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Abstract: Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer
(CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifi-
cally circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent
advancements in molecular technologies have enabled sensitive and specific detection of tumor-
derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR,
next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA anal-
ysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare
mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detec-
tion primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling
circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential
in early CRC detection, treatment response monitoring, minimal residual disease assessment, and
tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing
detection limits, and establishing clinical utility across disease stages. This review summarizes
current circulating nucleic acid detection technologies, their CRC applications, and discusses future

directions for clinical implementation.
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1. Introduction

Colorectal cancer (CRC) is the third and second most diagnosed cancer in men and
women, respectively, with approximately 1.93 million new cases in 2020 and is the second
leading cause of cancer deaths globally [1-3]. According to the GLOBOCAN 2020 data,
new cases are expected to reach 3.2 million, and the mortality rate will increase by 60%
by 2040 [1-3]. The high mortality rate is mostly due to late detection. Because most
CRC patients are asymptomatic until the cancer reaches an advanced stage, nearly half of
CRC cases are usually diagnosed at a late stage, which reduces the overall survival rate.
Fortunately, however, CRC is curable and preventable if detected in its early stages. This is
well proven by the fact that the 5-year survival rate after primary diagnosis is 90% in the
early stage compared to 13% in the late stage (stage IV) [1-4]. The overall survival rate of
CRC may depend on accurate diagnosis at different clinical stages. Today, the main goal of
studies is to develop tools to accurately detect CRC tumors at an early stage. CRC screening
modalities currently available for diagnosis and prevention are divided into noninvasive
methods including stool, blood-based, and radiologic tests, and invasive methods including
flexible sigmoidoscopy (FS) and colonoscopy [5]. Although invasive tests such as tissue
biopsy are considered the gold standard for diagnosis with high sensitivity, they still have
significant disadvantages such as painful injury, technical difficulties related to tumor
location, high cost, and low participation rate [5]. Conversely, noninvasive tests based on
carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19-9), commonly used as
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clinical biomarkers, suffer from low sensitivity and a high rate of false positive/negative
results [6,7]. Each method has its own limitations. Therefore, simple, cost-effective, and
accurate methods with highly sensitive noninvasive biomarkers are urgently needed to
screen and diagnose CRC at an early and curable stage.

Many researchers have put much effort into the discovery of new reliable biomarkers
for early detection of CRC to improve the survival rate of patients. Over the past years,
liquid biopsy as a new diagnostic concept has gained much attention. Liquid biopsy is a
noninvasive approach to detect tumor-derived circulating biomarkers in body fluids by
analyzing circulating cell-free DNA (cfDNA), circulating tumor-derived DNA (ctDNA),
circulating tumor cells (CTCs), RNA, exosomes, and protein molecules [8-10]. Analysis
of these components released into body fluids provides information to better understand
tumor heterogeneity and more accurately predict tumor recurrence, metastasis, or treatment
response through real-time monitoring and repeated testing [10]. With the development
of cell isolation technology and gene detection technology, these components as novel
circulating biomarkers are being extensively studied for their role in CRC and potential
clinical applications. Liquid biopsy with circulating biomarkers is currently being used
to monitor cancer progression and guide treatment. However, the clinical application
of biomarkers for CRC diagnosis is still limited by a lack of protocol standardization to
specifically isolate, sensitively detect, and accurately analyze these biomarkers.

In this review, we aim to summarize the most up-to-date methodologies used to
detect circulating biomarkers in liquid biopsy and their potential clinical utility for the
diagnosis and prognosis of CRC. In particular, we focus on DNA- or RNA-based circulating
biomarkers associated with CRC.

2. Circulating Nucleic Acid in Liquid Biopsy

Among the main clinical biomarkers targeted in liquid biopsy, circulating DNA and
RNA are freely available throughout blood-based biofluids [11]. Today, alterations in these
biomarkers, such as abnormal expression and mutations found in CRC patients, can be
easily detected by several techniques based on molecular biology. Detected alterations have
been shown to correlate with tumor burden and serve as early indicators of tumorigenesis,
recurrence, and drug response. Additionally, microRNAs loaded into exosomes (Exo-
miRNAs) are considered to have highly valuable information not only for early diagnosis
but also for advanced diagnosis, due to the fact that exosomes are capable of representing
their cells of origin at metastatic sites. Numerous researchers have highlighted their
potential as specific biomarkers for CRC.

