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Abstract 

Background:  Helicobacter pylori, a 2 × 1 μm spiral-shaped bacterium, is the most common risk factor for gastric 
cancer worldwide. Clinically, patients presenting with symptoms of gastritis, routinely undergo gastric biopsies. The 
following histo-morphological evaluation dictates therapeutic decisions, where antibiotics are used for H. pylori eradi‑
cation. There is a strong rational to accelerate the detection process of H. pylori on histological specimens, using novel 
technologies, such as deep learning.

Methods:  We designed a deep-learning-based decision support algorithm that can be applied on regular whole 
slide images of gastric biopsies. In detail, we can detect H. pylori both on Giemsa- and regular H&E stained whole slide 
images.

Results:  With the help of our decision support algorithm, we show an increased sensitivity in a subset of 87 cases 
that underwent additional PCR- and immunohistochemical testing to define a sensitive ground truth of HP pres‑
ence. For Giemsa stained sections, the decision support algorithm achieved a sensitivity of 100% compared to 68.4% 
(microscopic diagnosis), with a tolerable specificity of 66.2% for the decision support algorithm compared to 92.6 
(microscopic diagnosis).

Conclusion:  Together, we provide the first evidence of a decision support algorithm proving as a sensitive screening 
option for H. pylori that can potentially aid pathologists to accurately diagnose H. pylori presence on gastric biopsies.

Keywords:  Artificial intelligence, Deep learning, Convolutional neural networks, Gastric cancer prevention, Screening, 
Helicobacter pylori
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Background
Helicobacter pylori is a gram-negative bacterium, meas-
uring 2–4 μm in length and 1 μm in width, usually pre-
sented in a spiral-shaped structure [1–3]. Clinically, 
H. pylori has been classified as a WHO class 1 carcino-
gen and represents the most common cause of gastric 

cancer worldwide [4, 5]. Importantly, the vast majority 
of all gastric cancers outside the cardia arise within H. 
pylori infected gastric mucosa [6, 7]. It has been shown 
that eradication of H. pylori can reduce the risk of gas-
tric cancer in both retrospective-, as well as prospective 
clinical trials [8–10]. Although the incidence of gastric 
cancer itself is declining in Western countries, the dis-
ease is usually diagnosed in late stages, where individu-
als face a dismal prognosis—due to limited therapeutic 
options [11–13]. Meanwhile, systematic testing for H. 
pylori and corresponding therapeutic interventions have 
been established [14, 15]. However, the prevalence of H. 
pylori infection differs greatly between 20 and 80% within 
populations [16].
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Advances in the field of hardware components, as well 
as the availability of large amounts of data, have allowed 
the field of artificial intelligence to rapidly grow [17]. 
Lately, these technologies have been successfully applied 
to improve diagnostic procedures in the medical field 
[1–3].

Therefore, we aimed to (1) design a deep learning based 
decision support algorithm that highlights H. pylori bac-
teria in image regions of gastric biopsies samples that are 
routinely tested for H. pylori presence and (2) validate 
this algorithm both on Giemsa stains and regular H&E 
stains comparing with microscopic diagnosis, immuno-
histochemistry and PCR.

Methods
Digitalization of whole slide images and quality control
Modified Giemsa and regular H&E stained slides were 
scanned using a NanoZoomer S360 (Hamamatsu Pho-
tonics) whole-slide scanning device at 40X magnification, 
as well as a DP200 slide scanner (ROCHE Diagnostics) at 
40X. The slides were then evaluated for image quality and 
included within the validation cohort, if at least 50% of 
the tissue allowed a distinction of cell types. The evalu-
ated tissue had to include at least 50% of gastric tissue to 
be included. Therefore, biopsies that primarily included 
intestine or esophageal tissue were not included.

