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REVIEW

Genome-wide and Phenome-wide Approaches
to Understand Variable Drug Actions in Electronic Health
Records

Jamie R. Robinson1,2,∗, Joshua C. Denny1,3, Dan M. Roden1,3,4 and Sara L. Van Driest3,5

INTRODUCTION

Genome-wide association studies (GWAS) and phenome-
wide association studies (PheWAS) have provided powerful
methods for investigating the impact of genetic variation on
individual drug response and have added extensive knowl-
edge to the understanding of drug targets and effects. We
highlight here recent advances in drug development, repur-
posing, and personalization accelerated by applying GWAS
and PheWAS to longitudinal health data information, along
with limitations of these methods.

IMPORTANCE OF UNDERSTANDING DRUG TARGETS
AND EFFECTS

The challenges facing modern clinical pharmacology can
be grouped into two major categories: the efficient devel-
opment of novel therapeutics and understanding individ-
ual variability in response. The development of novel ther-
apeutics is hampered by the problem that despite major
advances in the knowledge of disease mechanisms, drug
targets, and biomarkers, as well as a continual rise in invest-
ment into pharmaceutical research, the number of new drugs
approved each year has remained steady.1 Most drugs fail
in phase II clinical trials, with 50% of the failures due to
lack of efficacy.2,3 Thus, there is concern that preclinical
disease models do not reliably predict efficacy in patients.
Human genetics has been proposed as a mechanism to pri-
oritize molecular targets early in the stages of drug discovery
towards potentially more efficacious models.4,5

The problem of variable drug efficacy and susceptibility to
side effects has been recognized since the advent of ther-
apeutics. There is now evidence that medication exposure
data, outcome data, and genetic information linked together
via longitudinal electronic health records (EHRs) can provide
a more thorough understanding of drug effects, including
response patterns and individuals at risk for potentially
rare side effects.6 Knowledge of the genetic mechanisms
that drive drug response variation and adverse events can
help guide the tailoring of medication therapy. GWAS and
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PheWAS are modern genetic tools for the exploration of data
sets in order to efficiently identify potential targets for novel
therapeutics and to provide evidence-based individualized
therapy.

OVERVIEW OF GWAS AND PHEWAS APPROACHES

GWAS is a hypothesis-generating method to systemat-
ically analyze variants across the entire genome (i.e.,
“genome-wide”) for association with a phenotype of interest
(Figure 1a). Over the past 10 years, the genotyping assays
have evolved from early versions assessing hundreds of
thousands of single nucleotide polymorphisms (SNPs) to cur-
rent panels including millions of SNPs.7 At the same time,
pipelines for quality control, imputation of genotypes, and
statistical analysis for dichotomous, categorical, and contin-
uous traits have matured and become standardized across
high-quality laboratories. The threshold for statistically sig-
nificant results, given the need to correct for multiple com-
parisons, has been established at 5 × 10−8. Despite this
stringent threshold, use of larger and larger cohorts (includ-
ing some recent cohorts including more than 700,000 indi-
viduals) has enabled identification of many SNPs with sta-
tistically significant P-values.8 GWAS focuses on detection
of associations with relatively common variants (e.g., minor
allele frequencies 1–5%) so the odds ratios are often small
(OR < 1.5). Thus, the major outcome of many GWAS is a
better understanding of the genetic architecture of complex
traits, but not a set of high effect size variants that would be
clinically actionable.7 As described below, examining drug
response with GWAS has provided an interesting counterex-
ample to these generalizations, since small numbers can
yield signals with large enough effect sizes to be consid-
ered for implementation. This may reflect the idea that drug
response represents an example of a controlled environ-
mental intervention (drug) interacting with a genome, rather
than a multifactorial complex disease state with many poten-
tial environmental inputs. Since 2005, over 3,000 GWAS
have identified almost 40,000 unique SNP-trait associations
within the GWAS catalog provided by the National Human
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Figure 1 Genome-wide association studies (GWAS) and phenome-wide association studies (PheWAS). (a) A GWAS begins with a phe-
notype of interest and systematically analyzes variants across the entire genome (i.e., “genome-wide”) for association to the phenotype.
GWAS can identify multiple genetic associations to a phenotype in complex or polygenic traits. (b) A PheWAS begins with a genetic
variant of interest and systematically analyzes many phenotypes (i.e., “phenome-wide”) for association to the genotype. PheWAS has the
ability to identify pleiotropy, or the finding of multiple independent phenotypes associated with a single genetic variant.

Genome Research Institute (NHGRI) and European Bioin-
formatics Institute (EBI).7 The rapid increase in knowledge
of common genetic variants in complex diseases has pro-
vided significant opportunities for analyzing the association
of genetic variation with disease phenotypes and response
to therapies.
The integration of this wealth of genetic information with

phenotypic data by linkage of DNA biobanks with EHRs has
led to the development of a reverse genetics approach with
EHR-based genomic studies, termed PheWAS (Figure 1b).6

