑗=1
𝑣𝑘 𝑤𝑖 𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖 𝜕𝑥𝑗

(𝐸0
𝑡 , 𝛽∗

𝑡 )∑4 𝜕2𝑓𝑘 0 ∗
12

𝑏 =
𝑘,𝑖=1

𝑣𝑘 𝑤𝑖 𝜕𝑥𝑖 𝜕𝛽𝑡

(𝐸𝑡 , 𝛽𝑡 ).
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Since 𝑣1 = 𝑣4 = 0, we do not need the derivatives of 𝑓1 and 𝑓4. Also, the second-order partial derivatives of 𝑓3 are all zero. Therefore, 
all that is required are the partial derivatives of 𝑓2, where

𝑓2 =
𝛽𝑡 𝑥1𝑥3

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4
+

𝛽𝑡 𝜑𝑥3𝑥4
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

− (𝜙𝑡 + 𝑟𝐿 + 𝜇)𝑥2.

Thus, we obtain the following nonzero 2nd order partial derivatives of 𝑓2 at (𝐸0
𝑡 , 𝛽∗

𝑡 ):

𝜕2𝑓2
𝜕𝑥3𝜕𝑥2

(𝐸0
𝑡 , 𝛽∗

𝑡 ) =
𝜕2𝑓2

𝜕𝑥3𝜕𝑥4
(𝐸0

𝑡 , 𝛽∗
𝑡 ) = −𝛽∗

𝑡

𝜇

Λ
,

𝜕2𝑓2

𝜕𝑥2
3

(𝐸0
𝑡 , 𝛽∗

𝑡 ) = −2𝛽∗
𝑡

𝜇

Λ
, and

𝜕2𝑓2
𝜕𝑥3𝜕𝛽𝑡

(𝐸0
𝑡 , 𝛽∗

𝑡 ) = 1.

Now, we obtain

𝑎 =
4∑

𝑘,𝑖,𝑗=1
𝑣𝑘 𝑤𝑖 𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖 𝜕𝑥𝑗

(𝐸0
𝑡 , 𝛽∗

𝑡 )

= 𝑣2

[
2𝑤3𝑤2

𝜕2𝑓2
𝜕𝑥3𝜕𝑥2

(𝐸0
𝑡 , 𝛽∗

𝑡 ) + 2𝑤3𝑤4
𝜕2𝑓2

𝜕𝑥3𝜕𝑥4
(𝐸0

𝑡 , 𝛽∗
𝑡 ) + 𝑤2

3
𝜕2𝑓2

𝜕𝑥2
3

(𝐸0
𝑡 , 𝛽∗

𝑡 )

]
= −2𝛽∗

𝑡

𝜇

Λ
(𝑤2 + 𝑤3 + 𝜑𝑤4)𝑣2𝑤3 < 0.

Further, the bifurcation constant 𝑏 is provided by

𝑏 =
4∑

𝑘,𝑖=1
𝑣𝑘 𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖 𝜕𝛽𝑡

(𝐸0
𝑡 , 𝛽∗

𝑡 )

= 𝑣2𝑤3
𝜕2𝑓2

𝜕𝑥3𝜕𝛽𝑡

(𝐸0
𝑡 , 𝛽∗

𝑡 )

= 𝑣2𝑤3 > 0.

Thus, 𝑎 < 0 and 𝑏 > 0 at 𝛽𝑡 = 𝛽∗
𝑡 . Therefore, Theorem 4.1 in [39] implies the TB sub-model (10) doesn’t demonstrate the backward 

bifurcation conditions at 𝑅0𝑡
= 1 and thus, the coexistence of a stable DFE with a stable EE is not possible. As a result, the next 

conclusion follows.

Theorem 12. The unique EE (𝐸0
𝑡 ) of the TB sub-model (10) is GAS if 𝑅0𝑡

> 1.

3.3. COVID-19-TB co-infection model

This section presents the analysis of the full TB-COVID-19 system given in (1). The region of invariance for model (1) is given by

Ω𝐶 𝑇 =Ω𝐶 ×Ω𝑇 ,

where Ω𝐶 and Ω𝑇 , respectively are the invariant region for the sub-models (3) and (10). Following the same approach in [23,34,35], 
one can show that for any time 𝑡 ≥ 0, the solution of model (1) with non-negative initial values (2) remains non-negative. Moreover, 
from permanence theory [33], all solutions of system (1) at the boundary of Ω𝐶 𝑇 enter the interior of Ω𝐶 𝑇 . Hence, Ω𝐶 𝑇 is positively 
invariant as well as attracts the flow generated by model (1).

3.3.1. Stability analysis of the disease-free equilibrium

The TB-COVID-19 model (1) has a DFE which is provided by

𝐸0 = (𝑆0, 𝐿0, 𝐼0
𝑐 , 𝐼0

𝑡 , 𝐼0
𝑐 𝐿

, 𝐼0
𝑡𝑐 , 𝑅0

𝑡 , 𝑅0
𝑐 ) =

(
Λ
𝜇

,0,0,0,0,0,0,0
)

.

