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Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and
to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics
in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is
presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues A, assuming they are
all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential
equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 10° times larger
than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow
model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the
smallest eigenvalue) indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart
from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment

parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.

1. Introduction

Compartment models are popular in pharmacokinetics and,
as a special application, in hemodialysis, where such mod-
els serve to quantify treatment dose [1-3]. Most of that
kinetic analysis has been done for urea usually described
by 2-compartment models. However, unlike most pharma-
cokinetic models, the volume of compartments cannot be
assumed as constant because of ultrafiltration of excess vol-
ume within and accumulation of volume between hemodialy-
sis treatments. The effects on solute concentrations and solute
balance caused by volume changes are not negligible. Still, the
problem can be expressed as 2-dimensional, inhomogeneous
ordinary differential equations (ODE) [4], and the closed
form solution to this problem is known. Furthermore, for
the variable-volume 2-compartment model urea concentra-
tions have been presented as explicit functions of time and
model parameters so that the concentrations in the two
compartments at any time can be computed in a single step

[5, 6]. That approach was based on the variation of the
constants method.

While urea, a solute of little toxicity, is a useful marker
of uremia, solutes with limited transfer between compart-
ments such as phosphate, creatinine, 3,-microglobulin, or
glucose are of greater clinical interest [7-11]. Recently, one
of us presented a variable-volume 4-compartment model
to describe the kinetics of both urea and creatinine using
physiological principles of solute transport and only one
parameter (membrane permeability) to distinguish between
the two solutes [12] (Figure1). Again, the model can be
presented as a 4-dimensional, inhomogeneous ODE, for
which the general solution involves integration and which is
not defined in the closed form. Thus, the concentrations of the
solutes in the four compartments are not obtained without
extensive computations.

It is the purpose of this paper to provide an exact ana-
Iytical solution for multicompartment kinetic problems,
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FIGURE 1: Schematic representation of the four-compartment DA-
RBF model [12]; note that the blood flow is not exposed; for detailed
description see formulas in the Appendix.

assuming linear changes in volume, and to apply this solution
to the recently described 4-compartment model for both urea
and creatinine kinetics in hemodialysis.

2. Methods

The N-compartment model with time dependent volume
values, v,(t), and concentration of the solute, ¢,(t), can
be described by the following set of differential equations:

d
E (Vn (t) Cn (t)) = knlcl (t) + knzcz (t) +eeet anCN (t) + Gn>

n=12,...,N,
€))

where coeflicients k,,, describe the solute exchange or
removal in terms of solute clearance, typically in mL/min, and
g, models solute mass input to the nth compartment in terms
of generation rate, typically in mg/min. After substitution
using

for m#n

m = 2 (t) form=mn,

we obtain

v, (t) %cn () =b,c, )+ +b,c, )+ -+bneny )+,

n=12,...,N.

3)

The set of equations from (3) can be rewritten in matrix form
d

v(t)o Ec (t) =Bc(t) + g (4)

where capital symbols are used for matrices, small symbols in
bold represent vectors, and o denotes the Hadamard product
[13].
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Assume that the volume changes are described by linear
functions of time:

Mz

vit)=(V,+Qt)r: Y r,=1; (5)

n
1

B
Il

here Vj is the total volume of all compartments at time ¢ =
0, Q refers to the negative ultrafiltration rate, Q < 0, during
hemodialysis (HD), or to the positive fluid accumulation rate,
Q > 0, during the interdialytic interval (ID), and r,, refers to
the fractional volume of each compartment.
Next, let us normalize the volume to the initial value [5]:
Vo +Qt
w(t) = —. 6
(t) 7 (6)
Notice that w(t) is a linear function of t. Then, after having
replaced elements of matrix B and vector g with the following
values

b g
— nm , b — n ,
T = b= )
(4) may be rewritten as
A d
22wt Zc(t) = A .
Q w(t) dtc (t) c(t)+b (8)

The analytical expressions for the concentrations defined
by (8), for n = 1,2,...,N, assuming that matrix A has N
distinct eigenvalues, are in the form

6, (1) = x, W' (£) + X, w2 () + - + x, W' (t) +d,,,

)

where A, are the eigenvalues of matrix A. The matrix equation
equivalent to (9) is given as

ct) =Xuw' @) +d, (10)

where w(t) is a column vector consisting of elements wM(#).

2.1. The Proof

Theorem 1. To prove that for a system described by (8), the
solution is provided by (9) or (10).

Lemma 2. Consider the general matrix form of the vector
differential equation to be solved as

(p+qt) %c(t) =Ac(t)+b, p+qt#0. 1)

For simplification assume that all N eigenvalues of matrix
A are distinct.