Detection of H. pylori: image processing
Our approach consists of first localizing areas of H. pylori 
presence (herein referred as H. pylori hot spots) using 
image processing, and then cropping the hot spots into 
224 × 224 patches and classifying them with a deep neu-
ral network. H. pylori typically exists inside and around 
glandular structures that can be described as white 
regions image regions inside the gastric tissue (Fig.  1b). 
To localize these regions, we downscaled the slide by a 
scale of × 32 in each axis, applied Otsu thresholding on 
the saturation channel in the HSV color space, then per-
formed erode/dilate morphological operations to create 
a mask with the white regions. Then we would find the 
contours of these regions and crop them into non-over-
lapping patches of 224 × 224. Regions that had an area 
smaller than 32 pixels were discarded. A typical slide had 
hundreds to thousands of H. pylori patch candidates. 
These were then filtered by a classification network to 
only keep patches that contained H. pylori.

Detection of H. pylori: deep learning
To classify the patches, we trained a compact VGG-style 
deep neural network [18]. The same network was trained 
on both Giemsa and H&E slides, in order to improve the 
generalization of the network on slides with stain varia-
tion. The network had 9 convolutional blocks followed 

by 3 fully connected layers. The first two convolutional 
layers are pointwise convolutions that help the network 
generalize on multiple stains [20]. The next two layers 
had kernel sizes of 7 × 7 and 5 × 5, that increased the 
receptive field, and the rest had kernel sizes of 3 × 3. The 
capacity of the network was reduced by scaling the num-
ber of features in every layer. The last convolutional layer 
had the output of only 32 channels. The first two fully 
connected layers had 1024 channels each, and the last 
layer has two outputs. We used 50% dropout between the 
fully connected layers, and batch normalization layers 
after the ReLU nonlinearity layers in the convolutional 
part of the network. In addition, we used standard cross 
entropy as the loss function and weighed the categories 
by their proportions in the dataset. As an optimizer, we 
used Adam with default parameters. We used a batch 
size of × 32, that was split among 4 1080ti GPUs, using 
the PyTorch framework. To help generalize among dif-
ferent stains, we used aggressive color augmentation. The 
brightness, contrast, saturation, and hue of every image 
was randomly jittered with strong portions. We also ran-
domly flipped and rotated the image, then applied ran-
dom grayscale and local elastic transformations.

Visualization of the convolutional neural network output
Although the network performs classification, we applied 
a technique to help with the localization of individual 
H. pylori bodies. We first applied the SmoothGrad tech-
nique and averaged the gradients of the category score 
with respect to noisy input image pixels [21]. The gra-
dient image is then passed to a ReLU gate, to keep only 
positive gradients. The gradient image was then used as 
a threshold, and input image pixels that had lower gradi-
ents were masked out, in order to only retain pixels that 
were important for the network decision. The threshold 
was then set to the 99.8% gradient percentile to keep the 
top instances. Then, the gradient image was dilated, and 
we drew contours over connected components to high-
light areas that had H. pylori bodies with high confidence.

Training datasets and annotation strategy
An overview of the training dataset can be found in 
Table  1. Overall, 191 H&E and 286 Giemsa stained 
slides were used, with a total of 2629 tiles containing for 
Giemsa 790 and H&E. About 4241 and 1533 tiles without 
H. pylori -like bacterial structures were used for Giemsa 
and H&E, respectively.