As shown in the previous sections, one can apply the next generation method and obtain the basic reproduction number of COVID-19 
and TB co-infection model (1) as follows:

𝑅0 = max
{

𝑅0𝑐
, 𝑅0𝑡

}
,

where 𝑅0𝑐
and 𝑅0𝑡

are as given in (6) and (12), respectively. From this we conclude that the co-infection dynamics will be in control 
of by the disease that have highest reproductive number.
13

Theorem 13. For 𝑅0 < 1, the DFE, 𝐸0, of the system (1) is LAS, and unstable otherwise.
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Proof. The linearized matrix of system (1) at 𝐸0, is given as

𝐽𝐸0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜇 0 −𝛽𝑐 (1 − 𝜅 𝜌) −𝛽𝑡 −𝛽𝑐 𝜏(1 − 𝜅 𝜌) −𝛽𝑐 𝜏(1 − 𝜅 𝜌) − 𝛽𝑡 0 0
0 −𝑘1 0 𝛽𝑡 𝜂𝐿 𝛽𝑡 0 0
0 0 𝛽𝑐 (1 − 𝜅 𝜌) − 𝑘2 0 𝛽𝑐 𝜏(1 − 𝜅 𝜌) 𝛼𝑐 + 𝛽𝑐 𝜏(1 − 𝜅 𝜌) 0 0
0 𝜙𝑡 0 −𝑘3 0 𝜃 0 0
0 0 0 0 −𝑘4 0 0 0
0 0 0 0 𝜂𝑐 −𝑘5 0 0
0 0 𝑟𝑐 0 0 0 −𝜇 0
0 𝑟𝐿 0 𝑟𝑡 0 0 0 −𝜇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

𝑘1 = 𝜙𝑡 + 𝑟𝐿 + 𝜇, 𝑘2 = 𝑟𝑐 + 𝛿1 + 𝜇, 𝑘3 = 𝑟𝑡 + 𝛿2 + 𝜇, 𝑘4 = 𝜂𝑐 + 𝜂𝐿 + 𝜇, 𝑘5 = 𝛼𝑐 + 𝜃 + 𝛿3 + 𝜇. (23)

Note that, 𝜆1 = −𝜇, 𝜆7 = −𝜇 and 𝜆8 = −𝜇 are the eigenvalues of 𝐽𝐸0 . The remaining eigenvalues of 𝐽𝐸0 are obtained from the block 
matrix

𝐽1𝐸0 =

⎛⎜⎜⎜⎜⎜⎝

−𝑘1 0 𝛽𝑡 𝜂𝐿 𝛽𝑡

0 𝛽𝑐(1 − 𝜅 𝜌) − 𝑘2 0 𝛽𝑐 𝜏(1 − 𝜅 𝜌) 𝛼𝑐 + 𝛽𝑐 𝜏(1 − 𝜅 𝜌)
𝜙𝑡 0 −𝑘3 0 𝜃

0 0 0 −𝑘4 0
0 0 0 𝜂𝑐 −𝑘5

⎞⎟⎟⎟⎟⎟⎠
.

The eigenvalues of 𝐽1𝐸0 are obtained from the following block matrices:

𝐽2𝐸0 =
⎛⎜⎜⎝
−𝑘1 0 𝛽𝑡

0 𝛽𝑐(1 − 𝜅 𝜌) − 𝑘2 0
𝜙𝑡 0 −𝑘3

⎞⎟⎟⎠ and 𝐽3𝐸0 =
(
−𝑘4 0

𝜂𝑐 −𝑘5

)
.

Clearly, 𝜆5 = −𝑘4 and 𝜆6 = −𝑘5 are the eigenvalues of 𝐽3𝐸0 (which are negative) and the eigenvalues for 𝐽2𝐸0 are obtained from(
𝑘2

[
𝑅0𝑐

− 1
]
− 𝜆

)(
𝜆2 + 𝑎1𝜆 + 𝑎2

)
= 0, (24)

where

𝑎1 = 𝑘1 + 𝑘2
𝑎2 = 𝑘1𝑘2[1 − 𝑅0𝑡

].

From (24), we obtain the eigenvalues with negative real parts, when 𝑅0 = max
{

𝑅0𝑐
, 𝑅0𝑡

}
< 1. Hence, 𝐸0 is LAS if 𝑅0 < 1 and unstable 

otherwise. □

In the following theorem, the GAS of DFE for model (1) is performed following the approach in [42].

Theorem 14. If 𝑅0 < 1, the DFE (𝐸0) of the TB-COVID-19 model (1) is globally asymptotically stable in Ω𝐶 𝑇 .

Proof. To proof the theorem, we first rewrite the co-dynamics model (1) in the form

𝑑
𝑑 𝑡

= 𝐹 ( , ),
𝑑

𝑑 𝑡
= 𝐺( , ), with 𝐺( , 0) = 0,

where  = (𝑆 , 𝑅𝑐 , 𝑅𝑡) ∈ ℝ3
+ denotes non-infected compartments, and  = (𝐿, 𝐼𝑐 , 𝐼𝑡 , 𝐼𝑐 𝐿 , 𝐼𝑡𝑐) ∈ ℝ5

+ denotes the infected compartments. 
Then we have to check the following two requirements.

(𝐻1)
𝑑

𝑑 𝑡
= 𝐹 ( , 0), ∗ is GAS, where 𝐹 (∗, 0) = 0.

(𝐻2) 𝐺( , ) = 𝐵 − �̃�( , ), �̃�( , ) > 0 for ( , ) ∈Ω𝐶 𝑇 , where 𝐵 = 𝐷 𝐺(∗, 0) is an M-matrix.

For the co-dynamics model (1), we have

𝑑 =
⎛⎜Λ− 𝜇𝑆

−𝜇𝑅𝑐

⎞⎟ (25)
14

𝑑 𝑡 ⎜⎝ −𝜇𝑅𝑡

⎟⎠
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The DFE for the system (25) is given by ∗ = (Λ
𝜇

, 0, 0). The system (25) is globally asymptotically stable around its unique equilibrium 

point ∗. Indeed, the trajectories 𝑆(𝑡) = Λ
𝜇
+(𝑆(0) − Λ

𝜇
)𝑒−𝜇𝑡, 𝑅𝑐(𝑡) = 𝑅𝑐(0)𝑒−𝜇𝑡 and 𝑅𝑡(𝑡) = 𝑅𝑡(0)𝑒−𝜇𝑡 satisfies lim

𝑡⟶∞
𝑆(𝑡) = Λ

𝜇
, lim

𝑡⟶∞
𝑅𝑐(𝑡) =

0 and lim
𝑡⟶∞

𝑅𝑡(𝑡) = 0, respectively, which implies that the global convergence of the system (25) in Ω𝐶 𝑇 . Thus, the condition (𝐻1) is 
satisfied.