One will show that, under assumption that b belongs to the
image of a transform defined by matrix A which is true for the
considered model, the solution of (11) is in the form of

(1/9)A
() = <p+th> (c,—d)+d,

where d satisfies condition : b = —Ad.

(12)
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Sublemma 3. First, let one show that
Au® = A (13)

Recall that the Hermite polynomial for the function of a
matrix f(A) [14], also known as Lagrange-Sylvester formula
for the case when all N eigenvalues are distinct, is given as

f(A)= Z f(A) H T4 A;B (14)

k#n

where A, is the nth eigenvalue of matrix A, so that f(A,) is the
scalar function of a scalar variable. Assuming that u is scalar,
and taking f(A) = u™, one obtains that u™ is a sum of scalars
multiplied by integer powers of A, showing that (13) must be
true. This observation ends the proof of the sublemma.

With (13) we obtain that the following identity, which
results from substituting the right-hand term of (12) into
right-hand side of (11), is also true:

(/@A (/A
Ac(t)+b=A<p+th> c0+<P;qt> b. (15

Now, let us find, using (12), the expression for the
derivative of c(t):

(1/9A
%c(t) - ﬁA(%ﬁ) (c,—d).  (16)

To explain the result in (16) let us consider the scalar u
being

1/
u=u(t)=<p+qt> ! (17)
p

The derivative of the scalar function u*(¢) results in
another function f(A):

A

A M
f(/\)—dtu (t) (t)u (t) u(t)
where for p + gt #0:
d p+qt>”q
a0 dt( > 18)
1 p <P+qt>”qd<p+qt>
S qptqt\ p dt\ p
1 p q
=—-———u(t) = = u(t).
qp+qt " p p+at

Utilizing again (14), we obtain that the derivative of A (1)
must be

f@) = —ut (1) = —Au* (1) —u (t). (19)

()

Substituting u(t) from (17) to (19) and using the result
from (18) we get (16).

Comparing the right-hand sides of (15) and (16), we
obtain that c(¢) given by (12) satisfies (11). If we substitute t = 0
in (12) we obtain that also the initial condition is satisfied.

Expansion from (14) used for f(A) = u® leads also to the
identity

utx, = xnu’\“ , (20)

where x,, is the nth eigenvector of matrix A corresponding to
the eigenvalue A,,. Equation (20) implies that

N N
U Y Yus = Y yasa, (21)
n=1 n=1

where vy, is the normalized nth eigenvector and s, is the
scaling coefficient relating y, to x,,. As it is always possible
to represent the N-dimensional vector in the relevant basis,
we can write the following:

N
-d= Z VS (22)
n=1

Assuming (17) and comparing (21), (22), and (12) we
obtain that the analytical solution of (11) is in the form of

N
ct)=d+ Y y,su’ (t)

n=1

= YU () +yp5u™ () + -+ yysyu™ () + d.

(23)

In the discussed dialysis models, where p + gt =
Vo/Qu(t) = (V, + Q1)/Q, we take g = 1 and p = V;/Q,
and in such case the general solution (11) can be reduced to
the form

c(t) = w* (1) (¢y - d) +d. (24)

Thus, in (23) u(t) should be replaced with w(t), which
ends the proof of the theorem.

2.2. The Computational Recipe. The practical computational
algorithm to compute the coeflicients in (9) or in (10) is
presented below.

Step 1. Solve the linear equation and find d:
Ad=-b=d=A"'(-b). (25)

Step 2. Find the eigenvalues A, of matrix A and check if
they are distinct. If they are, proceed with Step 3; if not,
which should be an extremely rare case, return to the model
parameters and introduce small changes in their values; then
start from formulating the set of equations.

Step 3. Find the corresponding eigenvectors y,,, and form the
following square matrix Y:

=vi v - vl (26)
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TaBLE 1: Initial conditions, times, and model parameters of the DA-RBF model adapted from [12].