Using the strategy of training an initial model to clas-
sify H. pylori hot spots (Fig. 1b), we annotated the whole 
slide image (WSI), avoiding the need to manually anno-
tate H. pylori regions in slides. First, the H. pylori can-
didate localization algorithm was applied on every slide, 
creating thousands of crops on average. Crops from 
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Fig. 1  Clinical relevance of H. pylori and illustration of strategy to build a model detecting H. pylori. a Illustration of the diagnostic spectrum for 
type B-gastritis (bacterial gastritis, or H. pylori -gastritis) linked to H. pylori infection. While endoscopic evaluation of the stomach remains, and 
consequently harvesting gastric biopsies, other diagnostic tests, such as H2 breathing test and serological testing for H. pylori can be applied but 
may not differentiate for an active H. pylori infection. The tissue of gastric biopsies can histologically be reviewed, but also further tests can be 
applied, such as Immunohistochemistry (IHC) and Polymerase chain reaction (PCR), which are more sensitive. b Schematic representation of the 
approach to build a H. pylori classifier. Initially, areas within gastric biopsies of H. pylori presence were extracted (H. pylori hot spots, circled with 
green). Then, these hot spots were annotated according to their presence or absence of H. pylori, following a training step of an initial model. To 
further improve the detection sensitivity and specificity, this step was repeated for several times to generate a larger training dataset. The final 
model was trained containing several thousand H. pylori hot spots. Lastly, data was augmented by using color augmentation
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slides lacking H. pylori were automatically labeled as “not 
H. pylori.” Crops from slides containing H. pylori were 
labeled in a gallery by pathologists. Since the number of 
H. pylori may be scarce even in slides that do contain H. 
pylori, there was a high level of variance between cat-
egories that made the annotation challenging. We used 
an active learning approach, where the dataset was con-
structed in steps of labeling few hundred crops each 
time, then a model was trained, and the remaining unla-
beled crops were ordered from high to low according to 
their H. pylori category score. In the next step, the labe-
ling was done on high scoring H. pylori crops, dramati-
cally increasing the rate of encountered H. pylori crops 
and making the dataset labeling time efficient. This pro-
cess was stopped when the rate of appearing H. pylori 
crops was very low, after a few thousand labeled images. 
The dataset contains more Giemsa slides than H&E 
slides. Using active learning, we were able to reduce the 
reviewed crops from nearly a hundred thousand crops 
(the total number of extracted candidates) to several 
thousand.

Validation: region of interest review
We used a decision support algorithm approach of show-
ing the top ranked 39 tiles (224 × 224 pixels) of an WSI 
to an experienced pathologist. We defined H. pylori pres-
ence, if at least two bacterial-like and spiral structures 
were present within an image. In total, the area of the 
presented fields reflected less than 1% of the area of the 
whole slide tissue area (Fig. 2b, c).

Validation: RT‑PCR and immunohistochemistry for H. pylori
In a subset of samples with conflicting microscopic diag-
nosis, despite clear visible H. pylori-like structures, or 
inconclusive H. pylori status, additional 46 samples were 
analyzed using PCR. H. pylori was screened with the 
RIDA GENE® Helicobacter pylori assay (r-biopharm, 
Darmstadt, Germany). At least one area on a hematox-
ylin–eosin stained slide was selected by an experienced 

pathologist (RB, AQ, SK) and DNA was extracted from 
corresponding unstained 10  µm thick slides of forma-
lin-fixed, paraffin-embedded tissue by manual micro-
dissection. Isolation was performed semi-automatically 
using the Maxwell® 16 FFPE Plus Tissue LEV DNA Puri-
fication Kit on the Maxwell® 16 System (Promega, Man-
nheim, GER) following the manufacturer’s protocols. The 
RIDA GENE® Helicobacter pylori assay was performed 
with 5 µl of DNA for each sample independent of DNA 
concentration and fragmentation on a CFX96 Touch™ 
Real-Time PCR Detection System (BIO-RAD, Hercu-
les, California) according to the manufacturer’s proto-
col. Analyses were performed with the corresponding 
software. As amplification control, an internal control 
DNA (1 µl) was added to each PCR-Mix of all samples. 
All samples had to show a positive amplification of the 
internal control DNA (Additional file  1: Figure S2A). 
For a reliable detection of H. pylori and the Clarithro-
mycin resistance positive (red curve) and negative con-
trols (black curves) were included into each run (Fig. 2b). 
Additional file  1: Figure S2C shows the amplification 
curves for the detection of the clarithromycin resistance. 
The fluorescence signal for a resistance to clarithromy-
cin had to be more than 20% of the fluorescence signal of 
the positive control. To determine the sensitivity of this 
assay, a serial dilution (1:2) of the positive control was 
performed (Additional file  1: Figure S2D). Discrepant 
cases were validated with the GenoTypeHelicoDR assay 
(Hain Lifesciences GmbH, Nehren, Germany) according 
to the manufacturer’s protocol with 5 µl of DNA for each 
sample. Immunohistochemical staining for H. pylori was 
performed on full tissue sections using the BOND MAX 
from Leica (Leica, Germany) according to the manufac-
turer’s protocol, and a polyclonal anti-H. pylori antibody 
from Cell Marque™. All stained sections were evaluated 
by an experienced pathologist (AQ, RB).