Furthermore, from model (1), we have

𝑑 𝑌

𝑑 𝑡
= 𝐺(𝑋 , 𝑌 ) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜆𝑡 𝑆 + 𝜂𝐿 𝐼𝑐 𝐿 + 𝜑𝜆𝑡 𝑅𝑡 + 𝜆𝑡 𝑅𝑐 − (𝜆𝑐 + 𝜙𝑡 + 𝑟𝐿 + 𝜇)𝐿

𝜆𝑐 𝑆 + 𝛼𝑐 𝐼𝑡𝑐 + 𝜈𝜆𝑐 𝑅𝑡 − (𝜔𝜆𝑡 + 𝑟𝑐 + 𝛿1 + 𝜇)𝐼𝑐

𝜙𝑡 𝐿 + 𝜃𝐼𝑡𝑐 − (𝜎 𝜆𝑐 + 𝑟𝑡 + 𝛿2 + 𝜇)𝐼𝑡

𝜆𝑐 𝐿 + 𝜔𝜆𝑡 𝐼𝑐 − (𝜂𝑐 + 𝜂𝐿 + 𝜇)𝐼𝑐 𝐿

𝜎 𝜆𝑐 𝐼𝑡 + 𝜂𝑐 𝐼𝑐 𝐿 − (𝛼𝑐 + 𝜃 + 𝛿3 + 𝜇)𝐼𝑡𝑐

⎞⎟⎟⎟⎟⎟⎟⎠
and we obtain the Metzler Matrix as follows

𝐵 = 𝐷 𝐺(∗,0) =

⎛⎜⎜⎜⎜⎜⎜⎝

−𝑘1 0 𝛽𝑡 𝜂𝐿 𝛽𝑡

0 𝛽𝑐(1 − 𝜅 𝜌) − 𝑘2 0 𝛽𝑐 𝜏(1 − 𝜅 𝜌) 𝛼𝑐 + 𝛽𝑐 𝜏(1 − 𝜅 𝜌)
𝜙𝑡 0 −𝑘3 0 𝜃

0 0 0 −𝑘4 0
0 0 0 𝜂𝑐 −𝑘5

⎞⎟⎟⎟⎟⎟⎟⎠
,

where 𝑘1, 𝑘2, 𝑘3, 𝑘4 and 𝑘5 are as in (23).

Now, we have

�̃�( ,) = 𝐵 − 𝐺( ,)

=

⎛⎜⎜⎜⎜⎜⎜⎝

𝛽𝑡(𝐼𝑡 + 𝐼𝑡𝑐) − 𝜆𝑡(𝑆 + 𝜑𝑅𝑡 + 𝑅𝑐) + 𝜆𝑐 𝐿

𝛽𝑐(1 − 𝜅 𝜌)(𝐼𝑐 + 𝜏(𝐼𝑐 𝐿 + 𝐼𝑡𝑐)) − 𝜆𝑐 𝑆 − 𝜈𝜆𝑐 𝑅𝑡 + 𝜔𝜆𝑡 𝐼𝑐

𝜎 𝜆𝑐 𝐼𝑡

−𝜆𝑐 𝐿 − 𝜔𝜆𝑡 𝐼𝑐

−𝜎 𝜆𝑐 𝐼𝑡

⎞⎟⎟⎟⎟⎟⎟⎠
.

Easy observation reveals that �̃�( , ) ≱ 0, which implies the (𝐻2) requirement is not met. Thus, the DFE point 𝐸0 may not be globally 
asymptotically stable. □

Since the phenomenon of backward bifurcation does not occur in both COVID-19 and TB submodels, so is that for the co-infection 
model [23]. Thus, depending on the occurrence of forward bifurcation in each sub-models, the co-infection model equilibrium points 
are locally as well as GAS [25].

4. Numerical simulation

To demonstrate the theoretical results, numerical simulations are carried out. Model parameter values and their sources are listed 
in Table 2 for the numerical simulations.

4.1. Curve fitting

We fitted the model (1) to the COVID-19 data provided by the health authorities in Ethiopia [43] from March 13, 2020, until 
May 31, 2022. In order to fit the cumulative daily COVID-19 cases, we use model (1) and use the programming language Python 
(version 3.7) [44]. The cumulative daily COVID-19 cases were obtained from the Ethiopian Public Health Institute (EPHI) [43]

and also available online at [45]. The population of Ethiopia is estimated to be 𝑁(0) = 114, 963, 588 and the life expectancy (in 
days) is 𝜇 = 1∕(67.8 × 365) for the year 2021 [46]. We define the initial values for each of the state variables on March 13, 2020 
as follows: 𝐿(0) = 200, 000, 𝐼𝑡(0) = 151, 000, 𝐼𝑐(0) = 1, 𝐼𝑐 𝐿(0) = 0, 𝐼𝑡𝑐(0) = 0, 𝑅𝑐(0) = 0 and 𝑅𝑡(0) = 7000. From these, we have 𝑆(0) =
𝑁(0) − [𝐿(0) + 𝐼𝑐(0) + 𝐼𝑡(0) + 𝐼𝑐 𝐿(0) + 𝐼𝑡𝑐(0) + 𝑅𝑐(0) + 𝑅𝑡(0)].

The influx rate, Λ, is calculated from the relation Λ∕𝜇 = 𝑁(0), and it is obtained 4, 645. Further, we assumed the values of 𝜌 and 
𝜅 between 0 and 1. For the model fitting, we used 𝑠𝑐 𝑖𝑝𝑦.𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒.𝑐 𝑢𝑟𝑣𝑒_𝑓 𝑖𝑡 from Python, see [47] and [48] for more details, that uses 
non-linear least squares method to fit a function to data. The best fit to the model is portrayed in Fig. 2.

