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Abstract

MicroRNA (miRNA) loaded Argonaute (AGO) complexes regulate
gene expression via direct base pairing with their mRNA targets.
Previous works suggest that up to 60% of mammalian transcripts
might be subject to miRNA-mediated regulation, but it remains
largely unknown which fraction of these interactions are func-
tional in a specific cellular context. Here, we integrate transcrip-
tome data from a set of miRNA-depleted mouse embryonic stem
cell (mESC) lines with published miRNA interaction predictions and
AGO-binding profiles. Using this integrative approach, combined
with molecular validation data, we present evidence that < 10%
of expressed genes are functionally and directly regulated by
miRNAs in mESCs. In addition, analyses of the stem cell-specific
miR-290-295 cluster target genes identify TFAP4 as an important
transcription factor for early development. The extensive datasets
developed in this study will support the development of improved
predictive models for miRNA-mRNA functional interactions.
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Introduction

The rapid rise in the discovery of microRNAs (miRNAs) as key regu-

lators of gene expression in many biological processes has prompted

an extensive search for their functional targets, as well as the develop-

ment of tools for a reliable identification thereof. MiRNAs are

endogenous small regulatory RNAs, approximately 22 nucleotides

(nt) in length (Bartel, 2018), which are transcribed by RNA

polymerase II to produce a capped and poly-adenylated primary

transcript (pri-miRNA). They are further processed by the Micropro-

cessor Complex consisting of one RNase III DROSHA and two

double-stranded RNA-binding protein DGCR8 (Lee et al, 2002;

Nguyen et al, 2015). The resulting miRNA precursor (pre-miRNA) is

exported to the cytoplasm and cleaved by DICER, another RNase III

protein (Bernstein et al, 2001), leading to a double-stranded miRNA

duplex, subsequently loaded into an Argonaute (AGO) protein

(Mourelatos et al, 2002; Song et al, 2004). The AGO-miRNA com-

plexes generally target the 30 untranslated regions (UTRs) of their

target mRNAs at miRNA response elements (MREs) (Lewis

et al, 2005), although functional repression via binding to the cod-

ing sequence (CDS) has been reported (Reczko et al, 2012; Hausser

et al, 2013). MREs are usually complementary to the seed sequence

of the miRNA, which is at positions 2–7 of the mature miRNA’s 5’

end (Lewis et al, 2003). MiRNA binding can lead to the functional

repression of its target by translation inhibition and decay of the

mRNA (Guo et al, 2010).

Complementary computational and experimental approaches are

commonly used to identify functional miRNA–mRNA interactions.

AGO-binding assays such as cross-linking immunoprecipitation and

sequencing (CLIP-seq) precisely reveal binding sites of AGO to MREs

allowing the identification of the regulatory miRNAs (Hafner

et al, 2010). Of note, AGO-binding does not necessarily elicit down-

stream repressive effects (Agarwal et al, 2015; Chu et al, 2020) and

a diverse set of sequence-associated features has been identified to

influence the repression potential of a given interaction (Lewis

et al, 2005; McGeary et al, 2019; Sch€afer & Ciaudo, 2020). These

features have been exploited by computational prediction models for

the identification of miRNA interactions (Agarwal et al, 2015; Id

et al, 2018; Sch€afer & Ciaudo, 2020) and the integration of multiple

approaches and datasets to obtain more accurate functional miRNA–
mRNA interactions have been performed (Gosline et al, 2016;

Oliveira et al, 2017; Chu et al, 2020). Notably, Gosline et al (2016)

and Chu et al (2020) integrated AGO-binding datasets with miRNA-

depletion and transcriptomics to identify miRNA targets in specific
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contexts (fibroblasts and HCT116 cells, respectively). Gosline

et al (2016) further integrated epigenetics approaches, identifying

miRNA-regulated transcription factors (TFs), spanning broad regula-

tory networks, while Chu et al (2020) highlighted the difficulty to

infer functional miRNA interactions directly from AGO-binding data.

However, it has been shown that computational models tend to pre-

dict a large number of nonfunctional interactions, where miRNAs do

not exert any detectable repression to their respective targets (Pinzon

et al, 2017; Chu et al, 2020).