Results
Generating an assistive support algorithm to detect 
Helicobacter pylori on whole slide images
Symptoms of gastritis regularly require an endoscopic 
evaluation of the stomach. While several diagnostic tests 
can be applied, histo-morphological assessment of the 
tissue can be considered a standard procedure in West-
ern countries (Fig.  1a) [4–10]. Clinically, the subtype of 
bacterial-associated gastritis (Type-B-Gastritis) is linked 
to infection with H. pylori. Usually, modified stains, such 
as Giemsa stains, help visualize these bacterial struc-
tures for histo-morphological assessment. In addition, 
H&E stains are performed to evaluate morphological 
abnormalities.

Therefore, we generated a decision support algorithm 
that would highlight regions of H. pylori presence on 

Table 1  Corresponding anatomical sites of  gastric 
biopsies being evaluated for both training and validation 
of the algorithm

Localisation Training Validation

Giemsa H&E Giemsa H&E

Antrum 226 145 59 52

Corpus 35 30 17 11

Duondenum 15 2 6 5

Cardia 8 12 4 3

Fundus 2 2 1 0
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both modified Giemsa stains and regular H&E stains. 
We applied a combination of image processing and deep 
learning to extract regions of H. pylori presence, as well 
as to classify those regions, using a convolutional neu-
ral network (CNN) (Fig. 1b). Due to the fact this hybrid 
approach limits the amount of image information that 
are processed by a CNN-thereby saving computational 
resources–it allows the WSI analysis in high resolution 
to be done within seconds on regular clients. Typically, 
H. pylori resides in areas that can be described as a white 
background from an image processing point of view. 
Thus, we applied a pre-processing step to detect these 
candidate regions, using a combination of thresholding- 
and morphological operations on a low-resolution image. 
We decided to extract all candidate regions and anno-
tate those patches in a gallery as the annotation of H. 
pylori containing areas is necessary, but time consuming 
and challenging on WSI (Fig.  1b). We applied an active 

learning approach on the annotated data, which repre-
sents an imbalanced data pool. The images were sorted 
by their H. pylori scores, allowing high-scoring images to 
be presented in priority.

In order to overcome the stain variation of histologi-
cal specimens, we applied aggressive color augmentation 
on the extracted images for better performance and gen-
eralizability. Images were converted to a grayscale with 
10% probability and heavy color jittering. In addition, 
we trained the same network for both H&E and Giemsa 
stains to further improve generalization across color- and 
stain variations.

Having generated the final model, we further aimed to 
understand the decisions of the network. We visualized 
and highlighted areas in the image that were significant 
for the network’s output (Fig.  2a). Having shown that 
the algorithm detects H. pylori bacterial structures on 
both modified Giemsa stains and regular H&E stains, we 
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Fig. 2  Validation strategy of the decision support algorithm. a Visualization of H. pylori detection in both Giemsa and H&E stained images. The 
green border highlights detected H. pylori bodies that the network correctly classified as H. pylori. b Illustration of the approach of validating the AI 
algorithm. About 347 Giemsa-stained slides (blue dots on illustrated slide) and 364 H&E slides (red dots on illustrated slide) were used, following 
an extraction of H. pylori hot spots. Then, the extracted hot spots were classified and ranked by H. pylori presence. The bean like structure of H. 
pylori is shown to visualize the scale. c The extracted and classified H. pylori hot spots were then annotated for H. pylori presence, as shown by a red 
box around four of the six tiles. The numbers correspond to an exemplified rank for H. pylori detection. For simplification, only Giemsa pictures are 
shown, while H&E stains were used for validation as well
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validated the algorithm using an independent cohort of 
gastric biopsies of cases that had not been used for train-
ing purpose. Initially, we validated the decision support 
technology against microscopic diagnosis.

Comparison of Helicobacter pylori detection to microscopic 
diagnosis
Validation strategy
H. pylori is a small particle of a size of about 2–4  μm, 
which accounts for one pixel in an image containing 
about 20 billion pixels in total (Fig. 2b). For the purpose 
of validation, we applied a selective presentation of tiles 
that had been extracted and classified by the algorithm, 
showing less than 1% of the tissue of the whole slide in 
total. Finally, two board-certified pathologists (expert 
review) evaluated these tiles for the presence of H. pylori 
(Fig. 2c). No other information was shown to the pathol-
ogists reviewing the tiles for validation.