C.oo 0.11 g/L Creatinine concentration atf = 0

Cuto 1.47 g/L Urea concentration att = 0

t, 0 min Treatment start

ty 250 min Treatment duration

ta 48 = 60 min Duration of interval between treatments

\% 28.6 L Urea distribution volume after ultrafiltration

Gy 0.00983 mol/24h Creatinine generation rate

Gy 0.31 mol/24h Urea generation rate

Q. 5.80 L/min Cardiac output

Qy 1.00 L/min Fistula flow

Q, 0.327 L/min Extracorporeal blood flow

V., 0.25 L Extracorporeal blood volume

v, 5.90 L Blood volume

H 0.37 Hematocrit

fo 0.96 Fraction of packed cell volume

Sow 0.93 Plasma water fraction

S 0.72 Erythrocyte water fraction

Sfaon 0.85 Fraction of high flow blood flow

fvu 0.20 Fraction of high flow volume

Seew 0.33 Fraction of extracellular volume

Vi 3.46 L Ultrafiltration volume

E, 0.80 Dialyzer extraction

k. 0.022 min~' Specific rate constant for creatinine

k 158.000 min~' Specific rate constant for urea

Step 4. Solve another linear equation and find the set of N
scaling coefficients s, matching the initial conditions ¢, =
c(t=0):

Ys=(c,-d) = s=Y (¢, —d). (27)

Step 5. Compute scaled eigenvectors x,, to obtain coeflicients

Xoum:

(28)

Xy = S$p¥n — X=[X1 X5 o XN]‘

After having computed the concentrations for all com-
partments, in hemodialysis modeling it is quite useful to com-
pute the so-called equilibrated solute concentration, propor-
tionally averaged for all compartments:

N
Coq (1) = erncn ), (29)

which represents the overall state of the patient in terms of
solute concentration and which is directly related to treat-
ment dose [15-17]. Another concentration of interest is that
of the solute in the arterial plasma representing the concen-
tration accessible to direct experimental measurements. See
(A.12) in the Appendix for the relevant formula.

The schematic representation of the DA-RBF model, for
which the described algorithm was developed, is presented in
Figure 1.

The basic computations were performed for two sets
of reference model parameters, for urea and creatinine,
contained in Table 1.

To verify whether the assumptions required in the desi-
gned algorithm are reasonable and to check whether the
observed properties are more general, a comparative study
was performed with model parameters randomly varied
around the reference values within the physiologically jus-
tified range. Pseudo random values were generated for
assumed intervals according to uniform distribution. Thus,
for f, and f,, a 2% radius around the central value was
assumed, for f.,, 5%, for fo; and E, 10%, and 50% for Q,,
Q5 Q. Vi H, fyis fecws Vis Cp» and G,y Two conditions were
added to prevent extremely irrelevant cases: (a) 0.01Q, < V,,
(b) V¢ < 0.125V,. For example, Q. ranged from 2.9 L/min
to 8.7 L/min. In such a way two sets of 100,000 models were
obtained, separately for urea and creatinine.

3. Results

For the purpose of this study it was assumed that the whole
treatment cycle was balanced with regard to volume; that is,
the total water volume uptake between treatments was the
same as the volume removed during ultrafiltration [12].

For the 4-compartment DA-RBF model the set of explicit
expressions for matrix B is provided in Appendix. Then,
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TABLE 2: Elements a,, of A.

2HDu' 21Dy’ 4HDu 41Du 4HDc 41Dc
a, 292.9 -3986.7 6.636E + 05 —6.980E + 06 637.92 -5502.54
a, -233.2 3985.7 —6.629E + 05 6.974E + 06 -92.30 971.02
a; —-550.84 600730 —417.30 4530.52
a, 0 0 0 0
a,, =57.72 997.09 —3.265E + 05 3.435E + 06 —44.46 478.26
a,, 63.97 -998.09 3.265E + 05 —3.435E + 06 44.46 —479.26
ay, 0 0 0 0
yy 0 0 0 0
as; -135.38 1501.83 -102.04 1132.63
as, 0 0 0 0
as; 6.630E + 05 —6.975E + 06 200.62 —-2104.65
Ay, —6.629E + 05 6.974E + 06 -92.30 971.02
a, 0 0 0 0
a, 0 0 0 0
ays —3.265E + 05 3.435E + 06 —44.46 478.26
Oy 3.265E + 05 —3.435E + 06 44.46 —479.26

anm: nth row and mth column element of A; 2: 2-compartment model; 4: 4-compartment model; HD: hemodialysis interval; ID: interdialytic interval; u: urea;

c: creatinine; Tvalues for 2-compartment model taken from [5].

TaBLE 3: Eigenvalues A of A.