In this study, we hypothesized that the inability of current miRNA

target prediction models to provide an accurate view of functionally

relevant miRNA interactions could be partially attributed to the lack

of incorporating context-specific factors. We performed an integra-

tive analysis combining OMICs data from a unique series of miRNA-

deficient mouse Embryonic Stem Cell (mESC) lines generated in the

same genetic background with other publicly available datasets (pre-

dictive models, AGO-bound miRNAs) to determine the direct and

functional miRNA interactions in mESCs. We further validated our

findings by measuring the impact of the deletion of a stem-cell-

specific miRNA cluster on gene expression. Altogether, we estimate

that < 10% of expressed genes are subject to direct and functional

miRNA-regulation in mESCs. In addition, we identified the transcrip-

tion factor TFAP4 as a miR-290-295 cluster target. Our data suggest

an important role for TFAP4 in the regulation of the Wnt signaling

pathway and gene regulation in mESCs.

Results and Discussion

Gene expression is not sufficient for accurate miRNA
target prediction

To capture the extent of miRNA-mediated gene regulation in mESCs,

we established a unique set of miRNA knock-out mESCs

(miRNA_KOs) using a paired CRISPR/Cas9 approach (Wettstein

et al, 2016) (Drosha_KO (Cirera-Salinas et al, 2017), Dicer_KO

(Bodak et al, 2017b) and Ago2&1_KO (this study) (Fig EV1A)). Prin-

cipal component analysis (PCA) of RNA-sequencing (RNA-seq) from

wildtype (WT) and miRNA_KO lines showed clustering of biological

replicates and separation of samples (Fig EV1B and Dataset EV1).

Differential expression (DE) analysis revealed a large number of

upregulated genes in all miRNA_KOs (Fig EV1C). However, the

overlap of upregulated genes across all three mutants was small rel-

ative to the total number of upregulated genes (Fig EV1D, 1,109 out

of 6,408 upregulated genes, adjusted (adj.) P-value < 0.2). All

mutants exhibited a sizeable number of downregulated genes (Fig

EV1C and D), indicating indirect effects.

In conclusion, the extended perturbation of gene expression

observed in miRNA_KO mESC lines is not exclusively caused by the

lack of miRNAs. Mutant-specific effects and secondary regulation

events strongly influence global gene expression profiles in stem

cells, hindering direct inference of miRNA targets from these data.

Integrative transcriptomics data analysis predicts functional
miRNA interactions in mESCs

To identify candidate genes directly and functionally targeted by

miRNAs in mESCs, we integrated sequence-based interaction

prediction data from TargetScan (Agarwal et al, 2015), and pub-

lished AGO2-binding data (Li et al, 2020) with our AGO-miRNA

loading data from WT mESCs (Ngondo et al, 2018) and RNA-seq

from WT and miRNA_KO mESCs as visualized in Fig 1A. Potential

interactions were established based on seed matching at AGO2 bind-

ing peaks and then filtered based on target mRNA upregulation in

miRNA_KO mESCs, miRNA loading in AGOs and sequence-based

interaction predictions (Fig EV1E and Dataset EV2). The sum of all

four normalized features led to an interaction score, which was used

to rank interactions and candidate genes based on the evidence sup-

porting their regulation by miRNAs, narrowing the number of

detected miRNA candidate target genes down to 759 (Fig 1B and

Dataset EV3).

We identified miRNA–mRNA pairs, where the mRNA targets dis-

play high AGO2-binding and significant upregulation in miRNA_KO

mESCs, as well as loading of the targeting miRNAs in AGOs (Fig 1C

and D). Our approach discards putative interactions with little evi-

dence for the support of miRNA targeting, such as low AGO2-

binding, low targeting miRNA loading, and a lack of target upregula-

tion in miRNA_KO mESCs (Fig EV2A and B). Consistent with other

studies (Reczko et al, 2012; Hausser et al, 2013; Patel et al, 2020),

we observed seemingly functional interactions in regions outside of

the 30UTR (Fig EV2C and D), which led us to include interactions in

the 50UTR and CDS despite the absence of a TargetScan score.