4.2. Simulation results

In this subsection, we validate the local and global asymptotic stability of DFE and EE point of the COVID-19 and TB co-infection 
15

model (1). Using the baseline parameter values in Table 2 except 𝛽𝑐 = 0.376513 and 𝛽𝑡 = 0.638827, the associated reproductive numbers 
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Fig. 2. Model fitting to the cumulative daily COVID-19 cases in Ethiopia, March 13, 2020 – May 31, 2022.

Table 2

Parameters value.

Parameters Estimated values References

Λ 4645 Calculated

𝜇 1∕(67.8 × 365) [46]

𝜅 0.3 Assumed

𝜌 0.5 Assumed

𝛽𝑐 0.506513 Fitted

𝛽𝑡 0.858827 Fitted

𝜏 1.007301 Fitted

𝛿1 0.001518 Fitted

𝛿2 21∕100000 [49]

𝛿3 0.010398 Fitted

𝜙𝑡 0.274029 Fitted

𝑟𝑐 0.324156 Fitted

𝑟𝑡 0.175492 Fitted

𝑟𝐿 0.749912 Fitted

𝜔 1.018125 Fitted

𝜎 1.009452 Fitted

𝛼𝑐 0.782631 Fitted

𝜂𝑐 0.429445 Fitted

𝜂𝐿 0.932234 Fitted

𝜃 0.840226 Fitted

𝜈 1.000108 Fitted

𝜑 1.002361 Fitted

are obtained as 𝑅0𝑐
= 0.9826 and 𝑅0𝑡

= 0.9728, both of which are less than one and hence, 𝑅0 = max
{

𝑅0𝑐
, 𝑅0𝑡

}
is less than unity. 

From Figs. 3a and 3b, it is evident that the solution trajectories of the infected compartments are moving toward the respective 
components of the DFE when the basic reproductive number 𝑅0 related to COVID-19 and TB is below one. This figure reveals that, 
for the basic reproduction number 𝑅0 less than unity, both diseases will die out in the population.

Fig. 4 illustrates the time series plot of the COVID-19 and TB co-infection model using the baseline parameter values described in 
Table 2, so that its basic reproductive number is exceeds one. As it can be shown in Figs. 4a and 4b, all solution curves are converged 
to their corresponding components of the EE.

The time series plot for the numerical solutions of the COVID-19 and TB co-infection model (1) using different initial conditions 
are plotted in Fig. 5. In this case, we use the baseline parameter values described in Table 2, so that its basic reproductive number 
is exceeds one. The Figures given in 5a, 5b, 5c, and 5d reveal that, for the basic reproduction number 𝑅0 greater than unity, both 
diseases will persist in the population.

Fig. 6 and Fig. 7 justifies the GAS of DFE (𝐸0) for COVID-19-TB co-infection model (1). Taking various initial values for infected 
compartments, each solution curve moves toward the DFE point when 𝑅0 < 1 as seen for latent TB, and active TB from Figs. 6a and 
16

6b. Similarly, one can observe the convergence of co-infected individuals to DFE point from Figs. 7a and 7b.
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Fig. 3. Simulations showing the local stability of DFE for the model (1). Here 𝛽𝑐 = 0.376513 and 𝛽𝑡 = 0.638826 so that 𝑅0𝑐
= 0.9826 < 1 and 𝑅0𝑡

= 0.9728 < 1. All other 
parameters are as in Table 2.

Fig. 4. Simulations showing the convergence of model (1) solution to EE. Here we use the baseline parameter values in Table 2 so that 𝑅0𝑐
= 1.3218 > 1 and 

𝑅0𝑡
= 1.3078 > 1.

4.2.1. Impact of COVID-19 contact rate on COVID-19 and TB co-dynamics

The effects of COVID-19 contact rate (𝛽𝑐 ) on the dynamics of infected individuals for model (1) are portrayed in Fig. 8. It is 
noticeable from Fig. 8a that the number of people who become COVID-19 infected is less when 𝛽𝑐 decreases; however, they start 
increasing for a high values of 𝛽𝑐 , due to the increase in COVID-19 contact rate. Moreover, in a similar manner, the COVID-19 contact 
rate (𝛽𝑐 ) has the same effects on the co-infected individuals as described in Figs. 8b and 8c respectively.

4.2.2. Impact of the fraction of the community applying COVID-19 personal protection measure

Fig. 9 shows the simulation for various effectiveness of the fraction of the community applying COVID-19 personal protection 
measure (𝜅). Simulation of model (1) for the population of COVID-19 infected individuals (𝐼𝑐 ), at different values of 𝜅, is portrayed 
in Fig. 9a. As seen from this figure, increasing the number of communities employing COVID-19 personal protection strategy could 
significantly reduce the COVID-19 infection from the community. Moreover, a similar trend is observed in Figs. 9b and 9c, revealing 
that increasing fraction of the community applying COVID-19 personal protection measure could also minimize the difficulty of the 
co-infections. In comparison with a small number of communities employing COVID-19 personal protection strategy, the result shows 
that: adopting a high number of communities employing COVID-19 personal protection strategy will minimize the cumulative number 
of individuals become infected and co-infected with both diseases. In general, increasing the number of communities employing 
COVID-19 personal protection strategy would results in reduction in the number of individuals that would be confirmed with COVID-
17

19 and co-infected with the two diseases.
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Fig. 5. Simulations of model (1) showing the number of infected and co-infected individuals at various initial values using the parameter values in Table 2 so that 
𝑅0𝑐

= 1.3218 > 1 and 𝑅0𝑡
= 1.3078 > 1.

Fig. 6. Simulations of model (1) showing the number of (a) Latent TB and (b) active TB infected individuals at various initial values using parameter values in Table 2

except 𝛽𝑐 = 0.376513 and 𝛽𝑡 = 0.638826 so that 𝑅0𝑐
= 0.9826 < 1 and 𝑅0𝑡

= 0.9728 < 1.