For modified Giemsa stains, 347 slides were analyzed 
and compared to microscopic diagnosis (Fig. 3a, b). We 
defined H. pylori positivity as presence of at least two 
H. pylori-like bacterial structures within an extracted 
image. By using this definition, we detected H. pylori 
in 181 slides, with varying amounts of tiles being posi-
tive (Fig. 2a). Based on the amounts of positive tiles, the 
calculated area-under-the-curve (AUC) was 0.92 for 
modified Giemsa stains compared against microscopic 
diagnosis (Fig.  2a). To further provide evidence of the 
generalizability of the algorithm, we validated the model 
on regular H&E stains. For this purpose, 364 cases were 
used and validated against microscopic diagnosis. The 
AUC for H&E was 0.81 (Fig.  3c). Interestingly, a poten-
tial threshold of 2 tiles appeared to increase specific-
ity without decreasing the sensitivity on Giemsa stains 
(Fig.  3a, Table  2), while this was not the case for H&E 
stains. Within H&E stains, there were cases found to be 
positive presenting with only one positive tile (Fig. 3c). In 
addition, there was one case that was found to be positive 
with help of histo-morphological diagnosis, but where 
the decision support algorithm could not reveal tiles con-
taining H. pylori (Fig. 3b, refer to *). In further validation, 
it was confirmed that this case was H. pylori negative.

Validation of microscopic diagnosis against IHC/PCR
Having shown an initial performance of the algorithm, 
we applied two more sensitive and independent technol-
ogies to allow an additional validation (ground truth) of 
H. pylori presence on a subset of the cohort that had been 
initially validated against microscopic diagnosis. Cases 
with clear and visible H. pylori bodies in Immunohisto-
chemistry (IHC) did not undergo additional PCR testing, 
while cases uncertain of H. pylori status after IHC, under-
went additional PCR testing. 19 cases were confirmed to 

be H. pylori positive using IHC/PCR in this cohort and 
only 13 cases were identified as positive microscopically 
(Fig. 4a, b; Table 2). In addition to the 13 positive cases, 
5 cases were identified microscopically as H. pylori posi-
tive, but these cases could not be confirmed by IHC/PCR 
(Fig. 4b, Table 2). Overall, microscopic diagnosis revealed 
a sensitivity of 68.4% with a specificity of 92%.

Validation of the decision support algorithm against IHC 
or PCR
Within the set of modified Giemsa stains, a subset of 87 
slides was analyzed with the decision support algorithm. 
Out of 19 H. pylori positive cases that were confirmed 
by IHC/PCR, assisted approach was able to detect all 19 
of them (Fig. 4a, b). Interestingly, the two microscopical 
positive cases that were detected negative by AI in the 
initial validation stage using microscopic diagnosis as 
ground truth were found to be negative by IHC and PCR 
testing (Fig. 4a, b). Together, an AUC of 0.95 was achieved 
for the assistive algorithm using Giemsa stains (Fig. 4a), 
while the sensitivity was 100% and the specificity 47.1% 
without applying a tile bases threshold (Table  2). Given 
that the initial validation against microscopic diagno-
sis showed 64 cases with 2 positive tiles that were found 
to be negative by microscopic assessment, this could be 
confirmed by further validating a subset of those cases 
against IHC/PCR. Indeed, 13 cases with two positive tiles 
were also negative, highlighting a potential threshold of 
more than 2 tiles to increase specificity (66.2%, Table 2), 
without decreasing the sensitivity (Fig. 4a, b).

Discussion
Our approach follows the current regulations of the 
application of computerized algorithms, which require to 
visualize the results of a given technology. Those results 
can then be further evaluated by an expert and therefore 
be checked for plausibility. With the help of this assis-
tive decision support algorithm, we avoided the black 
box character of AI. In detail, we did not assign a general 
category (positive/negative) on whole slide basis. Instead, 
by using a decision support algorithm that highlights 
regions of potential H. pylori presence, we were able to 
increase the sensitivity of H. pylori detection (micro-
scope: 68.4%; decision support algorithm: 100%), and at 
the same time allowed it to be applied on both H&E and 
Giemsa stains, strengthening the idea of a more general-
ized approach.