A gene set enrichment analysis (GSEA) of the target candidates,

compared to sets of commonly up- and downregulated genes,

revealed a highly significant role for candidate genes in Develop-

mental Biology and processes linked to the regulation of transcrip-

tion (Fig 1E), in line with the known roles of miRNAs in early

development and stem cells (DeVeale et al, 2021). Thus, multi-

OMICs integration facilitated the identification of 759 candidate

miRNA targets corresponding to 7% of expressed genes. Interest-

ingly, Tan et al (preprint: 2020) estimated that 6% of expressed

genes were regulated by miRNAs in lymphoblastoid cell lines

(preprint: Tan et al, 2020), suggesting that this percentage might

reflect functionally relevant interaction number magnitudes in vari-

ous contexts.

Ribosome profiling in miRNA_KO mESCs reinforces the
identification of functional miRNA target genes

A substantial part of the data used in the integrative analysis was

based on transcriptomics approaches, and we wondered whether

the upregulation of miRNA targets in miRNA_KO mutants was also

reflected at the translational level. We thus assessed the proteome

of all miRNA mutant and WT mESCs using Sequential Window

Acquisition of all THeoretical fragment ion spectra Mass Spectrome-

try (SWATH-MS) (Gillet et al, 2012), and measured the differential

protein abundance of candidate miRNA targets. This approach

allowed us to capture protein abundances only for 27% of candidate

miRNA targets (203 of 759, Fig EV2E). All miRNA_KO mutants

showed significantly enriched positive log2-fold-changes (log2FCs)

as compared to a control distribution of log2FCs, with at least 60%

of genes exhibiting positive log2FCs (Fig EV2E and Dataset EV4).

The low detection sensitivity of the approach was in line with previ-

ous mass spectrometry studies (Tacheny et al, 2012; Ding

et al, 2013; preprint: Lai et al, 2021), which also described poten-

tially high signal variance (preprint: Lai et al, 2021).
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We, therefore, performed Ribosome profiling (Ribo-seq) in

miRNA_KO mESCs to measure the ribosome occupancy on mRNAs

(Brar & Weissman, 2015). The high sensitivity of the approach

allowed us to detect and compare ribosome occupancy for 96% of

the candidates (728 of 759, Fig 2A). For every mutant, enrichments

for positive log2FCs are statistically more significant and stronger

A

C
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D

B

Figure 1.
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than in the mass spectrometry experiment (P < 1e-51 for every

mutant, 76–79% of genes with positive log2FCs, Fig 2A and Dataset

EV5). The Ribo-seq approach thereby reinforces the validity of our

integrative analysis and the list of candidates in mESCs.

Characterization of candidate miRNA target genes

Further characterization of our candidates showed that their WT

expression resembled the expression distribution of all expressed

genes with a slight enrichment of highly expressed genes (~ 1,000

TPM) (Fig EV2F). Of the roughly 10,000 interactions, about half

were binding via a 7mer-m8 seed match, while the other two quar-

ters were comparably partitioned between the more potent 8mer

and the less potent 7mer-A1 MRE types (Fig EV2G, Bartel, 2018).

Most candidate interactions target the 30UTR (>80%), the

remaining of which mostly target the CDS and only very few shows

binding to the 50UTRs of target genes (Fig EV2H). High numbers of

seed matching MREs in a given gene are associated with a high

number of peaks identified in the AGO-binding data (Fig 2B). Never-

theless, we did not observe a general correlation between AGO2-

binding signal and the number of MREs/interactions per gene

(Appendix Fig S1). When grouping miRNA targets by number of

interactions, we saw that around 50 genes were predicted to be tar-

geted by only one miRNA, whereas the majority of candidates have

at least two potential MREs, and almost 150 genes showed 20–100
predicted interactions (Fig 2C).

In order to test whether miRNAs can act in a cooperative manner

to increase their repressive potential (Briskin et al, 2020), we com-

pared the number of predicted interactions per gene with the gene’s

differential ribosome occupancy, which indeed revealed a positive

correlation between the two metrics (Pearson’s r = 0.2–0.24,
P < 2.8e−8, Fig 2D).