The first PheWAS study was performed in 2010, in which
Denny et al. successfully replicated four known SNP-disease
associations.9 Since then, the use of PheWAS has contin-
ued to rise in popularity, with 58 current PubMed indexed
publications. PheWAS provides a systematic approach to
analyze the many phenotypes potentially associated with a
specific genotype, with the ability to identify pleiotropy, or
the finding of multiple independent associations with a sin-
gle genetic association.10 The threshold for statistical signif-
icance is less well established for PheWAS; therefore, often
a Bonferroni correction is applied in the analyses. However,
this is highly stringent, as it assumes independence across
all phenotypes, which is unlikely, given thatmany phenotypes
are closely related. Despite this, the use of large cohorts have
allowed for PheWAS to not only replicate known findings, but
also identify novel associations.
GWAS and PheWAS approaches are complementary, with

the ability to replicate and validate the other’s findings.
Representing the capacity for PheWAS to replicate GWAS,
a comprehensive comparison of known GWAS associa-
tions within the NHGRI GWAS catalog against the Phe-
WAS method was performed in 2013, showing that 210
of 751 (28%) known SNP-disease associations were repli-
cated with PheWAS, including 66% of those associations

that were adequately powered to detect the association.11

This method also identified 63 potentially novel SNP-disease
associations, again demonstrating pleiotropic effects of the
variants. In a pediatric cohort, PheWAS replicated many prior
known GWAS associations, including SNPs associated with
juvenile rheumatoid arthritis, asthma, autism, and pervasive
developmental disorder, and type 1 diabetes.12 Several new
SNP-disease associations were identifiedwithin the pediatric
population as well, including a cluster of association near the
NDFIP1 gene (associated with mental retardation), PLCL1
(developmental delay), and the IL5-IL13 region (eosinophilic
esophagitis).12

Leveraging EHRs for drug-based genomic and
phenomic research

The EHR provides a longitudinal collection of phenotypic
information coupled with medication exposures, thusmaking
it an important platform for study of drug effects.6 A broad set
of phenotypes collected in an unbiased approach is essential
to the PheWAS method.13 To accomplish this, many Phe-
WAS have used phenotypes derived from custom groupings
of billing codes, also referred to as phecodes.9 The billing
codes used for phecode groupings currently are International
Classification of Diseases, Ninth Revision (ICD-9) codes. ICD
codes are published and maintained by the World Health
Organization for classification of diseases and services for
reimbursement of medical services. While the phecode
groupings have been shown to better align with clinical
diseases in practice, other methods of phenotype classi-
fication also are effective for PheWAS studies.14 Hebbring
et al. reported a PheWAS method using individual ICD-9
codes and parent ICD-9 three-digit groups as phenotypes.15

They not only replicated a known association of an HLA
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class II allele, HLA-DRB1, with multiple sclerosis, but also
replicated associations of HLA-DRB1 with erythematous
conditions and benign neoplasms of the respiratory and
intrathoracic organs, found to be significant in a prior study
by Denny and colleagues.9,15 These and other studies high-
light the importance of PheWAS techniques for identifying
pleiotropic effects.
Billing codes are not the only source of phenotypes from

the EHR. Hebbring et al. have shown that PheWAS can
be performed by defining the phenome solely on textual
data within clinical documentation.16 For drug effects, a phe-
nome based on billing codes or clinical text alone may not
accurately capture drug efficacy or adverse events, nor do
they provide the necessary information about drug expo-
sure, including dosing data. One potential method of obtain-
ing this drug exposure and outcome data is to use prospec-
tive cohort-based studies. It has been shown that PheWAS
can be used with data obtained through clinical trials, repre-
senting a more biased, but targeted, approach at defining a
phenome.17,18

The benefit of leveraging EHRs for both GWAS and Phe-
WAS, as opposed to prospective cohort-based studies, is
the ability to obtain large sample sizes with relatively less
time or expense. While the EHR phenome may be incom-
plete, it includes conditions that are medically relevant, as
opposed to clinical trial cohorts in which phenotypes may
not represent conditions that necessitate medical attention.
Biobanking of genetic data linked to the longitudinal patient
data available within the EHR provides an efficient method
for aggregating otherwise disparate information. EHR-based
biobanks have the potential to integrate genomic data
with medication receipt, laboratory results, or textual data,
thus refining both exposures and phenotypes, essential for
research on drug effects.

Genomic investigation aids in understanding drug
mechanisms

Several features of GWAS suggest its potential for eluci-
dating drug mechanism and identifying relevant novel drug
targets. An estimated 21% of published genes within the
GWAS catalog are amenable to pharmacological modulation
by small molecules.19 Further, the GWAS gene set is enriched
with drug targets in comparison to the entire human genome,
many of which align with the disease–gene pair identified by
GWAS analysis.19

Prior studies support the role of using GWAS to iden-
tify alleles that contribute to disease risk and druggable
targets. Early GWAS efforts retrospectively identified the
genetic basis for drugs already in use for a particular
indication. Statins have been used to inhibit 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA) reductase and treat
hyperlipidemia for decades,20 and GWAS studies in 2008
showed that low-density lipoprotein (LDL) levels are asso-
ciated with variation in HMGCR, the gene that encodes
HMG-CoA reductase.21,22 Further, pharmacogenetics stud-
ies have shown that genetic variation in HMGCR is asso-
ciated with statin efficacy.23,24 Since then, variants in other
genes involved in lipid metabolism but not direct targets
for statin action (APOE, LPA, SORT1/CELSR2/PSRC1, and

SLCO1B1) have been found in GWAS to be associated with
the LDL-lowering effect of statin therapy.25,26 A recent GWAS
also found that several variants with the LPA locus appear
to be associated with coronary heart disease events during
statin therapy, independent of the extent of LDL-cholesterol
lowering.27