2.1. Circulating DNAs

Circulating cell-free DNAs (cfDNA) released into blood through active processes such
as apoptosis, necrosis, or active secretion, and passive processes such as inflammation,
cell lysis, or tumor activity [12]. The difference in cfDNA levels between CRC groups and
healthy groups has been considered an important biomarker for CRC screening tools in
several studies [13,14]. However, nonspecific levels of cfDNA were observed in healthy
persons or those with benign lesions, leading to false-positive results [15]. The nonspecific
presence of cfDNA indicates that tissue is under stress conditions such as inflammation,
tissue injury, or exercise. Hence, instead of cfDNA testing, circulating tumor-derived DNA
(ctDNA) has emerged as a new biomarker for CRC detection. Unlike ¢fDNA, ctDNA
(<1%) is a small fraction of cfDNA, originating only from tumors. Early studies have
focused on detecting ctDNA levels in CRC. ctDNA is more detectable in patients with
CRC than in healthy persons, suggesting that ctDNA can be used as an indicator for early
diagnosis of CRC. ctDNA levels have been shown to correlate with CRC stage and tumor
size, where stage IV patients had higher concentrated ctDNA than those with stage 1[16,17].
High tumor recurrence rates and poor prognosis have been reported in CRC patients
with high levels of ctDNA. Monitoring ctDNA levels can also predict objective response,
progression-free survival (PFS), and overall survival (OS) in metastatic CRC patients after
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chemotherapy [18,19]. In recent years, the fact that ctDNA carries tumor-specific genetic
variations (single nucleotide polymorphisms and mutations) and epigenetic modifications
(methylation) consistent with the intra-tumoral parent tissue has attracted considerable
interest as specific biomarkers for CRC monitoring. Numerous studies reported genetic
and epigenetic abnormalities in ctDNA, suggesting the potential clinical utility of ctDNA
in liquid biopsy [20,21]. Currently, significant mutations of KRAS and BRAF in ctDNA
have been widely used in CRC diagnosis tests [22-24]. In addition, the methylation of
SEPT9, TAC1, and IGFBP3 in early CRC has also shown diagnostic and prognostic value in
CRC [25,26]. Indeed, this suggests that detecting aberrations of tumor markers in ctDNA
at the early stage of CRC based on liquid biopsy is an effective strategy to reduce patient
mortality and increase overall survival. However, most of these biomarkers are still not
clinically applicable due to a lack of validation studies.

2.1.1. Method for Detection of Circulating DNAs

ctDNA inherited from a tumor origin possesses excellent sensitivity, specificity, and
predictive accuracy in the diagnosis and monitoring of patients’ response. However, since
ctDNA represents only a very small proportion of total cfDNA, targeting and detecting
ctDNA in liquid biopsies requires highly sensitive and reliable detection methods. Several
technologies based on molecular biology have been adopted to track, detect, and monitor
genetic alterations of circulating ctDNA in liquid biopsy samples. The current standard
technologies for analyzing ctDNA are divided into PCR-based methods, such as digital PCR
(dPCR), and next-generation sequencing (NGS)-based methods paired with bioinformatics
analysis [27,28].

PCR-based methods are cost-effective and highly sensitive tools capable of detecting
mutations even in limited amounts of input DNA. In recent years, new technologies such
as droplet digital PCR (ddPCR) and bead emulsification amplification and magnetics
(BEAMing) have been developed to reduce costs, errors, and background noise. ddPCR
allows the detection of low variant allele frequency (VAF) by amplifying single DNA
molecules. BEAMing, as a high-throughput version of PCR-based technologies, is the first
clinically validated liquid biopsy test among PCR-based methods, with high sensitivity of
up to 0.001%. Its commercial platforms, such as the Idylla™ system (Biocartis, Mechelen,
Belgium) and OncoBeamTM RAS CRC assay (Sysmex Inostics; E.U. approval), are currently
available for detecting actionable mutations in CRC.

Based on BEAMing with flow cytometry, the OncoBeamTM RAS CRC assay was
applied to detect circulating RAS ctDNA mutations in the plasma of metastatic colon
cancer (mCRC) patients [22,29]. RAS mutations in plasma samples showed 93% overall
concordance with tissue samples. The OncoBeamTM RAS CRC assay monitors the emer-
gence of RAS mutations in mCRC patients treated with anti-EGFR therapy [22,30] (Table 1).
This is used in routine clinical practice to determine the baseline diagnosis for selecting
candidate patients for anti-EGFR therapy. These technologies have shown superior clinical
applicability in ctDNA analysis. However, PCR-based methods remain limited in that they
can only detect known variants at a few loci.

Table 1. Circulating DNA-based clinical trials in colorectal cancer.

Method Sample Type Cohort Size Main Characteristics Clinical Trial Ref.
Metastatic CRC patients RAS ctDNA status as a predictive
with RAS/BRAF V600E marker for determining anti-EGFR REMARRY
Orgﬁ]éEﬁ tl\g rE:IAS Plasma wild-type tumor resistant to  treatment eligibility and RAS-negative (UMINO000036424) [30]
Guardant360 anti-EGFR therapy ctDNA as an assessment for the efficacy ~ and PURSUIT study -
(REMARRY; n = 183, and safety of therapy with (jRCTs031190096)