2HDu' 2IDu’ 4HDu 4IDu 4HDc 41Dc 4HDu" 4IDu*
A 15.4 -1 123 -1 75 -1 12.3 -1
A, 341.4 —4983.83 278.6 —2477.8 38.4 —404.7 278.8 —2479.0
A 9.89E + 05 —1.0409E + 07 155.6 ~1450.3 326828.7 —3.4382E + 06
A 9.90F + 05 —1.0414E + 07 725.9 —6709.7 326828.9 —3.4383E + 06

A: eigenvalue; 2: 2-compartment model; 4: 4-compartment model; HD: hemodialysis interval; ID: interdialytic interval; u: urea; c: creatinine; Tvalues for 2-
compartment model taken from [5]; *4-compartment model evaluated for f,., = 0.999.

the matrix describing the set of differential equations, (8),
for the HD and ID periods, respectively, consists only of the
constant values and takes the following form:

any ap a3 0
A = | 21 T2 0 0
HD a0 ay oap |7
0 0 ay -ay
(30)
ap ap azs 0
Ap = a, —a,;—1 0 0
as) 0 as3 ap
0 0 ay —ay —1

The resulting values of relevant a;; to a,, elements as
functions of the model parameters, taken from Table 1, for
both hemodialysis and interdialytic intervals and for urea as
well as for creatinine are given in Table 2.

The corresponding eigenvalues are summarized in
Table 3. Notice that all eigenvalues are negative for the inte-
rdialytic phase and positive for the hemodialysis phase. Also
notice the range in eigenvalues for different solutes (up to the
range of 1 x 10° for urea) and phases of a complete treatment
cycle. In the considered cases all the eigenvalues proved to
be distinct, which resulted in four different eigenvectors.

The above observations were confirmed for all compara-
tive, randomly generated models. In particular, in all modeled
cases matrix A proved to be diagonalizable, and the eigenval-
ues and eigenvectors were always real (not complex).

Since for t > 0 relative volume w is w < 1 during hemo-
dialysis and w > 1 during the interdialytic period, the term
w' in (9) is always 0 < w" < 1 during both hemodia
lysis and interdialytic periods because of positive or negative
eigenvalues, respectively. However, with very large values
of A such as with urea where A; and A, are in the range
of 1 x 10°, w* =~ 0. This indicates that the split in intra-
and extracellular spaces is ineffective in the case of urea
(i.e., the intercompartment clearance is very high) and that
urea follows 2-compartment kinetics. Notice the close corre-
spondence of intra- and extracellular urea concentrations
(Figure 2(a)). In case of creatinine, however, the ratio of the
largest to the smallest eigenvalue is <100 during hemodialysis.
This indicates that all compartments contribute to overall
creatinine kinetics during hemodialysis and somewhat less
during the interdialytic phase. Notice the separation of con-
centrations in all four compartments throughout hemodialy-
sis (Figure 2(b)).

For the 2-compartment model the matrix A and the
eigenvalues A for the 2-compartment model have been
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FIGURE 2: Time course of solute concentrations (urea (a); creatinine (b)) in the four compartments during hemodialysis and during a 100 min
postdialytic phase using model parameters from Table 1. Notice that extra- and intracellular concentrations are superimposed in case of urea
(a) and separated in case of creatinine (b). ¢;: low-flow intracellular; ¢ .: low-flow extracellular; ¢y;: high-flow intracellular; ¢ high-flow

extracellular; ¢,g: equilibrated over throughout all compartments.
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FIGURE 3: Sensitivity of computed coefficients x, d, and A, with regard to model parameters for urea (upper bars in light red) and creatinine
(lower bars in dark blue) models. Normalized sensitivities are indicated on the horizontal axis.

published previously [5]. A comparison of eigenvalues from
the 4- to those determined from the 2-compartment model
shows close correspondence for urea. Eigenvalues are in the
same order of magnitude such as A, for the intradialytic
phase with values of 15.4 and 12.3, respectively (Table 3). The
small difference originates from differences in parameters
assumed in published 2- and 4-compartment models which
were obtained in different studies [5, 12]. When the fraction

of extracellular volume was assumed as close to 1, equivalent
to eliminating the effect of intracellular sequestration in the
4-compartment model, the eigenvalues for the urea model
remained essentially unchanged.

Figure 3 presents the sensitivities, expressed as absolute
values, of two crucial eigenvalues and related coefficients
that may have impact on the shapes of the concentration
profiles when the values presented in Table 1 are varied by a
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TABLE 4: Relative error for c.g, in %, for the creatinine model during the HD phase, when ¢, was computed using only two eigenvalues and
corresponding coefficients using parameters from 100,000 simulations.

t, min 0 10 20 30 40 50

Mean —-0.66 -0.29 -0.16 -0.09 -0.05 -0.03
SD 0.34 0.20 0.13 0.08 0.05 0.03
Minimum -2.34 -1.50 -0.99 —-0.65 -0.43 -0.28

Ceq: €quilibrated concentration; HD: hemodialysis interval; ID: interdialytic interval. For urea all values were below 1.0e — 6, and they remained small during

ID for both solutes.

small fraction. Notice that changes in E, directly related to
dialysis also affect the runs during the ID phase because the
concentrations at the end of the HD phase serve as starting
points for the ID stage.