Other examples of drugs with a mechanism replicated
by GWAS are ustekinumab, a monoclonal antibody against
interleukin (IL)-12 used for treatment of psoriasis and inflam-
matory bowel disease,28,29 and denosumab, a monoclonal
antibody to the receptor activator of nuclear factor-kappaB
ligand (RANKL) for treatment of osteoporosis.30 Metformin
has long been used to lower blood glucose levels in indi-
viduals with diabetes; however, a 2011 GWAS of 3,920 type
2 diabetes patients clarified the genetic basis for its mech-
anism with polymorphisms in the ATM gene found to be
associated with glycemic control.31 Okada et al. evaluated
the role of GWAS in validating the current therapeutic drug
targets for rheumatoid arthritis (RA).32 Through a compre-
hensive genetic study with nearly 100,000 subjects, they
found that 18 of 27 currently approved drugs for RA target
genes identified as RA risk loci, and also suggest several
potential novel therapeutics, some of which had support-
ing animal studies.32 These early successes fuel enthusiasm
for using GWAS to elucidate disease mechanisms and drug
targets.19

Early evidence for drug discovery using genomic
approaches

In the context of drug development, GWAS advances are
relatively recent and are only now being applied to have a
potential impact on target discovery. Nevertheless, prior link-
age and candidate gene studies have shown that genet-
ics can drive development of novel therapeutics. The devel-
opment of proprotein convertase subtilisin/kexin type 9
(PCSK9) inhibitors represents this realization. In 2003, it was
found that autosomal dominant hypercholesterolemia and an
increased incidence of coronary heart disease were associ-
ated with gain-of-function mutations in the PCSK9 gene.33

Subsequent candidate gene association studies in 2005 and
2006 revealed that PCSK9 loss-of-function mutations cor-
relate with reduced levels of LDL cholesterol and a lower
incidence of coronary heart disease.34,35 In 2012, almost
10 years after the first genetic discovery, randomized con-
trolled trials demonstrated that PCSK9-specific monoclonal
antibodies significantly reduce LDL cholesterol levels.36,37

There are now two US Food and Drug Administration (FDA)-
approved PCSK9 inhibitors. Similar to how candidate gene
studies led to the target of PCSK9 and subsequent devel-
opment of a novel therapy for familial hypercholesterolemia,
GWAS and PheWAS hold promise as means to identify
novel drug targets. However, the timeline from target to an
approved drug is often over 10 years. As findings fromGWAS
have exponentially increased over the last decade and Phe-
WAS is gaining similar recognition, we anticipate the next
decade will show progress toward utilization of that knowl-
edge and drug development.

Clinical and Translational Science
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Figure 2 Drug-specific outcomes identified through genome-wide association studies (GWAS) and phenome-wide association studies
(PheWAS). (a) Use of drug-specific phenotypes of interest with genomic predictor variables such as genome-wide single nucleotide
polymorphisms (SNPs), measured or predicted gene expression, or genetic risk scores, can be used in GWAS analysis to gain information
for drug mechanisms and discovery. (b) In PheWAS, genetic or clinical variables can be used to search for associations in phenomes
curated from different sources of information in the EHR for analysis of drug-specific associations.

GWAS for understanding impact of genetic variation on
drug efficacy

A considerable amount of variability can exist in a patient’s
response to drug therapy, including differing efficacy,
adverse side effects, and toxicity. A better understanding of
the genetic determinants of drug response and mechanism
is thought to have potential to individualize drug treatment
toward improved efficacy and side effect profiles.38 While
candidate gene studies have shown success in identifying
genetic variants that contribute to drug response and effects,
for many drugs the biological mechanism, metabolic path-
ways, and potential genetic associations impacting individual
response is unknown, limiting the potential for focused gene
analysis. In contrast, GWAS are a hypothesis-free method
that can be utilized to determine associations of genetic vari-
ation with effects of drug treatment (Figure 2a).
Drug efficacy in particular is often considered to be along

a continuum in a patient population. The known genetic vari-
ants contributing to statin efficacy discussed above are an
indication of the significant clinical and genetic variability
that can be seen in a population.25,26 A high-yield area of
pharmacogenetic investigation utilizing GWAS has been the
study of drugswith a narrow therapeutic window and variable
efficacious dosing regimens, such as warfarin. While candi-
date gene studies were used to initially describe the asso-
ciations of CYP2C9 and VKORC1 with the ability for war-
farin to achieve anticoagulation,39–42 subsequent GWAS have
confirmed these findings, showing these to be the strongest
genetic predictors of warfarin dose required in individuals
of European descent.43,44 Subsequent GWAS in individu-
als of African ancestry has also found that in addition to

the well-known CYP2C9*2, CYP2C9*3, and VKORC1 poly-
morphisms, the CYP2C locus exerts influence by a vari-
ant outside of those well established, and this new variant
could improve dose prediction in this population.45 Differ-
ences in the variants associated with warfarin effect across
populations may be due to the differences in mean allele
frequencies, ancestry-specific gene–gene interactions, or
population-specific gene–environment interactions.
Response to clopidogrel therapy is also known to be