PURSUIT; n = 50) panitumumab plus irinotecan
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Table 1. Cont.
Method Sample Type Cohort Size Main Characteristics Clinical Trial Ref.
. Detectable ctDNA level as a diagnostic
Patients resected for CRC .
ddPCR Plasma and treated with adjuvant marker for early detect} on Pf CRC IMPROVE-IT2 [18]
chemotherapy (n = 254) recurrence and determination of (NCT04084249)
py = treatment eligibility
CRC patients (n = 100) and
noncancer group (n = 175)
3 . in training study, CRC - . PRESEPT
RTPCR:SEPT9 Plasma patients Methylated SET9 as a diagnostic (NCT00855348, [31]
real-time (n = 90) and noncancer marker for screening NCT02540850)
group (n = 155) in blinded
testing study
NGS; Founda-
I tionACTT”g, KRAS, NRAS, BRAF ctDNA as a
Illumina Hi-Seq 96 CRC patients (11, IIL, diagnostic marker and predictive
comprehensive Plasma IV stage) marker for guiding therapy in the late NCT02620527 23]
genomic stage
profiling
200 clinical trial sites; 13%
black, 15% Hispanic and 7%  ctDNA as an early detector for CRC
NGS; Guardant ; ; . . A o N ECLIPSE
LUN Alrg_rz'&n Blood Asian American, 45-84 age screening with 96% sensitivity, 94% (NCT04136002) [32]
without prior history cancer  specificity
(n =10,000) )
NGS:Guardant g Sell/Mlpatientswith S B COBRA [33]
LUNAR-1™ resected stage II (n = 1408) . - o (NCT04068103) -
residual disease (MRD) determination
. . RAS/BRAF ctDNA status as a
NGS; Metastatic CRC with -
15; : predictive marker of response to CAPRI II GOIM /
Founﬁdiaz?élOne Plasma {{I;S/ rB(ﬁlin‘é\g;d type FOLFOX therapy in patients resistant to (NCT05312398) [34]
q tmorin = anti-EGFR therapy )
ctDNA presence as a biomarker to guide
NGS; Guardant Plasm Patients resected for stage treatment decisions, with the potential TRACC [35]
Reveal asma II/1II CRC (n = 1621) to reduce adjuvant chemotherapy (NCT04050345) o
related toxicities
Stage I-IV patients Detectable ctDNA level as a diagnostic
PCR NGS: Plasma (n _g 2000) VI\D/ho have and prognostic marker for detection of BESPOKE [36]
Signatera test under gone surgery CRC recurrence and determination of (NCT04264702) .
adjuvant treatment
Positive /negative ctDNA and 16
PCR NGS: specific somatic variants as a predictive 3
Signatera MRD Plasma 2500 CRC patients marker for monitoring MRD and the CIRCULATE-Japan [37,38]
((UMIN000039205)
blood test effectiveness of adjuvant chemotherapy

in CRC with surgery

In comparison to the PCR-based method, the NGS-based method is designed to si-
multaneously detect multiple genetic alterations and unknown variants by employing
high-throughput deep sequencing of multiple gene fragments at once [39]. Somatic sin-
gle nucleotide variants (SNVs), variant allele frequencies (VAFs), copy number aberra-
tions (CNAs), or DNA methylation patterns can be achieved by the NGS-based ctDNA
assay [39,40]. More recent studies have reported expanded NGS applications for microsatel-
lite instability (MSI) detection with the ctDNA fraction [41]. NGS-based algorithms, such
as blood MSI signature enrichment analysis (bMSISEA), can be applied to detect MSI-H
status in ctDNA isolated from blood samples of CRC patients using the ColonCore panel
consisting of 41 CRC-related genes [41].

Although NGS is a reliable method for collecting genetic variant data, detecting true
variants at such low variant allele frequencies (VAFs) using standard NGS techniques
presents a significant challenge due to random errors during library preparation or se-
quencing. In early-stage clinical applications, distinguishing true mutations and avoiding
mistakes from various sources of error is crucial. To overcome this technical issue, strate-
gies utilizing unique molecular identifiers (UMIs) or unique barcodes have been recently
adopted to help reduce false-negative results and increase detection sensitivity in NGS-
based assays [42,43]. Furthermore, a key advantage of NGS is the ability to use a wide range
of markers in a single panel, allowing for deep sequencing of target regions, genome-wide
sequencing, high throughput, reproducibility, and speed. In recent years, NGS assays
have been developed with targeted panels, including Tagged-Amplicon deep sequencing
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(Tam-seq), Safe-sequencing system (Safe-SeqS), CAncer Personalized Profiling by deep
sequencing (CAPP-Seq), Integrated digital error suppression (iDES), and Ion Torrent [39,44].
NGS assays with untargeted panels include Whole-Genome Sequencing (WGS) and Whole-
Exome Sequencing (WES) [44].

Targeted panels can detect point mutations and indel (insertion-deletion mutations)
analysis, while untargeted panels allow the detection of clinically significant genome-wide
DNA variations without needing information about the primary tumor. WGS assays have
been developed with new technologies such as personalized analysis of rearranged ends
(PARE), digital karyotyping, and the Fast Aneuploidy Screening Test-Sequencing System
(FAST-SeqS) [39,45]. However, applying WGS is only feasible with high input sample
volumes. Despite the benefits, NGS methods have limitations, such as relatively low
sensitivity, high cost, and low levels of DNA in the blood. To address these limitations,
NGS-based technologies have been enhanced in terms of sensitivity, reliability, and cost.
Currently, the Guardant 360 assay (Guardant Health, Inc., Redwood City, CA, USA) [46]
and FoundationOne Liquid CDx (Foundation Medicine, Cambridge, MA, USA) [47] are
commercially available as FDA-approved liquid biopsy tests used to determine clinical
trial options for patients [32-35] (Table 1).

In conclusion, there is no doubt that NGS opens new opportunities for feasible clinical
applications. The detection method for circulating DNA should be chosen according to
sample conditions, maximum sample throughput, purpose of analysis, and total cost. For
extensive clinical utility, ctDNA tests should be developed through several clinical trial
validations with acceptable sensitivity and specificity. The following are FDA-approved
assays found in the market for CRC diagnosis.