4.2.3. Impact of modification parameter accounting for the infectiousness of individuals contracting COVID-19 due to TB infection

Fig. 10 depicts the simulation of model (1) for the number of individuals that are infected by COVID-19 (𝐼𝑐 ), and having active 
TB and COVID-19 (𝐼𝑡𝑐 ), at different values of the modification parameters 𝜎 and 𝜈. As shown in Fig. 10a, reducing the possibility of 
the persons that will contract COVID-19 as a result of active TB would significantly decrease COVID-19 infections in the community. 
Similar observation is also seen from Fig. 10b in the case of co-infection for COVID-19 and active TB. The simulation results of 
COVID-19 infected individuals (𝐼𝑐 ) at various values of the modification parameter that account relative contagiousness of people 
contracting COVID-19 after TB recovery, is also represented in Fig. 10c, and it reveals that preventing the possibility of acquiring 
COVID-19 after TB recovery would also help curb the COVID-19 infection. In contrast, TB lowers the immunity against COVID-19 
leading, to increased occurrence of COVID-19 infection.

4.2.4. Conditions for both diseases to coexist or eradication

In this subsection, numerical simulations of the co-infection model (1) are performed to ascertain whether the two diseases will 
18

co-exist if their respective basic reproduction numbers exceeds one. In Fig. 11, we have represented simulations for the total number 
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Fig. 7. Simulations of model (1) showing the number of co-infected individuals at various initial values using parameter values in Table 2 except 𝛽𝑐 = 0.376513 and 
𝛽𝑡 = 0.638826 so that 𝑅0𝑐

= 0.9826 < 1 and 𝑅0𝑡
= 0.9728 < 1.
19

Fig. 8. Simulations of model (1) showing the total number of (a) COVID-19 infected (b) Co-infected class 𝐼𝑐𝐿 (c) Co-infected class 𝐼𝑡𝑐 at various values of 𝛽𝑐 .
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Fig. 9. Simulations of model (1) showing the total number of (a) COVID-19 infected (b) Co-infected class 𝐼𝑐𝐿 (c) Co-infected class 𝐼𝑡𝑐 at various values of 𝜅.

of infectious individuals at various initial values for 𝑅0𝑐
and 𝑅0𝑡

greater than unity. It is observed from this figure, that for higher 
contact rates of COVID-19 (𝛽𝑐 = 0.506513) and tuberculosis (𝛽𝑡 = 0.858827), both COVID-19 and TB will persist in the community.

Fig. 12, depicts the results of the simulations for COVID-19 infected and active TB infected individuals at various initial values 
for 𝑅0𝑐

< 1 and 𝑅0𝑡
> 1. It is revealed here, that for lower contact rate of COVID-19 (𝛽𝑐 = 0.376513) and higher contact rate of TB 

(𝛽𝑡 = 0.858827), COVID-19 will be driven to extinction by TB dominating the population over time.

In Fig. 13, we have depicted the simulation results of infected individuals at various initial values for 𝑅0𝑐
and 𝑅0𝑡

less than unity. 
In view of this figure, it is evident that for low TB and COVID-19 contact rates and as a result of increased COVID-19 treatment rates, 
the two diseases will eventually disappear from the community over time.

The simulation results of the co-infected populations at various initial values for 𝑅0𝑐
and 𝑅0𝑡

greater than unity are portrayed in 
Fig. 14. From this figure, it is visualized that, for higher contact rates of COVID-19 (𝛽𝑐 = 0.506513) and tuberculosis (𝛽𝑡 = 0.858827), 
the two diseases will coexist in the community, with COVID-19 and latent TB co-infected dominating the individuals in co-infection 
class 𝐼𝑡𝑐 .

5. Conclusions

We proposed a mathematical model with the objective of investigating the dynamics of co-infection for COVID-19 and TB. 
Basic model characteristics, including the nonnegativity and boundedness of the model solution as well as the invariant region, are 
provided. Furthermore, for each sub-models equilibrium points, the stability and bifurcation analysis are presented. Particularly, 
their DFE points are both LAS and GAS for the corresponding reproductive numbers 𝑅0𝑐

and 𝑅0𝑡
less than unity, unstable otherwise. 

Besides, the EE of both sub-models existed and its stability analysis were investigated. Consequently, the coexistence equilibrium 
20

point of each sub-model is LAS for 𝑅0𝑐
> 1 and 𝑅0𝑡

> 1. We have showed that the model undergoes forward bifurcation. From the 
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Fig. 10. The simulations showing (a) COVID-19 infected individuals at different values of 𝜎 (b) COVID-19 and active TB co-infected individuals at various values of 
𝜎 (c) individuals infected by COVID-19 at various values of 𝜈.

Fig. 11. Simulations of the model (1) with various initial values illustrating the infected class 𝐼𝑡 , and 𝐼𝑐 . Here, all the values of the parameters are as in Table 2 so 
21

that 𝑅0𝑐
= 1.3218 > 1 and 𝑅0𝑡

= 1.3078 > 1.
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Fig. 12. The simulations illustrating COVID-19, and TB infection at various initial values so that 𝑅0𝑐
= 0.9826 < 1 and 𝑅0𝑡

= 1.3078 > 1. Here, all the values of the 
parameters are as in Table 2 except 𝛽𝑐 = 0.376513.

Fig. 13. Simulations of the model (1) illustrating the plots of infectious classes 𝐼𝑐 , and 𝐼𝑡 at various initial values. Here, all parameter values are as in Table 2 except 
𝛽𝑐 = 0.376513 and 𝛽𝑡 = 0.638826 so that 𝑅0𝑐

= 0.9826 < 1 and 𝑅0𝑡
= 0.9728 < 1.