The equilibrated concentration (29) representing the
weighted average of compartmental concentrations shows
the dominating impact of the first two eigenvalues. Table 4
presents the relative error of ¢, (t) computed at the beginning
of HD for the set of 100,000 simulations using only two
eigenvalues and corresponding coefficients compared to that
computed with the complete set of eigenvalues. Notice the
negative error with omission of positive values.

4. Discussion

In this paper a general analytical solution for a particular class
of variable-volume multicompartment solute kinetic models
is presented. The solution is based on a matrix approach
applicable to linear models encompassing any number of
compartments assuming that all eigenvalues of the matrix are
distinct. The presented solution is based on a finite volume
change typical for hemodialysis. The solution in absence of a
volume change requires a different approach the discussion
of which is beyond the scope of this paper. The detailed
procedure is also provided.

One purpose of mathematical modeling is to characterize
the system by its structure such as the number of compart-
ments and their interaction and by its parameters such as the
distribution volumes and rate constants [18]. Many parame-
ters are usually inaccessible to direct measurement and must
be obtained by parameter identification, that is, by fitting an
appropriate model output to observable experimental data.
This procedure involves recurrent numerical solution of the
ODE for different sets of parameter values until a chosen set
of parameters provides the best fit. While parameter identifi-
cation in more complex models is a problem of its own [19],
the numerical solution of a given ODE for each parameter
set to be evaluated in the process of parameter identification
makes this task very laborious and time consuming, even
for powerful personal computers. It therefore pays to replace
numerical for exact analytical procedures wherever possible.

The solution developed in this study was applied to the
variable-volume 2-compartment model for urea kinetics as
well as to the variable-volume 4-compartment model for
urea and creatinine kinetics presented elsewhere [5, 12]. The
latter has also been used to describe the kinetics of f3,-
microglobulin [10].

Apart from its mathematical use, the qualitative exami-
nation of matrices and eigenvalues provides a good means to

compare models and to judge the effective number of com-
partments. Based on the eigenvalues ranging from 12.3 to 1.1 x
10° for the hemodialysis interval, the 4-compartment urea
kinetic model essentially is a 2-compartment urea kinetic
model. In the case of creatinine, however, the eigenvalues
range from 75 to 725.9 for the hemodialysis interval and
are much closer to each other so that the 4-compartment
structure is justified (Figure 2). The models with varied para-
meters indicated comparable properties.

Results presented in Table 4 confirm that computations
can considerably be simplified for experimental applications.
Reduction of parameters to compute c,,, important from the
diagnostic and planning point of view, leading to just two
eigenvalues with corresponding coefficients, should provide
acceptable accuracy.

The sensitivity study shows that in clinical practice, where
collection of the complete set of personalized model para-
meters is not always possible, the most attention should be
paid to an accurate estimation of foy, Q. Vi, Vi Qs E,,
Co» G, fpw> and  fyy. However, limited sensitivity to other
parameters indicates that uncertainty in such parameters
does not considerably change the modeling and treatment
outcome.

Analytical solutions for the variable-volume 2-compa-
rtment model have been presented before. In the approach
presented by Grandi et al. the system of first-order linear
differential equations comparable to that given in (4) was
transformed into a type of Euler-Cauchy second-order dif-
ferential equation and solved analytically [6]. An expansion
of this method to more dimensions has not been provided.

A matrix-based strategy to solve the variable-volume 2-
compartment model has been presented by one of the authors
[5]. This approach has been applied to two physiologically
distinct interpretations of urea kinetics, either assuming
diffusion-limited transfer between intra- and extracellular
compartments [20] comparable to that of Grandi et al. [6]
or flow-limited transfer between poorly and highly perfused
organ systems [5, 21].

In these variable-volume models, fluid is proportionally
removed from both compartments. While this assumption is
compatible with the flow-limited interpretation, the assump-
tion is at odds with clinical and physiological understanding
in the diffusion-limited interpretation of 2-compartment
urea kinetics. In the classic diffusion-limited model the two
compartments refer to intra- and extracellular volumes, and
since excess fluid is best removed under close to isotonic
conditions during hemodialysis [22-24] and accumulated
under isotonic conditions by matched ingestion of salt and



water between treatments [25], fluid is more or less exclu-
sively removed from and added to the extracellular compart-
ment, leaving the volume of the intracellular compartment
unchanged. The classic variable-volume 2-compartment urea
kinetic model therefore assumes a constant intracellular
volume during hemodialysis and between dialysis treatments
[1]. To account for this effect Smye and Will allocated 95%
of the volume changes to the extracellular compartment and
provided an approximated solution for this model [26].