highly variable. Clopidogrel is a prodrug, and the bioac-
tivation pathway is largely CYP2C19-dependent.46 Candi-
date gene studies of cardiovascular events on clopidogrel
indicated that CYP2C19 loss-of-function variants increased
risk.47–49 Subsequent GWAS in Amish individuals found that
the most common loss-of-function allele, CYP2C19*2, had
the strongest genetic association with the effect of clopi-
dogrel on platelet aggregation; however, this single variant
only accounts for �12% of the variability in response seen in
this population.50 More recently, Zhong et al. identified two
novel variants in a Chinese population that were associated
with the antiplatelet effect of clopidogrel, as measured by
P2Y12-mediated platelet aggregation, as well as formation
of H4, an active metabolite of clopidogrel.51 They estimate
that the identified variants, in association with CYP2C19*2,
CYP2C19*3 (a variant common in Asian populations), and
clinical factors, can improve the predictability of clopidogrel
effect to 37.7%.
Another example of GWAS elucidating the genetic under-

pinnings of variability in drug efficacy is in the use of
interferon-alpha for treatment of hepatitis C infection. A
polymorphism adjacent to IL28B has been shown to pre-
dict treatment response and viral clearance in individuals
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on interferon-alpha for hepatitis C in several GWAS.52–54

Because the genotype associated with improved response is
more common in individuals of Asian and European ances-
try than African ancestry populations, this genetic polymor-
phism may explain the difference in response rates between
patients of African and European ancestry.52

These GWAS of statin, clopidogrel, and interferon-alpha
effects all emphasize that variability in drug response is
ancestry-dependent due to the vast difference in distribution
of genetic variants, such as CYP2C9, CYPC19, and IL28B,
across populations. These findings, along with others, have
increased focus towards a personalized approach to disease
treatment and encouragement of research efforts from indi-
viduals of diverse backgrounds. Studies across ancestries
are needed to fully capture the genetic architecture of human
traits, including drug response, and ultimately, appropriately
implement such variants in clinical practice.

GWAS for understanding impact of genetic variation on
drug toxicity

GWAS has been used to determine potential associations
of drug toxicities and adverse drug reactions (Figure 2a).
The human leukocyte antigen (HLA) variation, in particular,
has been associated by GWAS with susceptibility to adverse
drug reactions. Drug-induced liver injury (DILI) is a rare but
serious adverse effect secondary to many drug therapies,
with increased susceptibility in HLA regions implicated in
several studies.55–57 The first study was in 2008 and focused
on ximelagatran, an oral direct thrombin inhibitor that was
removed from the market in 2006 due to the development of
transaminitis in some patients. In this study, Kindmark et al.
performed a GWAS that suggested an association between
DILI during use of ximelagatran with HLA class II alleles,
which was confirmed with candidate gene studies.58 In 2009,
Daly et al. found a strong association of HLA-B*5701 with
DILI following treatment with flucloxacillin.55 Singer et al., in
2010, identified an association of hepatotoxicity after use
of lumiracoxib, a selective cyclooxygenase-2 inhibitor, with
common HLA class II haplotypes.56 In 2011, Lucena et al.
performed GWAS of 201 cases of DILI after treatment with
amoxicillin-clavulanate compared with 532 controls, finding
HLA class I and II SNPs may confer susceptibility to liver
injury after this antibiotic treatment.57 Due to the rarity of DILI,
the finding of genetic predispositions in GWAS may be lim-
ited. Nicoletti et al. recently attempted to overcome this limi-
tation by grouping DILI caused by any drug other than the
common causes (flucloxacillin and amoxicillin-clavulanate)
to determine predisposition for DILI.59 They found a strong
association of HLA-A*33:01 with DILI, appearing to be heav-
ily influenced by the effects of terbinafine.59 This demon-
strates how novel methods in studies will allow researchers
in some cases to overcome the power limitations of GWAS
and find rare variants with a large effect size.
The HLA locus has also been implicated in other adverse

drug reactions, including skin hypersensitivity. In 2004,
Chung et al. reported a strong association in a Han Chinese
population betweenHLA-B*1502 and Stevens–Johnson syn-
drome induced by carbamazepine.60 Candidate gene studies
were also used to ascertain an association between variation

in the HLA region, HLA-B*5701 (OR = 117), with abacavir
skin hypersensitivity, which has since been elucidated both
at a structural and mechanistic level.61,62 Several subsequent
GWAS studies across ancestral populations have shown that
skin hypersensitivity reactions, ranging from skin rash to
severe reactions such as Stevens–Johnson syndrome/Toxic
Epidermal Necrolysis, can occur secondary to a wide range
of drug therapies. In 2011, Ozeki et al. identified the HLA-
A*3101 allele as a genetic risk factor with a modestly large
effect size (OR = 10.8) for carbamazepine-induced hyper-
sensitivity in a cohort of 53 cases and 882 controls from
Japan.63 McCormack et al. shortly after reported the same
genetic association with carbamazepine-induced hypersen-
sitivity reaction in individuals of European descent, finding a
large effect size as well (OR = 12.4).64