Next, we scanned the 30UTRs of human ortholog genes for seed

matches from mESC-predicted interactions and associated these con-

served MREs with miRNA expression and AGO-binding data in

human ESCs (Lipchina et al, 2011). For 10% of interactions pre-

dicted in mESCs, we found conserved MREs with associated AGO-

binding, more than 2.5 times as many as for negative control seed

sequences (Fig EV2I). Conserved MREs were three times more likely

to show AGO-binding when the binding site corresponded to an

expressed miRNA as opposed to non-expressed miRNAs (Fig EV2J).

These interactions also showed a mild correlation between miRNA

expression and the AGO-binding signal (Pearson’s r = 0.22, Fig

EV2K). Taken together, a subset of miRNA interactions predicted in

mESCs showed functional conservation in hESCs.

Finally, we compared our candidates with predicted miRNA tar-

gets in mice from the miRTarBase database, which collects miRNA

interactions from the scientific literature and high-throughput exper-

imental data (Chou et al, 2018). Of the 6,422 miRNA targets

described in miRTarBase and filtered for mESC-loaded miRNAs,

only half (362) were recapitulated by our approach, including

Cdkn1a (Wang et al, 2008) and Ahs1l (Kanellopoulou et al, 2015)

genes, but not other validated target genes like Lefty1&2 (Marson

et al, 2008) and Cic (Choi et al, 2015) (Fig 2E). Since Cic was both

absent from miRTarBase, and not previously described as a miRNA

target in mESCs, we validated its upregulation in the miRNA_KO

lines (Fig 2F). We conclude that our integrative analysis adds signif-

icantly to the set of previously described miRNA interactions, by

providing a context-specific window to functional miRNA interac-

tions in mESCs.

Validation of candidate genes by miRNA cluster knockout
in mESCs

MESCs have a specific miRNA expression pattern (Houbaviy

et al, 2003; Ciaudo et al, 2009), with over 50% of all expressed

miRNAs originating from five genomic clusters, including the miR-

290-295 cluster (Fig EV3A) (Calabrese et al, 2007). This cluster is

the most highly expressed (Appendix Fig S2) and its miRNA mem-

bers are among the most abundantly AGO-loaded miRNAs in mESCs

(Fig EV3A and B). Additionally, half of our candidates are predicted

to be targeted by at least one member of this cluster (360 out of 759

genes, Fig EV3A). The miR-290-295 cluster has been shown to be

involved in multiple molecular processes in mESCs (Yuan

et al, 2017). Its depletion results in partially penetrant embryonic

lethality in mice (Medeiros et al, 2011), but is not sufficient to

induce spontaneous differentiation in mESCs (Wang et al, 2017).

We, therefore, generated two independent miR-290-295_KO cell

lines in the same genetic background as the miRNA_KO mESCs (Fig

EV3C) and confirmed the integrity of the deletion at DNA and RNA

levels (Fig EV3C and D). We next profiled the transcriptome of the

miR-290-295_KO mESCs and performed a DE analysis (Dataset

◀ Figure 1. Multi-OMICs integration allows the identification of functional miRNA interactions in mESCs.

A Graphical overview of data sources and integration. Data are integrated on a per-interaction basis, filtered by miRNA loading into Argonaute complexes (AGOs),
AGO2-binding, target upregulation and sequence-based predictions and then scored on a per-interaction and per-gene basis (see Materials and Methods). Scoring
allows for a confidence ranking of interactions and target genes.

B Number of identified functional miRNA target genes for different integrative filtering approaches. The integration and filtering by mutant upregulation, AGO2-
binding, and TargetScan data leads to a restrictive selection of predicted target genes.

C, D Example of integrated data for the Prr13 gene with multiple lines of evidence for functional miRNA interactions. (C) shows AGO2-binding profile and called peaks
as obtained from (Li et al, 2020), along with predicted miRNA binding sites with the AGOs-loading of the corresponding miRNA in WT mESCs (only binding sites for
miRNAs with minimal expression of 10 CPM are shown). (D) shows the misregulation of Prr13 in miRNA_KO mutants (2 biological replicates each) in log2Fold-
Changes (log2FC) compared to WT.