During the course of this study, Martin et al. [22] pub-
lished a slightly different approach by applying tissue seg-
mentation of histological specimens of gastric biopsies to 
identify diseased mucosa. In this study, the gold standard 
was defined by methods other than PCR, including histo-
logical evaluation by a Pathologist. While this approach 
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seems to be intriguing, one may not be able to diagnose 
cases with less characteristic histology but presence of H. 
pylori bacteria. In addition, our approach can be oper-
ated with limited computational resources because of 
its architecture and can be applied on both Giemsa and 
H&E stains.

In addition, several studies have applied deep learn-
ing for H. pylori detection on endoscopic imaging data 
[23–25]. Given that this intervention would not neces-
sarily even require to harvest biopsies and therefore to 
collect tissue, it appears advantageous. However, within 
those studies more sensitive testing for the presence of 
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Fig. 3  Validation of the decision support algorithm against microscopic diagnosis. a Bar chart of detection of H. pylori with help of the assistive 
algorithm, validated against microscopic diagnosis using Giemsa stains. The Y-axis reflects the amounts of detected positive tiles using the 
algorithm assisted approach. The color code of each bar is shown in legend of (b). c Calculation of area-under-the-curve (AUC) of H. pylori detection 
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Table 2  Summary of the results of the validation, in respect to staining and validation techniques

NA not applicable

Parameter (of 87 cases) Microscope (Giemsa) Algorithm (Giemsa) Algorithm (tile based 
threshold > 2)

Ground truth 
(IHC/PCR)

True positive (n) 13 19 19 19

False positive (n) 5 36 23 NA

False negative (n) 6 0 0 NA

True negative (n) 63 32 45 68

Sensitivity (%) 68.4 100 100 NA

Specificity (%) 92.6 47.1 66.2 NA

Disease prevalence (%) NA NA NA 21.8
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positive tiles using the algorithm. All 32 cases where the assistive approach did not detect H. pylori, underwent an additional PCR testing. The 
color code of each bar is shown in legend of (b). c Calculation of area-under-the-curve (AUC) of H. pylori detection for H&E stains validated against 
microscopic diagnosis
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H. pylori, including sequencing based H. pylori detection 
(PCR), would potentially have provided a definition of H. 
pylori status of higher sensitivity as a gold standard for 
evaluating the Computer-Aided-Detection (definition of 
ground truth). As chronic infection of the stomach dis-
plays an important risk factor for malignancies, including 
mucosa associated lymphoid tissue (MALT)-lymphoma 
and gastric cancer, one may argue that harvesting tis-
sue for histological evaluation is a diagnostic necessity. 
Therefore, it remains to be seen whether endoscopic 
detection of H. pylori infection using deep learning 
would result in clinical benefit for individuals.

Technically, the architecture of our algorithm combines 
both image processing and classification by using a deep 
neural network. In summary, only relevant image areas 
(H. pylori -hotspots) are further analyzed by a deep neural 
network. This design of the algorithm greatly lowers the 
amount of computational resources that needs to be pre-
sent to analyze whole slide images for H. pylori presence.

Both image quality and staining quality influence the 
specificity of the decision support algorithm. Struc-
tures, which were found to confuse the network, lead-
ing to detection of particles falsely classified as H. pylori, 
are shown in Additional file  2: Figure S1. Likely, this is 

due to either other bacterial structures being present on 
the slide—potentially contaminations of the tissue due 
to processing of the histological specimens—as well as 
image quality. Within this study, we included tissues that 
were processed using standard techniques. For poten-
tial clinical application of decision support algorithms to 
detect H. pylori on regular biopsies, a prior quality check 
of the specimens might allow to lower the detection rate 
of either detritus or image artifacts.