One important early GWAS example is the study by Link
et al., which discovered a single strong association of statin-
induced myopathy in Europeans with an SNP located within
SLCO1B1, known to encode an organic anion-transporting
polypeptide that regulates the hepatic uptake of statins
(OATP1B1).65 While the variant allele frequency of this signifi-
cant polymorphism is 0.13 in European populations, carriage
of the variant allele resulted in an 18% incidence of myopa-
thy over 5 years, with 60% of cases attributable to the variant
allele. Thus, further studies are needed to define the mecha-
nism(s) underlying this “variable penetrance.” A recent study
by Mosley et al. evaluated the association of genetic vari-
ation with angiotensin-converting enzyme inhibitor (ACEi)-
induced cough.66 Cough is the most common side effect
of ACEi therapy, with epidemiologic variation that suggests
a potential genetic predisposition. In GWAS consisting of
1,695 cases of ACEi-induced cough compared with 5,485
controls, SNPs in KCNIP4 were associated with increased
risk for developing cough with ACEi. In recent GWAS, genetic
variation has also been implicated as increasing suscep-
tibility to anthracycline-induced cardiotoxicity and reduced
left ventricular function.67,68 Vancomycin, a commonly used
antibiotic, is known to be nephrotoxic, with a GWAS suggest-
ing variation at the chromosome 6q22.31locus could modu-
late that risk as well.69

PheWAS for understanding drug response variability

PheWAS also has the potential to uncover associations with
drug effects, including therapeutic response and side effect
profiles (Figure 2b). Neuraz et al. described in 2013 the use
of a study population with thiopurine exposure to determine
associations with clinical traits after drug exposure to identify
adverse events.70 They grouped 442 individuals with thiop-
urine exposure into three categories based on thiopurine S-
methyltransferase (TPMT) activity, a quantitative trait avail-
able from the EHR for patients with clinical TPMT testing.
They found that very high TPMT activity was associated with
diabetes mellitus and iron-deficiency anemia. Similarly, they
analyzed associations with laboratory data, finding that very
high TPMT activity along with thiopurine exposure was asso-
ciated with an increased incidence of hyperglycemia and
anemia by test results. This study shows the ability for Phe-
WAS to identify adverse events potentially associated with
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Figure 3 Opportunities for drug repurposing using results of
genome-wide association studies (GWAS) and phenome-wide
association studies (PheWAS). Given a known mechanism of
action or genetic target of a currently approved drug, GWAS and
PheWAS reveal drug repurposing opportunities through identifica-
tion of diseases with common genetic associations with the known
drug genetic target.

drug use, as well as the feasibility of crossvalidation of con-
ventional PheWAS analyses with biological test results.70

Others have noted the potential ability to leverage the
identification of pleiotropic effects through PheWAS meth-
ods to predict potential adverse events to drug therapy.
Diogo et al. analyzed associations of RA-protecting variants,
potential future targets for therapeutics, for additional indi-
cations and potential adverse events.71 They first demon-
strated that three protein coding variants in tyrosine kinase
2 (TYK2) independently protect against RA. To determine the
possibility for TYK2 to be a drug target, they analyzed for
associations of TYK2 with any other complex phenotypes.
They did not identify any associations meeting statistical sig-
nificance, suggesting that inhibition of TYK2 may not result
in serious adverse events in the treatment of RA. However,
the ranking of associations not meeting significance poten-
tially prioritizes adverse events for study in a trial and repre-
sents an analytical framework that could show success in the
future. This study also highlights the very large populations
needed for this study design; among over 20,000 individuals
in the PheWAS of one cohort, a total of 2,612 had pneumo-
nia, the potential adverse event most trending toward sta-
tistical significance. Using PheWAS to suggest deleterious
effects of evolving therapeutics early in the drug develop-
ment stages could allow resources to target therapeutics
with greater potential or can identify patient populations for
whom the drug may be contraindicated.

Use of GWAS and PheWAS to identify opportunities for
drug repurposing

In addition to elucidating drugmechanism and response vari-
ability, GWAS and PheWAS can be used to identify novel
treatment methods through drug repurposing (Figure 3).72,73

Drug repurposing, also termed drug repositioning, is the
application of an existing therapeutic drug for new indica-
tions. Drug repurposing could significantly speed up the typ-
ical >10 years lag time for FDA approval and drug marketing,
as preclinical and phase I clinical trials are already complete.

While the GWAS gene set is enriched with targets already
pursued by drugs that align with the disease–gene pair iden-
tified by GWAS analysis, there are also mismatches in which
the indication for the drug is not congruent with the associ-
ated disease by GWAS, and examples of pleiotropy, where
multiple diagnoses are associated with the same genetic
signal.19 By comparing known GWAS-disease associations
to the indications of drugs with known gene targets, Sanseau
et al. identified 92 individual genes that are targets of drug
projects that mapped to a GWAS trait different than their drug
indication.19 These instances represent potential drug repur-
posing opportunities.
Prior studies have demonstrated the success of this

approach, for example, the use of complement inhibitors for
the treatment of age-related macular degeneration (AMD).
One of the first GWAS in 2005 found the complement
factor H gene to be strongly associated with the risk of
AMD.74 At that time, complement inhibitors had been devel-
oped for the treatment of sepsis and paroxysmal nocturnal
hemoglobinuria.75–77 This has led to the targeting of factors
in the alternative complement pathway in clinical trials with
promising findings for reducing the severity of AMD.78 In
addition to validating currently approved RA drug therapies,
Okada et al. identified several drugs used for other diseases
that target biological genes containing RA risk SNPs and thus
proposed these as drug repurposing opportunities.32 They
found that CDK6 and CDK4, targets of three approved drugs
for cancer (palbociclin, capridine, and flavopiridol), include
RA risk SNPs, suggesting they should be investigated for effi-
cacy in RA as well.
Analogous to the use of GWAS to identify novel drug uses,