2.1.2. Clinical Application of Circulating DNAs

The Epi proColon test, known as mSEPT?9, is the first ctDNA-based test approved by
the FDA for colorectal cancer screening [48]. SEPT9 (Tumor suppressor gene septin-9) has
been known as a methylation marker in CRC pathogenesis. This test is designed to analyze
the SEPT9 promoter methylation status using a real-time PCR method. There are four steps:
circulating DNA extraction from plasma, bisulfite conversion of DNA, purification of bis-
DNA, and real-time PCR [48]. Recently, it has been developed into a second generation, Epi
proColon 2.0 CE (Epigenomics AG, Berlin, Germany), to increase sensitivity and specificity
and to reduce overall processing time and sample volumes [49]. Overall, the Epi proColon
test showed good detection sensitivity and specificity for early-stage CRC compared to
conventional noninvasive tests, including the fecal immunochemical test (FIT), blood-based
CEA test, and guaiac-based fecal occult blood (gFOBT) test [31,49]. Analysis of methylation-
based biomarkers in plasma ctDNA could be a promising approach for the early diagnosis
of CRC, which could serve as a screening option for patients who refuse colonoscopy:.

Monitoring tumor responses after surgical resection or during the course of treatment
is essential to reduce the potential for micrometastases. The ctDNA analysis in blood
samples of patients after surgery allows detection of minimal residual disease (MRD), which
reduces the risk of recurrence and unnecessary chemotherapy [50]. ctDNA-based MRD
detection in CRC is currently available through Signatera™ MRD (Natera, Inc), approved
by the FDA and receiving Medicare coverage in the United States. The Signatera™ MRD
test is a custom-built ctDNA monitoring assay for detection of patient-specific somatic
mutations in blood samples using personalized targets found in primary tumors. This
test for Stage I-IV CRC tracks 16 unique somatic mutations identified via whole-exome
sequencing of an individual’s tumor using a bespoke multiplex PCR NGS method [36]. In
a recent clinical study, the Signatera™ MRD test has advanced to a large platform, called
CIRCURATE-Japan. ctDNA MRD data collected via CIRCURATE-Japan, comprising a
large-scale patient screening registry (GALAXY) and two ctDNA-guided phase III trials
(VEGA and ALTAIR), could be used as guidelines for more precise adjuvant therapy
treatment regimens in patients with resectable CRC [37,38]. This platform is currently
undergoing evaluation to assess the utility of ctDNA. As another ctDNA-based MRD
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test for CRC in the US market, Colvera™ (CRISO), launched in 2017, is available as a
lab-developed test (LDT) and has Medicare coverage for MRD detection and recurrence
monitoring in CRC after primary treatment [51]. It uses a real-time PCR-based method to
detect methylated BCAT1 and IKZF1 in ctDNA.

Adenomas are benign tumors that can develop into malignant carcinomas if not de-
tected and treated early. Detecting adenomas at a pre-tumor stage can significantly improve
patient outcomes by enabling timely intervention. One of the significant achievements in
ctDNA research is the ability to detect adenomas in pre-tumor stages. For instance, the
methylation of the SEPT9 gene (mSEPT9) has been shown to be a promising biomarker
for the early detection of CRC. Systematic reviews and meta-analyses have reported that
mSEPT9 tests exhibit high sensitivity and specificity for early-stage CRC detection [52]. This
test can identify CRC at a very early stage, which is crucial for improving patient outcomes
through timely intervention and treatment. Similarly, the SDC2 gene methylation has been
validated as an effective biomarker for detecting colorectal adenomas and early-stage CRC.
A meta-analysis revealed that the SDC2 methylation test has a pooled sensitivity of 81%
and a specificity of 95% for CRC detection. For adenomas specifically, the sensitivity was
reported to be around 47%, indicating its potential for early detection before the adenomas
progress to malignant stages [53].

Together with advanced new detection technology, ctDNA-based liquid biopsies have
been considered a promising approach for CRC patient management. However, it is still
too early to claim it as a prime test in the clinic due to the limited amount of ctDNA present
in the plasma of patients with early-stage cancer.

3. Circulating RNAs

Circulating RNAs (circulating cell-free RNAs, cfRNAs) are mainly represented by
microRNA (miRNAs), long noncoding RNA (IncRNAs), and messenger RNA (mRNAs).
cfRNA is released into the blood through mechanisms such as apoptosis, microvesicle
shedding, and exosome signaling [54]. Since cfRNAs regulate tumor-related transcripts, the
quality and quantity changes of cfRNAs have recently attracted considerable attention as
specific biomarkers related to cancer progression. Among cfRNAs, circulating microRNAs
(miRNAs) have been a major focus of cfRNA studies, and numerous researchers have
highlighted the potential of circulating miRNAs as a new generation of biomarkers for
diagnosis, prognosis, and therapeutic prediction [55]. They have attracted more attention
due to the fact that circulating miRNAs are relatively abundant, remarkably stable against
endogenous RNases in RNase-rich blood, and insensitive to pH changes and tempera-
ture [55,56]. Therefore, unlike cfDNA, which requires at least 2 mL of blood for detection,
circulating miRINA are detectable with just 200 ul of plasma due to their stability. The
stability in serum and plasma could be explained by protective mechanisms such as miRNA
modification, miRNA-binding protein complexes [57], lipoproteins (or platelets) [58], or
encapsulation into extracellular vesicles (EVs) [56,59]. Most interestingly, the expression
pattern of circulating miRNAs is correlated with the degree of tumor progression, which
indicates their potential as noninvasive biomarkers to detect tumors at different stages.
However, the isolation, measurement, and detection of circulating miRNAs remain a chal-
lenging field. Here, we summarize the current state of the miRNA field and highlight
new innovative technologies, which suggest future directions of investigation for clinical
application in CRC.