We observed a prevalence of 22% of H. pylori infected 
individuals within the subset of IHC/PCR validated cases 
(Table 2). Considering the generalizability of the valida-
tion, the specificity might be lower compared to cohorts 
with a higher disease prevalence. Still, with a sensitivity 
of 100% for both H&E and specialized Giemsa stains, 
our approach could potentially be qualified for screening 
purpose. In addition, the performance of H. pylori detec-
tion using Giemsa stains was higher, potentially because 
the human interactor is trained to identify H. pylori bac-
terial structures on these stains. In light of the high false-
positive rate (41%; 36 out of 87 cases) of the assistive 
algorithm applied on Giemsa stains (Fig. 4a, b; Table 2), a 
potential clinical application might require an additional 
validation step of PCR or IHC diagnosis, if a certain 

Giemsa
1 2 3

4 5 6

analysis of WSI of gastric biopsies using the assistive algorithm results of the analysis interpretation

additional
PCR testing

positive tiles > 2

confirmed by PCR: 
H. pylori positive

H. pylori 
negative

positive tiles <= 2.....

no additional
testing required

Fig. 5  Potential workflow of a decision support algorithm to detect H. pylori on whole slide images. Processed images undergoing a visual 
confirmation of H. pylori presence (analysis, results) or either a definite diagnosis of H. pylori absence/presence (interpretation). Cases above a certain 
threshold (2 in our study) would undergo additional confirmation by PCR testing
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threshold of positive tiles been reached (Fig. 5, Table 2). 
At the same time, it allows to sensitively declare cases as 
H. pylori negative, if the decision support algorithm did 
not detect H. pylori. Potentially, this technology would 
therefore qualify as a sensitive screening technology. 
However, because experts will be involved in the deci-
sion making, more experience with digitalized images of 
H. pylori might further increase the specificity of these 
approaches. Furthermore, image quality and the quality 
of the stains greatly influence the ability of an observer to 
specifically recognize H. pylori -like bacteria structures.

Conclusion
Our study highlights a discrepancy between microscopic 
diagnosis and H. pylori status, using sensitive diagnostic 
tools, such as IHC/PCR, which provides evidence of cases 
that are missed using microscopic diagnosis alone. This is 
in line with previous findings, where H. pylori DNA was 
found in about 30% of cases that had been diagnosed as 
H. pylori -negative, based on histo-morphological assess-
ment [26]. Potentially, this further strengthens the idea to 
apply more sensitive screening options within the stand-
ard histo-morphological review process of pathologists.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1287​6-020-01494​-7.

Additional file 1: Figure S2. Validation and application of PCR to detect 
H. pylori on gastric biopsies. Representative results of the multiplex 
real-time PCR performed with the RIDA GENE® Helicobacter pylori assay 
(r-biopharma, Darmstadt, Germany). (A) Amplification of the internal 
control DNA. (B) Amplification of the specific sequence for H. pylori 
(16SrRNA). Positive control is shown in red and the non-template control 
in black for each channel. (C) Amplification of the specific sequence for 
the detection of the Clarithromycin resistance (23S rRNA). Positive control 
is shown in red and the non-template control in black for each channel. 
(D) Serial dilution (1:2) of the positive control (5000 copies/μl starting 
concentration). The RIDA GENE® Helicobacter pylori assay (r-biopharma, 
Darmstadt, Germany) can detect down to 9.8 copies/μl in an unknown 
sample. Shown are the fluorescence signals of the H. pylori channel (FAM/
RFU). RFU: relative fluorescence units.

Additional file 2: Figure S1. Visualization of the decisions of the applied 
CNN and its false detections. (A–D) Synthetic images that maximize the H. 
pylori category score and the non- H. pylori category score. (E–H). Visualiza‑
tion results that confused the network, and which falsely lead to H. pylori 
detection (I). For visualization of the features the network searches for, we 
used the approach of Simonyan et al. [19]. A noise image is inserted to the 
network, a specific pixel and category in the network output is set as the 
target, and several iterations of gradient ascent are run in order to modify 
the input image pixels to receive a high value in the target pixel. Using this 
we created examples of input images, that caused a high activation at the 
target pixel for each of the categories. For creating smooth image visuali‑
zations, we followed the example of Smilkov et al. and used regularization 
by rotations, reflections, and normalization of the gradients. We observed 
that images maximizing the H. pylori category contained multiple H. pylori 
looking like bodies, and images maximizing the H. pylori category did not 
have these features.
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