E GO term analysis of gene sets representing miRNA target genes (759), commonly up- (3609), and downregulated (2956) genes. Top eight statistically most significant
terms for each of the three gene groups are shown and highlighted with a gray background. Red background highlights the comparison of the top terms from
miRNA target genes set.

Data Information: miRNA_KOUP and miRNA_KODOWN genes were determined by an adjusted P-value threshold of 0.2 (DESeq2) in at least two miRNA_KO lines. Statistical
significance for GO terms was determined by Enrichr and is indicated in the figure.

4 of 22 EMBO reports 23: e54762 | 2022 � 2022 The Authors

EMBO reports Moritz Schaefer et al



A B C

D E F

Figure 2. Characterization of predicted miRNA interactions.

A Cumulative distribution function of differential ribosome occupancy as detected by ribosome profiling in miRNA_KO mutants versus WT. Of 759 predicted miRNA
target genes, 728 (96%) were detectable in the ribosome profiling data and appear in the plot.

B Boxplot of number of Argonaute2 (AGO2) HEAP peaks for genes grouped by the number of seed match-based miRNA response elements (MRE) in their 30 untranslated
regions (UTRs). “Outliers” with more than 15 peaks are not shown.

C Number of genes with different numbers of filtered MREs/interactions.
D Differential ribosome occupancy in miRNA_KO mutants versus WT of genes grouped by MRE/interaction counts. Groups (colors) correspond to Fig 2C. Shown y-axis

range has been limited and some outliers are hidden.
E Overlap of candidate miRNA targets with previously reported miRNA targets as collected by the miRTarBase database. Selected genes described in the literature are

labeled.
F Top: Immunoblot analysis of CIC in WT, Drosha_KO, Dicer_KO, and Ago2&1_KO mESCs. TUBULIN was used as a loading control. Blot is a representative image of three

biological replicates. Bottom: Bar graph showing quantification of CIC intensity, normalized to TUBULIN and relative to the WT sample in three biological replicates.

Data information: In (A), Student’s t-test was applied to assess the significance for the increase in ribosome occupancy of the 728/759 miRNA targets (P-value < 1e51 for
every mutant). Box plots in (B and D) indicate median as the central band, 25–75%-intervals as box, and 1.5 times the interquartile range as the whiskers. Group sizes in
(B), are 27, 103, 773, 2,566, 3,293 (from left to right; genes with non-detectable HEAP levels are excluded from this plot), group sizes for (D) are indicated in panel (C). Bar
graph in Fig 2F shows the mean intensity of CIC signal � SD normalized to TUBULIN. Values are relative to WT, which was set to 1. P-values were calculated using a Stu-
dent’s t-test comparing each value to the WT. *P-value < 0.05.
Source data are available online for this figure.

� 2022 The Authors EMBO reports 23: e54762 | 2022 5 of 22

Moritz Schaefer et al EMBO reports



EV6). MiR-290-295_KO mESCs exhibited a strongly misregulated

transcriptome with 1,265 up- and 828 downregulated genes (Fig 3

A). In accordance with the differential ribosome occupancy (Fig 2

D), the DE analysis also showed stronger upregulation for targets

with larger numbers of predicted miR-290-295 interactions (Pear-

son’s r = 0.22, P < 3.5e−5, Fig 3B). Candidates from the integrative

analysis showed a strong enrichment for upregulation, with 72% of

predicted genes (260 of 360) exhibiting a positive log2FC (pink

curve in Fig 3C and Dataset EV6). Importantly, our integrative

approach showed a significantly stronger enrichment for upregu-

lated genes compared to when targets are predicted from each

dataset individually (Fig 3C), indicating that integrating multiple

datasets successfully led to a refined set of candidate miRNA

target genes.