3.1. Current State of Circulating miRNAs: Detection Method and Challenges

The presence of circulating miRNAs in blood and their potential as cancer markers
was first reported by Lawrie et al. in 2008 [60]. The authors demonstrated that high levels
of specific circulating miRNAs are associated with clinical outcomes in diffuse large B-cell
lymphoma patients. Since then, numerous studies have reported that circulating miRNAs
have the ability to discriminate between healthy individuals and cancer patients [61].
In addition, several miRNAs have been shown to have specific signatures that reflect
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disease state and cancer progression [62]. These studies open up the possibility of applying
circulating miRNAs as diagnostic and prognostic biomarkers in clinical trials. Ongoing
research is aimed at isolating and detecting specific circulating miRNAs in body fluids.

The common method to detect circulating miRNAs comprises three main steps: RNA
extraction, reverse transcription, and miRNA quantification. Small RNAs are isolated from
different components including whole blood, coagulation factors, proteins, lipoproteins,
and exosomes by using commercial extraction kits such as Trizol (Ambion, Austin, TX,
USA), QIAzol (Qiagen, Hilden, Germany), mirVana PARIS kit (Ambion, Austin, TX, USA),
miRNeasy serum/plasma kit (Qiagen, Hilden, Germany), and miRCURY (Exiqon, Woburn,
MA, USA). Some studies have reported a comparative evaluation of commercial RNA
extraction kits from serum [63], but it is still difficult to choose the ideal miRNA extraction
kit for serum/plasma due to many variables, such as initial fluid volume and sample
stability. In addition, there are some technical challenges. The first concern is that RNA
extraction methods lack specificity to isolate only miRNAs [64,65]. As such, their concen-
tration is always overestimated due to the presence of a mixture of small and large RNAs
or hemolysis. Another concern is that the yield of miRNAs isolated from serum/plasma is
too low to quantify accurately [64,65]. This causes efficiency, accuracy, and reproducibility
issues in serum/plasma miRNA analysis. Therefore, the expression results of circulating
miRNAs may vary depending on experimental settings such as yield and quality. The
use of NanoQuant (Tecan Infinite® 200 PRO, Tecan, Maennedorf, Switzerland), Nanodrop
2000 (Thermo Scientific TM, Waltham, MA, USA), or a Qubit® 2.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA) is essential for obtaining valid results. Optimized standard
protocols for sample preparation are needed for successful miRNA expression profiling.

To date, the methods commonly used for screening and profiling circulating miRNA
expression are Quantitative Real-time PCR (qRT-PCR), hybridization-based technology
(Microarray), and high-throughput sequencing (NGS) (Figure 1).

gqRT-PCR is one of the most widely used methods and is considered the most sensitive
for quantification of miRNA expression. In general, it is a relatively simple and cost-efficient
technology. qRT-PCR methods currently applied include SYBR green-based miScript
(Qiagen), SYBR green-based miRCURY LNA (Exiqon), and TagMan-based miRNA TagMan
assay (Life Technologies) [65]. These technologies have developed into qRT-PCR arrays
such as custom miScript miRNA PCR array (Qiagen), Smart Chip PCR (Takara Bio, Kusatsu,
Japan), and TagMan array miRNA 384 Cards (ThermoFisher) that can simultaneously
profile large sets of circulating miRNAs.

As with other methods to simultaneously measure circulating miRNAs all at once,
miRNA microarray and NGS allow a large number of parallel analyses. miRNA microarray;,
as a semi-quantitative hybridization-based method, is useful for genome-wide circulating
miRNA profiling and high-throughput detection of circulating miRNAs in body fluids [66].
Moreover, microarrays are flexible tools that can be tailored based on pathogenesis and
are relatively straightforward and less expensive compared to NGS [65,66]. However, this
method requires a large number of RNA samples and has technical variations in additional
experimental steps, such as specific probe design and sample labeling, which implies a
risk of inaccuracy. It tends to have lower specificity than qRT-PCR or NGS. Therefore,
miRNA microarrays are a suitable method for finding multiple candidate biomarkers
for diagnostic purposes or comparing the relative expression levels of specific miRNAs
between two conditions (e.g., control vs. treatment or healthy vs. cancers). Currently,
various commercial microarray platforms such as Affymetrix GeneChip miRNA array,
[lumina BeadChip, Applied Microarray, and Exiqgon miRCURY LNA miRNA array are
available for performing wide initial screening in body fluids [65].

As a high-throughput analysis by miRNA-seq, NGS is considered a more promising
method for detecting circulating miRNAs and finding novel miRNAs. This is because
both qRT-PCR and microarray methods are limited in that they can only profile known or
putative miRNAs, whereas NGS does not limit studies to known miRNAs. NGS does not re-
quire knowledge of target miRNAs, specific probes, or primers. In addition, NGS provides
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may limit its applications.
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Figure 1. Workflow and key checkpoints for clinical applications using circulating miRNA. The main

advantages (in blue) and disadvantages (in red) of miRNA detection methods are summarized.