Fig. 14. Simulations of model (1) showing the number of co-infected individuals, 𝐼𝑐𝐿 and TB, 𝐼𝑡𝑐 at various initial values. Here, all parameter values are as in Table 2
22

so that 𝑅0𝑐
= 1.3218 > 1 and 𝑅0𝑡

= 1.3078 > 1.
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bifurcation analysis, we observed that both the DFE and the EE can not co-exist, and as a result, the sub-models’ endemic equilibria 
are GAS for 𝑅0𝑐

and 𝑅0𝑡
greater than unity. The co-infection model equilibrium is LAS and GAS based on the fact that both sub-models 

experience forward bifurcation.

For the numerical simulation, we fitted the curve and also estimated the parameters from the fitted curve. To support the analytical 
results, we performed different simulation results. It reveals that minimizing the contact with both infections decrease the disease 
load in the population, and hence the co-infection. Again, the parameter 𝜅 has an impact on reducing COVID-19 infection and its 
co-infection. As evidence for increasing the number of communities employing COVID-19 personal preventive strategy reduces the 
disease load in the community. Furthermore, the simulation results showed that the invasion of both diseases is always possible inside 
the community for basic reproductive number greater than one, agreeing with the analytical results. Thus, one can conclude that 
it is possible to lessen the COVID-19 spread through reducing effective contacts and raising the number of communities employing 
COVID-19 personal protection strategy, which also mitigates the new co-infection cases. Besides, our study reveals that minimizing 
the probability of individuals that have TB infection and contracting COVID-19 will also reduce the burden of COVID-19 disease, and 
the co-infection from the populations.

CRediT authorship contribution statement

Zenebe Shifaraw Kifle; Legesse Lemecha Obsu: Conceived and designed the experiments; Performed the experiments; Analyzed 
and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability statement

Data included in article/supplementary material/referenced in article.

Acknowledgements

The authors acknowledge Adama Science and Technology University for its support during this research work, and the Simon’s 
foundation fellowship through Research and Graduate Studies in Mathematics and its Applications (RGSMA), Botswana International 
University of Science and Technology (BIUST), for their financial support.

References

[1] X. Tang, C. Wu, X. Li, Y. Song, X. Yao, X. Wu, Y. Duan, H. Zhang, Y. Wang, Z. Qian, et al., On the origin and continuing evolution of SARS-CoV-2, Natl. Sci. Rev. 
7 (6) (2020) 1012–1023, https://doi .org /10 .1186 /s40779 -020 -00240 -0.

[2] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223) 
(2020) 497–506.

[3] K. Bjorgul, W.M. Novicoff, K.J. Saleh, Evaluating comorbidities in total hip and knee arthroplasty: available instruments, J. Orthop. Trauma 11 (4) (2010) 
203–209.

[4] Centers for Disease Control and Prevention (CDC), Symptoms of coronavirus, Available online: https://www .cdc .gov /coronavirus /2019 -ncov /about /symptoms .
html.

[5] Global Tuberculosis Report, Available from: https://www .who .int /tb /publications /global _report /en/. (Accessed 14 October 2021).

[6] Y. Chen, Y. Wang, J. Fleming, Y. Yu, Y. Gu, C. Liu, et al., Active or latent tuberculosis increases susceptibility to COVID-19 and disease severity, MedRxiv (2020).

[7] D. Wang, B. Hu, Ch. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, et al., Clinical characteristics of 138 hospitalized patients with 2019 
novel coronavirus-infected pneumonia in Wuhan, China, JAMA 323 (11) (2020) 1061–1069.

[8] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, Y. Zhou, et al., Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic 
review and meta-analysis, Int. J. Infect. Dis. 94 (2020) 91–95.

[9] World Health Organization (WHO), Information note: tuberculosis and COVID-19, Available from: https://bit .ly /3KeljJp. (Accessed 12 May 2020).

[10] L. Petrone, E. Petruccioli, V. Vanini, G. Cuzzi, G. Gualano, P. Vittozzi, et al., Coinfection of tuberculosis and COVID-19 limits the ability to in vitro respond to 
SARS-CoV-2, Int. J. Infect. Dis. 113 (2021) S82–S87.

[11] G.T. Mousquer, A. Peres, M. Fiegenbaum, Pathology of TB/COVID-19 co-infection: the phantom menace, Tuberculosis 126 (2021) 102020.

[12] M. Davies, HIV and risk of COVID-19 death: a population cohort study from the Western Cape Province, South Africa, MedRxiv (2020).

[13] I. Motta, R. Centis, L. D’Ambrosio, J.M. Garcia-Garcia, D. Goletti, G. Gualano, et al., Tuberculosis, COVID-19 and migrants: preliminary analysis of deaths 
occurring in 69 patients from two cohorts, Pulmonology 26 (4) (2020) 233–240.

[14] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng. 17 (3) (2020) 2708–2724, https://doi .org /10 .
3934 /mbe .2020148.

[15] S.E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, E. Kostelich, A.B. Gumel, To mask or not to mask: modeling the potential for face mask 
use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model. 5 (2020) 293–308, https://doi .org /10 .1016 /j .idm .2020 .04 .001.

[16] S.S. Musa, S. Qureshi, S. Zhao, A. Yusuf, U.T. Mustapha, D. He, Mathematical modeling of COVID-19 epidemic with effect of awareness programs, Infect. Dis. 
Model. 6 (2021) 448–460, https://doi .org /10 .1016 /j .idm .2021 .01 .012.

[17] H. Youssef, N. Alghamdi, M.A. Ezzat, A.A. El-Bary, A.M. Shawky, Study on the SEIQR model and applying the epidemiological rates of COVID-19 epidemic 
spread in Saudi Arabia, Infect. Dis. Model. 6 (2021) 678–692, https://doi .org /10 .1016 /j .idm .2021 .04 .005.