the ability of PheWAS to identify pleiotropic effects creates
opportunities for drug repurposing (Figure 3).13,73 As Phe-
WAS can identify diseases that share a common etiology,
one can theorize that drugs used to treat one disease may
also have efficacy to treat another.16 A hypothesis-generating
study by Rastegar-Mojarad et al. evaluated the potential for
drug repurposing by linking current drug-targeted genes in
DrugBank to the gene–phenotype associations in the Phe-
WAS catalog.73 They validated the disease indications for
drugs in 127 cases, but also identified 2,583 that strongly
supported potential novel drug–disease associations, avail-
able within a cataloged database to the public.79 There are
several factors that can influence the ability for a drug–
disease identified in PheWAS and poised for drug repur-
posing to come to fruition. In particular, methods must be
developed to narrow the results to candidate drug–disease
pairs that are supported in the literature or by mechanistic
knowledge. Rastegar-Mojarad et al. started this approach by
cross-referencing all pairs with the clinical trial registry, noting
that incorporation of other biomedical databases could also
significantly improve prioritization.73 Recently, Pulley et al.
specifically described six genes with pleiotropic effects iden-
tified in PheWAS, three of which are currently underway to
study repurposing opportunities of drugs with respect to the
relevant molecular target.80

Millwood et al. in 2016 used PheWAS methods applied to
ICD-10 codes in the China Kadoorie Biobank to evaluate the
potential efficacy of lipoprotein-associated phospholipase
A2 (Lp-PLA2) inhibitors for the treatment of atherosclerotic
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disease.81 Loss-of-function variants in the PLA2G7 gene is
associated with reduced Lp-PLA2 activity and is relativity
common among East Asian populations. Through their Phe-
WAS analysis, they determined there was no association of
a loss-of-function variant in PLA2G7 with improvement in
vascular diseases, such as stroke and coronary events, or
nonvascular diseases in a Chinese population. They note
that these findings correlate with the lack of efficacy in a
2014 randomized controlled trial with the Lp-PLA2 inhibitor
darapladib.82 Use of PheWAS results such as these in the
design of clinical trials could thus help guide study design,
saving time and resources.

CHALLENGES OF GWAS AND PHEWAS IN DRUG
DISCOVERY, DRUG REPURPOSING, AND
PHARMACOGENOMICS

Statistical power in GWAS and PheWAS is determined by
the size of the study cohort, the frequency of the variant, and
the effect size of the variant. Both methods are limited by
a reduced ability to achieve statistical significance given the
large number of hypotheses tested.13 While the number of
phenotypes tested in PheWAS is relatively small compared
with the number of genotypes tested in GWAS, testing of
multiple genotypes against a large set of phenotypes expo-
nentially increases the number of statistical tests, requiring
smaller and smaller P-values for statistical significance with
Bonferroni correction.
GWAS and PheWAS for evaluation of drug effects is chal-

lenged by small sample sizes, with a subsequent lack of
power to detect small or moderately sized effects.83 For
example, rare but serious adverse events or drug nonre-
sponders may be associated with rare variants with clinically
relevant effect size, but could be potentially missed in tra-
ditional GWAS. Due to the rarity of these events in a popu-
lation, sample size is often much smaller than is typical in
GWAS performed for evaluation of disease risk. While the
sample size for GWAS in pharmacogenomics studies is typ-
ically less than 1,000 individuals, GWAS for common dis-
eases often use thousands of subjects, with meta-analyses
containing even tens of thousands, realized by the pairing
of genomic information with EHRs.84 Non-EHR cohorts often
have focused clinical information, lacking drug response trait
information. While the EHR can be leveraged to identify drug
response traits, the rarity of events necessitates collabora-
tion between biobanks to reach adequate statistical power.
Several efforts to encourage data sharing have evolved over
the last decade, such as the Electronic Medical Records and
Genomics (eMERGE) network, UK Biobank, China Kadoorie
Biobank, and Million Veterans Project.
Another challenge facing GWAS and PheWAS is due to

the complex architecture of phenotypes with non-Mendelian
inheritance patterns. Disease-associated alleles, and thus
druggable genes, often have a very small effect on the over-
all risk of the disease, thus variability in drug effects can
also only be partially accounted for by an identified genetic
variant.4 GWAS and PheWAS are designed and powered
to detect associations with common genetic variants in a
population, with the majority of these variants having small
genetic effects. Thus, while an association may be present

between a drug effect and genetic variant, many other envi-
ronmental and genetic factors are also simultaneously con-
tributing to that variation, resulting in a significant proportion
of “missing heritability.” Further, GWAS and PheWAS results
are population-specific, with the majority of large studies
being performed in populations of European descent.85,86

The extent to which these findings can be translated to other
populations is unknown, as there are significant differences in
linkage disequilibrium and allele frequencies between ances-
tries.

While GWAS may identify many alleles contributing to dis-
ease risk, not all of those alleles or potential gene targets
will be disease-causing or able to be modulated for disease
treatment.4 Those genes which harbor causal alleles must be
differentiated from the rest in order to narrow the search for
potential drug targets. Once a causal allele is identified, it can
be difficult to understand the mechanism by which the gene
variation contributes to the disease; thus, functional studies
are required to fully understand the disease risk attributed to
the gene and the potential mechanism of a modifying drug.
Another factor that has limited the success of GWAS findings
from being translated to marketed therapeutics is the long
duration, often over 10 years, before a gene target is trans-
lated into an approved marketed drug.19 As previously dis-
cussed, drug repurposing is amethod to potentially decrease
this development time.