To overcome the deficiencies of these conventional methods, new nanomaterial-based
amplification methods such as rolling circle amplification (RCA), loop-mediated isothermal
amplification (LAMP), and strand-displacement amplification (SDA) have recently been ap-
plied for miRNA detection [68]. Gold nanoparticles (AuNPs), magnetic nanoparticles, silver
nanoclusters (AgNCs), and quantum dots (QDs) allow ultrasensitive detection of miRNA
due to their high surface area, excellent electrical conductivity, and chemical stability [68].
Each nanomaterial-based method has its own advantages, such as simplicity, low-cost
instrumentation, low sample volume, and sensitivity, but also some disadvantages, such as
inherent cytotoxicity and self-aggregation that negatively affect results. Therefore, more
optimized, realistic, and practical methods are still necessary for accuracy and consistency
of results. Novel strategies, such as miRNA-based chips equipped with biosensors [69,70],
would also be good approach to save time, reduce costs, and eliminate unnecessary steps.
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Once the data are obtained from quantification of circulating miRNAs, we face the
next challenge related to normalization. Normalization of miRNA data is a critical factor
in accurately interpreting clinical significance. To date, the commonly used references are
U6 snRNA (RNU6B), RNU19, RNU43, RNU48, U75, RNU44, 185 RNA, 55 RNA, GAPDH,
miR-16, let-7a, and miR-106b [71-73]. Although certain miRNAs could be used as universal
references for normalization of miRNNA expression studies, some reference RNAs are not
stable or reliable. Endogenous controls have not been standardized yet, which contributes
to conflicting results. For example, RNU44, stably expressed in endometrial cancer, can
serve as a reference in miRNA qPCR studies [74], but it is associated with prognosis in
head and neck squamous cell carcinoma and breast cancer [75]. Circulating miR-16 can
be used as a normalizing control in prostate cancer, but it is associated with prognosis
for multiple myeloma [61,76]. To find endogenous miRNAs suitable as reference genes,
the stability of expressed miRNAs can be evaluated using geNorm, NormFinder, and
BestKeeper algorithms [77-79]. In addition, exogenous miRNAs such as cel-miR-39 and
cel-miR-54 could be carefully considered to avoid misleading results [80,81]. In recent
years, the scientific community has been making efforts to establish simple SOPs and
reference genes to reduce analytical variability and increase the reproducibility of liquid
biopsies [82,83]. However, determining an appropriate control sample also remains a key
issue in liquid biopsies, as it is difficult in practice to ensure that the control group is
indeed healthy.

3.2. Clinical Application of Circulating miRNAs

The first studies demonstrating the use of circulating miRNAs as a diagnostic tool for
CRC were reported in 2009 [84]. In this study, upregulated miR-92 was validated in plasma
collected from 90 patients with CRC by qRT-PCR a RNU6B (as a normalization signal),
with a sensitivity of 89% and specificity of 70%. The miR-92 levels markedly reduced after
surgical resection of tumors. The specificity of miR-92 as a diagnostic marker for CRC
was further improved by combining it with miR-29a [85]. Importantly, this combination of
miRNAs can discriminate early stages of cancer with small tumors from the normal control
group, indicating that a panel of plasma miRNA markers offers an advantage over current
CRC screening tools such as CEA and FOBT.

Further research has revealed that a broad panel of eight upregulated circulating miR-
NAs (miR-532-3p, miR-331, miR-195, miR-17, miR-142-3p, miR-15b, miR-532, and miR-652)
can discriminate patients with CRC from those without CRC [86]. CRC screening using the
panel of eight miRNAs is performed by RT-PCR using U6 as a normal reference and showed
high accuracy with 88% sensitivity and 64% specificity [86]. In the case of a 5-miRNA
panel (miR-331, miR-15b, miR-21, miR-142-3p, and miR-339-3p), it distinguished patients
with advanced CRC from CRC patients with 91% sensitivity and 69% specificity [86]. A
more recent study showed that a combination of miR-29a, miR-125b, and miR-145 has
significant predictive value in early CRC detection. This panel of three miRNAs improved
the predictive efficiency of CRC risk with increased sensitivity in a natural healthy popula-
tion [87]. This is the greatest advantage of circulating miRNAs, showing powerful clinical
potential for early detection of precancerous stages. Other studies have reported that
differentially expressed patterns of circulating miRNA panels are associated with CRC liver
metastasis [88,89] or lymph node metastasis [90,91]. Therefore, these trials suggest that
panels combining multiple miRNAs may be a great approach for the feasible application of
miRNAs with greater sensitivity and specificity, since a single miRNA may not be sufficient
to be used as a clinical diagnostic and prognostic marker in a wide range of clinical trials.

Another clinical application is that circulating miRNAs can predict patient response to
chemotherapeutic treatment. As an interesting example, Kudelova et al. investigated the
expression of seven circulating miRNAs in paired postoperative and follow-up samples
(3 months after surgery) using an miRCURY LNA miRNA RT-qPCR System to monitor
patients receiving adjuvant treatment for CRC [92]. Selected circulating miRNA (miR-155-
5p, miR-21-5p, miR-191-5p, miR-106a-5p, and miR-16-5p) levels were changed compared
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to the pre-operative state [92]. Another study showed that high levels of five miRNAs
(miR-223-3p, miR-20a-5p, miR-17-5p, miR-19a-3p, and miR-7-5p) in 77 CRC patients were
reduced after 5-FU-based therapy, but their levels rebounded after 3 months in responder
patients [93]. Especially, the change of miR-19a-3p levels after 6 months was associated with
the risk ratio for CRC recurrence and progression [93]. In the most recent phase II clinical
trial (PROSPECT-R, NCT03010722), miR-652-3p was evaluated as a predictive biomarker
of resistance to regorafenib, a multi-tyrosine kinase inhibitor, in colon cancer [94]. The
level changes of circulating miR-652-3p were confirmed in both liquid and solid biopsies
using a digital droplet PCR (ddPCR) system (Bio-Rad) and ISH. Moreover, using a PDOX
(patient-derived organoids-xenotransplant) model, they demonstrated the mechanism
by which elevated levels of miR-652-3p contribute to regorafenib resistance by blocking
regorafenib-induced lethal apoptosis and promoting vessel co-optation [94] (Table 2).