For solutes actually sequestered in the intracellular space
because of limited membrane permeability, transport is
both diffusion- and flow-limited. The combination of both
diffusion- and flow-limited transport characteristics there-
fore leads to a 4-compartment model presented earlier [12].
The equations can be analyzed using the matrix method.

The matrix-based strategy presented in this paper is akin
to that presented in [5] albeit distinct from the previous
method regarding an important technical point. As in the
previous approach, the solution requires the computation
of the eigenvalues of A. For the 2-compartment model this
refers to solving a quadratic equation, for the 3-compartment
model to solving a cubic equation according to Cardano
[27, 28], and for the 4-compartment model to solving a
quartic equation according to Tignol and Ferrari [28, 29]. For
models involving more than four compartments the eigen-
values have to be found by numeric approximation using
dedicated software such as Matlab (The MathWorks Inc.,
Natick, Massachusetts, USA). As in the previous approach,
the solution requires the computation of A™", the inverse of
matrix A. The manual inversion of a 2 by 2 matrix is easily
done for the 2-compartment model but prohibitively tedious
for matrices of higher dimensions. Dedicated software such
as Matlab or internet resources can be used for that problem.
The computational tool, to compute the coefficients and
concentrations, developed in Java, may be accessed at [30].
An important difference to the previous approach, however, is
the absence of computing the definite integral (the integration
of the inverse transformation matrix from the start of the
observation phase to the point of interest, equation C15 in
[5]) over the time course. If the integral is not solved ana-
Iytically as in [5] the integration has to be carried out nume-
rically, defeating the purpose of an exact solution and con-
suming considerable computational time.

5. Conclusions

In conclusion, a closed-form solution for the variable-volume
N-compartment model is presented. The solution can be
applied to the variable-volume 4-compartment diffusion-
adjusted regional blood flow model. Even though the com-
plexity of models and mathematics considerably increases
in the transition from 2- to 4-compartment models, the
availability of an exact solution should help in practical
applications such as the identification of relevant model and
treatment parameters in hemodialysis.

Appendix

The complete set of formulas for the DA-RBF model is
provided below. See Table 1 for description of the parameters.
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To simplify the notation, auxiliary parameters are intro-
duced for the volume ratios:

n = funfeew

= fun (1= fe)»

(1= fun) feewr

(1= fun) (1~ feer) -

The volume flows during hemodialysis (HD) and interdi-
alytic (ID) intervals are defined as

(A1)

3

Ty

_ Vuf
Quf - td >
Vuf
Qi = ot (A.2)
-Q,¢ for HD,
th = 4
enQ {Qm for ID.
The regional blood flows, according to [12], are
Qs = Qc - Qf>
QH = stQH’ (A-3)

QL =Q,(1- fqu)-

Characteristic times for extracorporeal, regional, and tra-
nsmembrane flows according to [12] are

Vx
T, = ==,
Q.
V,
m:{%&
A4
. -V, (1= fyn) (&4)
L~ QL >
k(e fy) HI L -H)) +1)
- few ’

and the diffusion volume flow fractions for regional and
extracorporeal blood flows are given as

fjx = (1 _pr) fpw + pr(l — €Xp (_er))few’
fjH =(1-H) fpw + H(l - &Xp (_KTH)) few’

ij =(1-H) fpw + H(l - &Xp (_KTL))few’

Tiv :fQHfjH+(l _fQH) fiw (A.5)
f _ fijs + fijx
Q.

fijx ( Qx)
T L I .
fJf Qf +f]‘1 Qf
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The diffusion volume and convective flow rates for HD
and ID intervals are computed as

Fy = QHfjH’
Fp = QijL’
F,=Q.fja
Fy=Qsfip

Furr = Quefyms
Fyp = Qu (1= fyn)»
Fyppi = Quefvn (1= feer) »
Fyni = Que (1= fun) (1 = feer)
Finr = —Qin fyms
Fip = =Qin (1= fun)>
Finie = ~Qin Sy feew
Fipe = =Qin (1= fyn) feer
Fipi = =Qun fyn (1= feer)
Fippi = =Qin (1= fyn) (1 = feer)

(A.6)

and intercompartment and dialyzer clearances as

Kc = ks (1 _fecv)V’
Ky =chVH’
K, =K (1~ fyn),

Kd = Qxfijx + Quf(1 - Ex) >

(A7)

where V is the total volume at the end of HD (Table 1).
Then, the elements of B (4) for the hemodialysis interval
are given as