Accuracy and scalability of EHR-based phenotyping for
drug response

The use of GWAS and PheWAS to investigate drug efficacy
and adverse events relies upon accurate description of the
drug response or adverse event. Although EHRs have greatly
eased the ability for researchers to identify phenotypes in
a population, accurate drug response and side effect phe-
notypes remain a challenge to assemble in large cohorts.83

EHR-based GWAS and PheWAS rely on the ability to read-
ily extract structured data from the medical record. For Phe-
WAS, this is often in the form of billing codes, which are unre-
liably accurate and rarely used for describing drug effects,
drug efficacy, and adverse event phenotypes. Thus, manu-
ally curated and validated phenotyping algorithms from the
EHRmust be developed and implemented. While EHRs have
allowed for accrual of and access to clinical information,
algorithms are necessary to extract this information from the
various parts of the EHR, including clinical documents, labo-
ratory data, nursing records, etc. Development and validation
of these algorithms can be time-consuming and require both
clinical and technical expertise.

While curation of a single (or few) phenotypes for a GWAS
is manageable, this is much more difficult for the thousands
of potential phenotypes used in a PheWAS. Phecodes have
shown efficacy for PheWAS analyses; however, they do not
align precisely with clinical diseases and may not have ade-
quate granularity or specificity for some phenotypes.14,87

Phecodes currently use ICD-9-CM codes as their sole source
of information. Efforts are underway to map the codes to
ICD-10, but more important, billing codes alone do not cap-
ture all medically relevant phenotypes. For drug effects, while
integration of billing codes with other portions of information
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from the EHR can refine phenotypes and exposures, a signif-
icant limitation in obtaining these well-specified phenotypes
from various sources is first the clinical expertise to define
the phenotype, followed by the informatics support to extract
the information from the EHR.88,89 Curated phenotypes have
been developed for individual diseases, but there is currently
no high-throughput mechanism to produce cases and con-
trols from thousands of detailed phenotype algorithms. New
methods are needed to study drug exposures with events
at scale, while appropriately assessing the timing of both.
Currently, drug response phenotypes are best pursued one-
phenotype-at-a-time.
As we have previously discussed, drug efficacy can

vary significantly in a population. However, accurate ascer-
tainment of drug response as a continuous outcome is
difficult. For some phenotypes, such as blood pressure
reduction or blood glucose control, multiple measurements
may allow for more accurate determination of response;
however, for themajority of therapeutics there is not a defined
scale for response or adverse effect, nor are these measure-
ments made routinely part of clinical care to enable large
GWAS studies in EHR cohorts. The recent study by Wells
et al. shows how a phenotype along a continuum, left ventric-
ular function by systolic ejection fraction, can be used as the
outcome in a GWAS analysis to determine drug side effects,
rather than a dichotomous variable, such as the presence
or absence of heart failure.68 When feasible, GWAS to mea-
sure drug–phenotype associations should use phenotypes
defined along a continuum to allow improved accuracy of
prediction.
Other limitations of EHR-based genetics research are sec-

ondary to the current confines of EHRs. Due to the decen-
tralization of EHRs, data within the record itself may be
incomplete due to the various providers and institutions a
patient may visit. Also, EHRs are designed for exchange of
clinical information and billing purposes, not specifically for
research. Thus, inaccuracies can be introduced by clinical
uncertainty or billing errors, and the amount of information
available can vary greatly. Further efforts to improve EHR
data, centralize information, and allow for phenotype cura-
tion from EHR datamore efficiently and accurately will greatly
facilitate advancement in phenotyping studies.

EMERGING GWAS AND PHEWAS-RELATED
TECHNIQUES FOR PHARMACOGENOMICS

While GWAS methods have provided insight into thousands
of variants associated with complex traits, the biological
mechanisms underlying the associations remain poorly
understood. Gene expression is an intermediate between
genetic information and phenotypes and can play an impor-
tant role in drug response. One proposed method to gain
information on biological mechanisms and gene expression
is through PrediXcan, a technique that estimates the com-
ponent of gene expression determined by an individual’s
genetic profile through use of reference transcriptome data
sets and correlates that gene expression with the pheno-
type of interest.90 PrediXcan can be likened to a limited
PheWAS, using imputed gene expression as the Phe-
WAS predictor variable. A major benefit of PrediXcan is its

ability to increase power by aggregating the effects of SNPs
associated with gene expression. PrediXcan also provides
direction of the effect of the genetic variant, for example,
increased or decreased gene expression. This is significant
for drug discovery and repurposing, as the development
of therapeutics that downregulate a gene, and thus gene
expression, is often easier to attain than development of
drugs that upregulate a gene.90