Table 2. Circulating RNA-based clinical trials in colorectal cancer.

Method Sample Type Cohort Size Main Characteristics Clinical Trial Status Ref.
. Patients treated with miR-652-3p as a predictive marker
NanoString Blood (plasma) regorafenib for RAS of resistange andpresponse to PROSPECTR Completed [94]
nCounter/ddPCR mutant metastatic CRC regorafenib monotherapy (NCT03010722)
(n =40)
| Patientsdiagnosed with e D e y
NanoString Blood (plasma) ?ietﬂ?r(l:a(;c?cz)ggﬁ of the putative marker of the response to NCT03962088  Recruiting [95]
neoadjuvant treatment
Patients diagnosed with Exosome miRNA as an early
Unknown Blood colorectal cancer between  diagnostic and prognostic marker =~ NCT04523389 ~ Unknown [96]
2008 and 2012 (n = 172) for CRC
Patients with advanced Exosome miRNA as an early
qPCR analysis Blood Adenomas and CRC diagnostic marker for Advanced NCT06342440  Recruiting [97]
(n = 1000) Adenomas and Colorectal Cancer
. Exosome miRNA as a predictive
Patients resected for CRC . .
Unknown Blood and treated with adjuvant Bl}?marker .Of Neoad];lvant NCT04227886  Unknown [98]
chemotherapy (n = 250) ga r(irclé(r)radlotherapy or Rectal
. Patients underwent colon ~ miRNA levels as a prognostic or
Unknown Tissue resection (n = 100) therapeutic marker for CRC NCT01712958 Unknown 1991
miR-21, miR-20a-5p, miR-10a-3p,
Patients diagnosed with miR-106b-5p, miR-143-5p, and
q-RT-PCR Tissue stage II colon cancer miR-215 as a predictive marker NCT02635087  Recruiting [100]
(n =630) for stage II CRC treated with
chemotherapy
Resected stage III CRC
patients to receive miR-31-3p and miR-31-5p as a
. . adjuvant treatment with prognostic and predictive marker
RT-qPCR Tissue either FOLFOX-4 plus for outcome and benefit to NCT03362684  Completed (o1
cetuximab or FLOFOX-4 anti-EGFR therapy
alone (n = 1808)
miR-21, miR-20a-5p, miR-103a-3p,
. . . iR-106b-5p, miR-143-5p, and .
. Patients diagnosed with m P, TP, Active, not
RT-gPCR Tissue stage CRC (n = 430) miR-215 as a predictive marker NCT02466113 recruiting [102]

for determination of adjuvant
treatment

Despite these findings, there are a few studies of circulating miRNA-relevant clinical
trials (NCT04523389, NCT06342440) registered on ClinicalTrails.gov [96,97] (Table 2). Unlike
cfDNAs, there are currently no FDA-approved circulating miRNA-based tools for screening
CRC. To date, most of the CRC clinical trials have reported miRNA from colon or rectal
tumor tissues (NCT01712958, NCT02635087, NCT03362684, and NCT02466113) [99-102] or
circulating tumor cells (NCT01828918). The majority of preclinical studies and clinical trials
related to circulating miRNAs in serum /plasma have focused solely on circulating miRNA
characterization and their potential as diagnostic, predictive, and prognostic markers in var-
ious human cancers. Additionally, to date, there are no large population-based randomized
trials, and clinical studies demonstrating the utility of miRNAs are also limited. Therefore,
to achieve widespread clinical adoption, multiple challenges must be addressed, such as
acceptable standard protocols, the consistency of reference miRNAs, the selection of nor-
malization methods, the acknowledgment of ethnic diversity, and the impact of individual
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variability. To overcome the above hurdles, many studies are ongoing to develop and opti-
mize methods and analyses, and several recommendations have been proposed, including
using multiple reference genes along with standard spike-in miRNA concentrations for
normalization, and handling samples according to guidelines [103—-105]. Implementing
these standards would allow miRNAs to be translated into clinical practice, providing
personalized and precise medical strategies through minimally invasive approaches.

3.3. Clinical Application of Circulating Exosomal Micro-RNAs

Recent advancements in molecular diagnostics have brought circulating exosomal
microRNAs (miRNAs) into the spotlight as potential noninvasive biomarkers for CRC [106].
Exosomes are small vesicles secreted by parental cells and contain a variety of biomolecules,
including miRNAs, which are small noncoding RNAs that play a critical role in gene
regulation [107]. In the context of cancer, these exosomal miRNAs are released into the
circulation and reflect the pathological state of the tumor, making them a valuable source
for biomarker discovery [108]. Several studies have shown that exosomal miRNA could be
useful in prognostic prediction approaches. Distant metastasis from colon cancer to the liver
is the major cause of colon cancer-related mortality. High levels of exosomal miR-141-3p
and miR-375 derived from plasma were correlated with liver metastatic progression in
rectal cancer, affecting patients” immune activity [109]. Many other exosomal miRNAs,
such as miR-548¢-5p, miR-17-5p, and miR-92a-3p have been reported to contribute to liver
metastasis via blood circulation [110,111].