[18] H.M. Youssef, N.A. Alghamdi, M.A. Ezzat, A.A. El-Bary, A.M. Shawky, A new dynamical modeling SEIR with global analysis applied to the real data of spreading 
23

COVID-19 in Saudi Arabia, Math. Biosci. Eng. 17 (6) (2020) 7018–7044, https://doi .org /10 .3934 /mbe .2020362.

https://doi.org/10.1186/s40779-020-00240-0
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib1F34B55060D3F8823F2DAF13913FB17Cs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib1F34B55060D3F8823F2DAF13913FB17Cs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibDD4007D1FB8CCC6AD55338A3055162E9s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibDD4007D1FB8CCC6AD55338A3055162E9s1
https://www.cdc.gov/coronavirus/2019-ncov/about/symptoms.html
https://www.cdc.gov/coronavirus/2019-ncov/about/symptoms.html
https://www.who.int/tb/publications/global_report/en/
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib8439AEC112EDDB1674C443ADECCD18FEs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib538540000351A03B32A605D6C06397C8s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib538540000351A03B32A605D6C06397C8s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib41D80E2164D00D24353C327473E60A2Fs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib41D80E2164D00D24353C327473E60A2Fs1
https://bit.ly/3KeljJp
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibB3352FD95853F41492C4E7EC20D6D4ABs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibB3352FD95853F41492C4E7EC20D6D4ABs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibE8AAF521780D343C6821C8E970A308EDs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib548E3DAE4F6AA39A7B0CDC9C93B2EBDFs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibC02C3471C25CE82A13281682CA5EE8DEs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibC02C3471C25CE82A13281682CA5EE8DEs1
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.1016/j.idm.2020.04.001
https://doi.org/10.1016/j.idm.2021.01.012
https://doi.org/10.1016/j.idm.2021.04.005
https://doi.org/10.3934/mbe.2020362


Heliyon 9 (2023) e18726Z.S. Kifle and L.L. Obsu

[19] A. Omame, N. Sene, I. Nometa, C.I. Nwakanma, E.U. Nwafor, N.O. Iheonu, D. Okuonghae, Analysis of COVID-19 and comorbidity co-infection model with 
optimal control, Optim. Control Appl. Methods 42 (6) (2020) 1568–1590, https://doi .org /10 .1002 /oca .2748.

[20] I.M. Hezam, A. Foul, A. Alrasheedi, A dynamic optimal control model for COVID-19 and cholera co-infection in Yemen, Adv. Differ. Equ. 2021 (1) (2021) 1–30, 
https://doi .org /10 .1186 /s13662 -021 -03271 -6.

[21] S.Y. Tchoumi, M.L. Diagne, H. Rwezaura, J.M. Tchuenche, Malaria and COVID-19 co-dynamics: a mathematical model and optimal control, Appl. Math. Model. 
99 (2021) 294–327, https://doi .org /10 .1016 /j .apm .2021 .06 .016.

[22] A. Omame, M. Abbas, C. Onyenegecha, A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative, Chaos Solitons 
Fractals 153 (2021) 111486, https://doi .org /10 .1016 /j .chaos .2021 .111486.

[23] M. Goudiaby, L. Gning, M. Diagne, B.M. Dia, H. Rwezaura, J. Tchuenche, Optimal control analysis of a COVID-19 and tuberculosis co-dynamics model, Inform. 
Med. Unlocked 28 (2022) 100849, https://doi .org /10 .1016 /j .imu .2022 .100849.

[24] K.G. Mekonen, S.F. Balcha, L.L. Obsu, A. Hassen, Mathematical modeling and analysis of TB and COVID-19 coinfection, J. Appl. Math. (2022) 1–20, https://

doi .org /10 .1155 /2022 /2449710.

[25] H. Rwezaura, M.L. Diagne, A. Omame, A.L. de Espindola, J.M. Tchuenche, Mathematical modeling and optimal control of SARS-CoV-2 and tuberculosis co-

infection: a case study of Indonesia, Model. Earth Syst. Environ. (2022) 1–28, https://doi .org /10 .1007 /s40808 -022 -01430 -6.

[26] F. Inayaturohmat, N. Anggriani, A.K. Supriatna, A mathematical model of tuberculosis and COVID-19 coinfection with the effect of isolation and treatment, 
Front. Appl. Math. Stat. 8 (2022) 958081, https://doi .org /10 .3389 /fams .2022 .958081.

[27] J. Zhang, Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci. 185 (2003) 15–32, https://doi .org /10 .1016 /S0025 -
5564(03 )00087 -7.

[28] R. Aggarwal, Dynamics of HIV-TB co-infection with detection as optimal intervention strategy, Int. J. Non-Linear Mech. 120 (2020) 103388.

[29] A. Tanvi, R. Aggarwal, Y.A. Raj, A fractional order HIV-TB co-infection model in the presence of exogenous reinfection and recurrent TB, Nonlinear Dyn. (2021) 
1–25.

[30] R. Aggarwal, Stability analysis of a delayed HIV-TB co-infection model in resource limitation settings, Chaos Solitons Fractals 140 (2020) 110138.

[31] L. Perko, Differential Equations and Dynamical Systems, Text in Applied Mathematics, vol. 7, Springer, Berlin, 2000.

[32] A. Korobeinikov, G.C. Wake, Lyapunov functions and global stability for SIR, SIRS, and SIS epidemiological models, Appl. Math. Lett. 15 (2002) 955–960.

[33] V. Hutson, K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci. 111 (1) (1992) 1–71, https://doi .org /10 .1016 /0025 -5564(92 )90078 -B.

[34] E. Mtisi, H. Rwezaura, J.M. Tchuenche, A mathematical analysis of malaria and tuberculosis co-dynamics, Discrete Contin. Dyn. Syst., Ser. B 12 (4) (2009) 
827–864, https://doi .org /10 .3934 /dcdsb .2009 .12 .827.

[35] Z. Mukandavire, A.B. Gumel, W. Garira, J.M. Tchuenche, Mathematical analysis of a model for HIV-malaria co-infection, Math. Biosci. Eng. 6 (2) (2009) 333–362, 
https://doi .org /10 .3934 /mbe .2009 .6 .333.