Fyy (Fyp + Fogy)
b= ~Fu Kt TR,
c T Ky
blZZKH’
b :FH(FL+Fqu)
B F-Fp+Ky'
b21 = Ky — Fyni>
by, = — Ky + Fyppio
b _FL(FH+FufH)
)

F.-F +K;’

9
F; (F, +F,
by = —F, K, + L (FL qu))
F.-F; +K,
by, = Ky,
by = Kp = Fyqo
by = — K+ Fy;
(A.8)
while for the ID interval they are given as
FyF
by = —Fy-Ky+ FH_;If + Finpes
c
by, = Ky
FyF
b= g B ; ’
c S
by = Ky
b, = — Ky + Fu
22 H inHi (A9)
F F
b= m g
c™ NS
F, F
by = —F - K, + I3 L_ILjf + Fipres
c
by, = Ky,
b43 =K,

by = — Kp + Fypse

The generation rate, expressed in mg/mL, in the four
compartments is defined as

91 =0,
g2 = Gurea’
(A.10)
g3 =0,
gs=0
for urea and as
91=0,
9, =0,
(A.11)
g3 =0,

9s = Gcreatinine

for creatinine, respectively.

Note that in the above formulas indices 1 through 4
refer to extracellular high-flow (He), intracellular high-flow
(Hi), extracellular low-flow (Le), and intracellular low-flow
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(Li) compartments, respectively (also see Figure 1). Therefore,
the accessible arterial plasma concentration for the intradia-
Iytic period is given as

Cp,art (t) =

Crie (8) (Fir + Fyger) + e (8) (Fp + Fogr)

A2
F.-F; + K, (A12)

For the interdialytic phase: K; = Fgy = Fye = 0.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgment

The help of Dawid Worek in developing the stand alone Java
calculator [30] is gratefully acknowledged.

References

(1]

(2]

[3

(5]

[8

(10]

(11]

T. A. Depner, Prescribing Hemodialysis: A Guide to Urea Model-
ing, Kluwer Academic Publishers, Boston, Mass, USA, 1991.

E A. Gotch and M. L. Keen, “Kinetic modeling in hemodialysis,”
in Clinical Dialysis, A. R. Nissenson and R. N. Fine, Eds., pp.
153-202, McGrraw-Hill, New York, NY, USA, 4th edition, 2005.

J. Waniewski, M. Debowska, and B. Lindholm, “Theoretical and
numerical analysis of different adequacy indices for hemodialy-
sis and peritoneal dialysis,” Blood Purification, vol. 24, no. 4, pp.
355-366, 2006.

P. Bugl, Differential Equations: Matrices and Models, Prentice
Hall, Englewood Cliffs, NJ, USA, 1995.

D. Schneditz and J. T. Daugirdas, “Formal analytical solution to
a regional blood flow and diffusion based urea kinetic model,”
ASAIO Journal, vol. 40, no. 3, pp. M667-M673, 1994.

E. Grandi, G. Avanzolini, and A. Cappello, “Analytic solution of
the variable-volume double-pool urea kinetics model applied
to parameter estimation in hemodialysis,” Computers in Biology
and Medicine, vol. 25, no. 6, pp. 505-518, 1995.

S. Eloot, A. Torremans, R. De Smet et al., “Complex com-
partmental behavior of small water-soluble uremic retention
solutes: evaluation by direct measurements in plasma and
erythrocytes,” American Journal of Kidney Diseases, vol. 50, no.
2, pp. 279-288, 2007,

D. Schneditz, Y. Yang, G. Christopoulos, and J. Kellner, “Rate of
creatinine equilibration in whole blood,” Hemodialysis Interna-
tional, vol. 13, no. 2, pp. 215-221, 2009.

F. Gotch, N. W. Levin, and P. Kotanko, “Calcium balance in
dialysis is best managed by adjusting dialysate calcium guided
by kinetic modeling of the interrelationship between calcium
intake, dose of vitamin D analogues and the dialysate calcium
concentration,” Blood Purification, vol. 29, no. 2, pp. 163-176,
2010.

V. Maheshwari, L. Samavedham, and G. P. Rangaiah, “A regional
blood flow model for 32-microglobulin kinetics and for sim-
ulating intra-dialytic exercise effect] Annals of Biomedical
Engineering, vol. 39, no. 12, pp- 2879-2890, 2011.

D. Schneditz, M. Galach, K. Thomaseth, and J. Waniewski,
“A regional blood flow model for glucose and insulin kinetics
during hemodialysis,” ASAIO Journal, vol. 59, no. 6, pp. 627-
635, 2013.