In addition to potential opportunities with drug develop-
ment, PrediXcan can provide insights into drug effects. One
recent example in which this has been employed is in evalu-
ation of genetically determined expression levels association
with chemotherapy-induced peripheral neuropathy. Dolan
et al. analyzed associations with cisplatin-induced peripheral
neuropathy using GWAS and PrediXcan.91 While no SNPs
met genome-wide significance in GWAS, lower expression of
RPRD1B, which is predicted by 20 SNPs on chromosome 20
and codes for a protein that regulates transcription of genes
involved in the cell cycle, was associated with decreased risk
for cisplatin-induced peripheral neuropathy in PrediXcan (P=
0.0089).91 These recent findings suggest a promising role for
PrediXcan methods in the future.
Techniques such as PrediXcan, which aim to increase the

power of GWAS methods, may overcome some of the limita-
tions for GWAS to identify associations with rare variants or
small effects. Further, although analysis of GWAS data often
uses stringent thresholds for statistical significance, there
is likely information that can be gleaned from associations
with P-values that fail to meet the 5 × 10−8 threshold. Some
have proposed analyzing GWAS data using a multiple-locus-
based approach, drawing on protein pathway- or domain-
based data to develop a candidate gene data set, which
can then be integrated with known drug–gene target sets
to identify potential drug repurposing opportunities.72,92 This
has been suggested for a wide range of complex diseases,
including type 1 and 2 diabetes, bipolar disorder, Crohn’s dis-
ease, hypertension, coronary artery disease, and RA.72,93

Although the initial applications of the PheWAS method-
ology have focused on identification of phenotypes that
are associated with single SNPs, recent approaches have
involved a search for associations with aggregated genetic
information or other phenotypic data.94 These advances also
aim to overcome the power and effect size limitations of tra-
ditional PheWAS studies. Use of a set of SNPs as the input
for a PheWAS can be one way to increase the effect size in
PheWAS. The set of SNPs can be used to generate a genetic
risk score derived from GWAS data and weighted based on
an individual SNP effect size. Krapohl et al. used genetic risk
scores of thousands of SNPs derived from GWAS of psy-
chiatric traits to determine associations with phenotypes.95

They also demonstrate the use of a limited phenome, con-
sisting only of behavioral phenotypes only, which can be
used to yield greater power.
Similarly, methods for the joint testing of multiple cor-

related traits can be performed to increase the power in
a PheWAS analysis.96 As many phenotypes are known to
be correlated, the Bonferroni correction often applied to
PheWAS is likely overly-conservative, resulting in significant
associations being missed. Performing the analysis on an a
priori grouping of correlated traits could increase likelihood
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of finding associations. Any significant association could
then be more closely analyzed individually, decreasing the
number of tests performed in a single PheWAS compared
with analysis using the entire phenome.96

It is the curation of the EHR phenome that enables Phe-
WAS, and the technique is not limited to the study of genetic
effects. PheWAS methods can also be used to investigate
the association of other factors, such as laboratory parame-
ters or comorbidities, with human traits, an analysis that can
be termed a phenotype-only PheWAS. Using this approach,
Warner et al. demonstrated that elevated white blood counts
(WBC) in an intensive care unit are associated with diag-
noses of Clostridium difficile infection and bacterial sepsis.97

This study also takes advantage of the nonbinary features
of many clinical traits, such as continuous laboratory mea-
surements, to show the varying WBC across the phenome.
Limiting dichotomization of these features, which could lead
to loss of significant information and ability to find associa-
tions, will be important in future PheWAS.
Phenotype-only PheWAS can also be used to describe

features associated with a disease process, as shown
recently in the description of features associated with sys-
temic loxoscelism.98 In another study, Liao et al. used the
predictor in a PheWAS as the presence of autoantibodies
among a cohort of patients with RA, and determined a sig-
nificant association between several different epitopes and
comorbidities.99 A similar approach was used by Doss et al.
to define subgroups of RA patients based on serology for
rheumatoid factor, finding that seronegative RA was associ-
ated with fibromyalgia and seropositive RA was associated
with chronic airway obstruction.100 In addition to demon-
strating the use of nongenetic information for PheWAS anal-
yses, these studies show the ability for PheWAS to iden-
tify subtypes within diseases; for example, associations with
other diseases, severity of disease, variable phenotypic man-
ifestations of disease, or differing response to therapeutics.
Outside of clinical phenotypes as predictors in PheWAS,
another opportunity for the future is to apply PheWAS to
PrediXcan, in which predictors of gene expression can be
used to identify traits associated with predicted increased
or decreased expression of a gene. Each of these devel-
oping techniques have the potential to add insight on sub-
groups of diseases that respond to medication therapy dif-
ferently, including patient populations with the development
of adverse effects or lack of efficacy.
While the potential for evolution of PheWAS techniques are

vast, the goal will remain the same—to improve the ability for
PheWAS to identify novel associations by increasing power
and improving predictive capacity.

CONCLUSION

GWAS and PheWAS not only provide insight into the biol-
ogy of diseases, but also provide opportunities for drug
targeting, development, and identification of populations
at risk for drug-related adverse events. Further investiga-
tions using current and future methods will provide the
linkages between disease–gene associations, cellular mech-
anisms, and therapeutic approaches. GWAS and PheWAS

pharmacogenomic studies with larger sample sizes, facil-
itated by multiinstitutional collaboration and consistent
phenotyping through utilization of EHRs, can allow future
studies to achieve greater power to identify small to mod-
erate genetic effects on drug response. Techniques such as
genetic risk scores to analyze all risk genes, including those
with small and large effect size in a population, will further
facilitate greater accuracy in prediction of response to drug
therapy.
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