Recent studies have indicated that specific exosomal miRNAs are differentially ex-
pressed in CRC patients compared to healthy controls [112]. For example, serum exosomal
levels of miRNAs such as let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-
23a were found to be significantly higher in patients, particularly in early-stage CRC [106].
These levels were observed to decrease postsurgically, suggesting a direct association with
tumor burden. The diagnostic potential of these miRNAs has been explored through
microarray analyses and validated by quantitative real-time RT-PCR [106]. These studies
underscore the high sensitivity of selected exosomal miRNAs, surpassing traditional tumor
markers like CA19-9 and CEA in some cases. Moreover, the expression profiles of these
miRNAs correlate with patient survival rates, indicating their value not only in diagnosis
but also in prognosis. The variability in miRNA expression post-tumor resection highlights
the possibility of using these biomarkers for monitoring disease progression and treatment
efficacy. The translation of these findings into clinical practice could revolutionize CRC
management by enabling early detection, real-time monitoring of treatment response, and
possibly guiding therapy choices based on miRNA profiles. The noninvasive nature of
blood-based tests offers a patient-friendly alternative to conventional diagnostic methods
such as colonoscopy.

While the promise is substantial, the clinical application of circulating exosomal
miRNAs still faces challenges. To date, some clinical trials (NCT04523389, NCT06342440,
and NCT04227886) [96-98] have aimed to identify specific exosomal miRNAs for CRC
(Table 2). If further studies address several hurdles, including standardization of exosome
isolation and reproducibility, these clinical trials may help develop the effectiveness of
blood tests with exosomal miRNAs for CRC screening. Furthermore, understanding the
mechanistic role of these miRNAs in CRC pathogenesis could open new avenues for
targeted therapies, potentially leading to miRNA-based therapeutic interventions.

3.4. Theranostic Values of Circulating Micro-RNAs

Circulating miRNAs have garnered interest as potential theranostic biomarkers due to
their stability in body fluids and their regulatory roles in gene expression. As diagnostic
circulating miRNAs are generally involved in various biological processes and disease
mechanisms, they are promising candidates for disease progress, treatment predictor,
and treatment response markers. The identification of specific miRNAs in blood that
correlate with CRC presence and progression can significantly enhance early detection and
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personalized treatment strategies. In addition, diagnostic values of circulating miRNAs
can be used for drug discovery and therapeutic targets.

Currently, several clinical trials evaluating circulating miRNAs as treatment predictors
and response markers for CRC are listed at ClinicalTrials.gov [94,95,98]. A recent active
clinical trial is investigating the correlation between changes in circulating miRNA levels
and neoadjuvant treatment, surgery, and adjuvant chemotherapy in patients with colorectal
cancer [95]. It uses NanoString technology to detect specific miRNAs among multiple
targets present in the same sample. The description of this study informs that differentially
expressed circulating miRNAs will predict the tumor response to therapies. We anticipate
that miRNA level assessment at all stages of treatment may be useful for evaluating the
effectiveness of neoadjuvant treatment and monitoring pathologic complete response (pCR)
with minimal residual tissue after surgical resection. As another preclinical study, miR-21
has been widely studied for its role in promoting tumor growth and its elevated levels in
the plasma of CRC patients, making it a valuable marker for CRC progression and a target
for therapeutic intervention and response [113].

Certain miRNA profiles can predict disease recurrence and patient survival, aiding in
the stratification of patients based on risk and guiding treatment decisions. Therapeutically,
targeting dysregulated miRNAs in CRC has shown potential in preclinical studies, with
miRNA mimics and inhibitors being developed to restore normal gene expression and
inhibit tumor progression. Overall, the theranostic potential of circulating miRNAs in
CRC continues to be an area of active research, promising advancements in early detection,
prognosis, and personalized therapy [114].

4. Conclusions

Circulating biomarkers such as circulating DNAs and miRNAs hold significant promise
for the noninvasive diagnosis and prognosis of CRC. As research advances, these biomark-
ers stand at the forefront of a paradigm shift towards precision oncology, heralding a new
era of cancer management where blood-based biomarkers guide clinical decision-making,
improving patient outcomes through personalized medicine.

Challenges in using circulating nucleic acids as biomarkers include their low abun-
dance, especially in early-stage cancers, lack of standardized protocols, difficulties in
normalization, and issues with specificity. Technical variations in extraction and analysis
methods, the high costs of advanced technologies, and the complexity of data interpretation
also pose significant hurdles. Moreover, translating promising biomarkers from research to
clinically validated tests remain challenging.

To overcome these obstacles, future directions focus on developing more sensitive
detection methods, including advanced PCR techniques and nanotechnology-based ap-
proaches. Standardizing protocols for sample handling and analysis is crucial. Efforts
should be made to identify robust reference genes for normalization and to use multi-
marker panels to improve specificity and sensitivity. Integrating circulating nucleic acid
markers with other biomarker types could enhance accuracy. Large-scale clinical trials
are needed to validate promising biomarkers in diverse populations. Prioritizing research
on early-stage cancer detection and developing user-friendly, cost-effective point-of-care
devices is also important. Finally, exploring novel circulating RNAs and improving bioin-
formatics tools will be key to advancing the field of liquid biopsy for cancer detection
and monitoring.
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