(12]

(18]

(21]

(22]

(23]

[24]

Computational and Mathematical Methods in Medicine

D. Schneditz, D. Platzer, and J. T. Daugirdas, “A diffusion-
adjusted regional blood flow model to predict solute kinetics
during haemodialysis,” Nephrology Dialysis Transplantation,
vol. 24, no. 7, pp. 2218-2224, 2009.

J. R. Magnus and H. Neudecker, Matrix Differential Calculus
with Applications in Statistics and Econometrics, John Wiley &
Sons, Chichester, UK, 3rd edition, 2007.

N. J. Higham, Functions of Matrices: Theory and Computation,
SIAM, Philadephia, Pa, USA, 2008.

S. L. Goldstein, J. M. Sorof, and E. D. Brewer, “Evaluation
and prediction of urea rebound and equilibrated Kt/V in the
pediatric hemodialysis population,” American Journal of Kidney
Diseases, vol. 34, no. 1, pp. 49-54, 1999.

M. Debowska, B. Lindholm, and J. Waniewski, “Adequacy
indices for dialysis in acute renal failure: kinetic modeling,
Artificial Organs, vol. 34, no. 5, pp. 412-419, 2010.

A. Jung, P. Korohoda, P. Krisper, and D. Schneditz, “Relation-
ship between kinetics of albumin-bound bilirubin and water-
soluble urea in extracorporeal blood purification,” Nephrology
Dialysis Transplantation, vol. 27, no. 3, pp. 1200-1206, 2012.

J. T. Daugirdas, T. A. Depner, T. Greene, and P. Silisteanu,
“Solute-solver: a web-based tool for modeling urea kinetics for
a broad range of hemodialysis schedules in multiple patients,”
American Journal of Kidney Diseases, vol. 54, no. 5, pp. 798-809,
2009.

G. Lillacci and M. Khammash, “Parameter estimation and
model selection in computational biology,” PLoS Computational
Biology, vol. 6, no. 3, Article ID €1000696, 2010.

D. Schneditz, B. Fariyike, R. Osheroff, and N. W. Levin,
“Is intercompartmental urea clearance during hemodialysis a
perfusion term? A comparison of two pool urea kinetic models,”
Journal of the American Society of Nephrology, vol. 6, no. 5, pp.
1360-1370, 1995.

D. Schneditz, J. C. Van Stone, and J. T. Daugirdas, “A regional
blood circulation alternative to in-series two compartment urea
kinetic modeling,” ASAIO Journal, vol. 39, no. 3, pp. M573-
M577,1993.

S. E E Santos and A. J. Peixoto, “Revisiting the dialysate sodium
prescription as a tool for better blood pressure and interdialytic
weight gain management in hemodialysis patients,” Clinical
Journal of the American Society of Nephrology, vol. 3, no. 2, pp.
522-530, 2008.

F. Locatelli, A. Covic, C. Chazot, K. Leunissen, J. Luno, and M.
Yaqoob, “Optimal composition of the dialysate, with emphasis
on its influence on blood pressure,” Nephrology Dialysis Trans-
plantation, vol. 19, no. 4, pp. 785-796, 2004.

J. Raimann, L. Liu, S. Tyagi, N. W. Levin, and P. Kotanko, “A
fresh look at dry weight,” Hemodialysis International, vol. 12, no.
4, pp. 395-405, 2008.

A.J. Peixoto, N. Gowda, C. R. Parikh, and S. E. F. Santos, “Long-
term stability of serum sodium in hemodialysis patients,” Blood
Purification, vol. 29, no. 3, pp. 264-267, 2010.

S. W. Smye and E. J. Will, “A mathematical analysis of a two-
compartment model of urea kinetics,” Physics in Medicine and
Biology, vol. 40, no. 12, article 001, pp. 2005-2014, 1995.

G. Cardano, Book Number One About the Great Art, or the Rules
of Algebra, Niirnberg, Germany, 1545.

J. P. Tignol, Galois’ Theory of Algebraic Equations, World
Scientific, London, UK, 2001.



Computational and Mathematical Methods in Medicine

[29] L. Ferrari, Book Number One About the Great Art, or the Rules
of Algebra, G. Cardano, Ed., Niirnberg, Germany, 1545.

[30] http://www.galaxy.agh.edu.pl/~korohoda/applet_for_DA-
RBF_model/MedCalApp.html.

1


http://www.galaxy.agh.edu.pl/~korohoda/applet_for_DA-RBF_model/MedCalApp.html
http://www.galaxy.agh.edu.pl/~korohoda/applet_for_DA-RBF_model/MedCalApp.html