[36] O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface 7 (47) 
(2010) 873–885.

[37] D.P. van den, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 
180 (1) (2002) 29–48.

[38] J. LaSalle, Some extensions of Liapunov’s second method, IRE Trans. Circuit Theory 7 (4) (1960) 520–527, https://doi .org /10 .1109 /tct .1960 .1086720.

[39] C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1 (2) (2004) 361, https://doi .org /10 .3934 /mbe .2004 .
1 .361.

[40] L.J.S. Allen, An Introduction to Mathematical Biology, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2007.

[41] M. Martcheva, An Introduction to Mathematical Epidemiology, vol. 61, Springer, 2015.

[42] C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of 𝑅0 and its role on global stability, in: Mathematical Approaches for Emerging and Re-Emerging 
Infection Diseases: An Introduction, vol. 125, 2002, pp. 31–65.

[43] Ethiopian Public Health Institute COVID-19 cases report, 2022.

[44] Python Software Foundation, Python language reference, Available from: https://www .python .org, 2019.

[45] Johns Hopkins University Coronavirus Resource Center, Coronavirus cases-Ethiopia, Available from: https://www .indexmundi .com /coronavirus /country /et.

[46] Z.S. Kifle, L.L. Obsu, Mathematical modeling for COVID-19 transmission dynamics: a case study in Ethiopia, Results Phys. 34 (2022) 105191, https://doi .org /
10 .1016 /j .rinp .2022 .105191.

[47] SciPy.org, scipy.optimize.curve_fit, Available from: https://docs .scipy .org /doc /scipy /reference /generated /scipy .optimize .curve _fit .html, 2021.

[48] Z. Abreu, G. Cantin, C.J. Silva, Analysis of a COVID-19 compartmental model: a mathematical and computational approach, Math. Biosci. Eng. 189 (6) (2021) 
7979–7998, https://doi .org /10 .3934 /mbe .2021396.
24

[49] ETHIOPIA-TREAT TB: technology, research, education, and technical assistant for tuberculosis, https://treattb .org /trial -sites /ethiopia/.

https://doi.org/10.1002/oca.2748
https://doi.org/10.1186/s13662-021-03271-6
https://doi.org/10.1016/j.apm.2021.06.016
https://doi.org/10.1016/j.chaos.2021.111486
https://doi.org/10.1016/j.imu.2022.100849
https://doi.org/10.1155/2022/2449710
https://doi.org/10.1155/2022/2449710
https://doi.org/10.1007/s40808-022-01430-6
https://doi.org/10.3389/fams.2022.958081
https://doi.org/10.1016/S0025-5564(03)00087-7
https://doi.org/10.1016/S0025-5564(03)00087-7
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib5B3C8DB48E8479B1766B14A819966FC9s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib1240BD389A29B6AF92823461CA9E0228s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib1240BD389A29B6AF92823461CA9E0228s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibB41D1E70EC795341820273A756333D98s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibC4E6644794703B8FCBF05CBE98A24990s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib39ECAAC8DC34D86D3260E1AC1D7F32B9s1
https://doi.org/10.1016/0025-5564(92)90078-B
https://doi.org/10.3934/dcdsb.2009.12.827
https://doi.org/10.3934/mbe.2009.6.333
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib4D10A704E3E17FECAA0F796B52C77C2Bs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib4D10A704E3E17FECAA0F796B52C77C2Bs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibE7CC64644BBA084E53EE5F106D00E689s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibE7CC64644BBA084E53EE5F106D00E689s1
https://doi.org/10.1109/tct.1960.1086720
https://doi.org/10.3934/mbe.2004.1.361
https://doi.org/10.3934/mbe.2004.1.361
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibF66ECE250745FADE6EDB80DEED68DCD9s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bibF619E93A23CDA2B70551067EED9FE63Bs1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib6766000A3C9A7422CB4E4AF38D53C095s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib6766000A3C9A7422CB4E4AF38D53C095s1
http://refhub.elsevier.com/S2405-8440(23)05934-0/bib9F49ECBD4316E756404C4AFB92C55F37s1
https://www.python.org
https://www.indexmundi.com/coronavirus/country/et
https://doi.org/10.1016/j.rinp.2022.105191
https://doi.org/10.1016/j.rinp.2022.105191
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://doi.org/10.3934/mbe.2021396
https://treattb.org/trial-sites/ethiopia/

	Mathematical modeling and analysis of COVID-19 and TB co-dynamics
	1 Introduction
	2 Model formulation
	3 Model analysis
	3.1 COVID-19 sub-model
	3.1.1 Nonnegativity of the solution
	3.1.2 Region of invariance
	3.1.3 Disease-free equilibrium and basic reproduction number
	3.1.4 Disease-free equilibrium and its stability analysis
	3.1.5 Existence and stability of endemic equilibrium of system (3)
	3.1.6 Bifurcation analysis

	3.2 TB sub-model
	3.2.1 Basic reproduction number for TB sub-model
	3.2.2 Disease-free equilibrium and its stability analysis
	3.2.3 Existence and stability of the endemic equilibrium of the TB sub-model
	3.2.4 Bifurcation analysis

	3.3 COVID-19-TB co-infection model
	3.3.1 Stability analysis of the disease-free equilibrium


	4 Numerical simulation
	4.1 Curve fitting
	4.2 Simulation results
	4.2.1 Impact of COVID-19 contact rate on COVID-19 and TB co-dynamics
	4.2.2 Impact of the fraction of the community applying COVID-19 personal protection measure
	4.2.3 Impact of modification parameter accounting for the infectiousness of individuals contracting COVID-19 due to TB infe...
	4.2.4 Conditions for both diseases to coexist or eradication


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability statement
	Acknowledgements
	References