miRNAs have been described to often exert only low degrees of

repression on their targets (Lai, 2015). We therefore, repeated our

integrative approach based on lowly upregulated genes, which we

defined as expressed (transcripts per million/TPM > 1) genes with a

log2FC between 0.1 and 0.5 in all three mutants (low-up genes

n = 423). Filtering these genes for evidence of miRNA regulation

(AGO2-binding to miR-290-295 binding sites) indeed led to a minor

enrichment of upregulation (mean log2FC = 0.10, Fig EV3E). Yet,

only a fraction (< 40%) of the distribution showed increased

log2FCs, which were minor. Given the small portion of verifiable

low-impact interactions, we continued to focus on interactions with

more notable regulatory impact, as in our original integrative

approach (Fig 1A).

In conclusion, all datasets contributed predictive power to the

approach and their integration allowed for the most accurate predic-

tion. Furthermore, generation of the miR-290-295_KO mutant cell

lines allowed for the identification of a high-confidence set of candi-

date miR-290-295 target genes.

Deletion of the miR-290-295 cluster combined with predicted
functional interactions identifies novel key transcription factors
regulated by miR-290-295

Out of the 360 predicted miR-290-295 targets, 106 showed a sta-

tistically significant upregulation in the miR-290-295_KO mutant

(Dataset EV6 and Fig 3D). In order to validate these candidates,

we measured their relative expression and observed an increase

in the relative expression of all genes in the miRNA_KO mutants

relative to WT, as well as an increase in the expression of pre-

dicted miR-290-295 targets in the miR-290-295_KO mutant (Fig

EV3F).

Interestingly, 14 of the predicted miR-290-295 targets were anno-

tated as transcription factors (TFs) by the mTFkb database (Sun

et al, 2017) of which three, Tfap4, Dazap2 and Mycn had previously

been implicated in stem cell functions, including pluripotency main-

tenance (Chappell & Dalton, 2013; Sugawara et al, 2020; Papathana-

siou et al, 2021) (Fig 3D). TFs are proteins that primarily bind to

promoter regions to modulate gene transcription (Spitz & Fur-

long, 2012), therefore potentially contributing to the observed differ-

ential gene expression (DGE) that cannot be explained by the

depletion of miRNAs alone. Of all identified TFs, Tfap4 showed the

highest interaction score from our analysis (Fig 3E). Its 30UTR
presents large AGO2-binding peaks in both HEAP and CLIP-seq data

(Bosson et al, 2014; Li et al, 2020) with overlapping MREs for

miR-291a-5p and miR-291a-3p (Fig 3F). This TF has recently been

shown to be required for reprogramming mouse fibroblasts into

pluripotent stem cells (Papathanasiou et al, 2021), but was never

described as regulated by miRNAs. Tfap4 was upregulated in all

miRNA_KO and miR-290-295_KO mESC lines at RNA and protein

levels (Fig 3G and H).

To assess whether this upregulation was caused by the loss of

miR-290-295-mediated repression, we transfected miR-290-295_KO

mESCs with miR-291a-5p and miR-291a-3p mimics individually or

in combination and observed a significant downregulation of TFAP4

protein (Fig 3I). We repeated this experiment in the Drosha_KO

mESCs and observed similar effects, suggesting a regulation of

Tfap4 by specific miR-290-295 cluster miRNAs (Fig EV3G). Finally,

mmu-291a-3p MRE is conserved in humans (hsa-miR-302c-3p), and

we observed AGO2 binding in the 30UTR of human TFAP4 for this

miRNA (Fig 3J), indicating a possible conservation for this miRNA

regulation between human and mouse. Taken together, these data

strongly suggest that Tfap4 is regulated by the miR-290-295 cluster

in mESCs.

TFAP4 regulates important stem cell regulatory pathways

We hypothesized that a substantial number of misregulated genes

observed in the miR-290-295_KO cell line (Fig 3A) may be in part

a result of increased TF levels. To assess the transcriptional regu-

lation of TFAP4 in mESCs, we attempted to rescue its expression

level in miR-290-295_KO using a pool of small interfering RNAs

(siPOOL) targeting Tfap4 mRNA (Fig EV4A). We monitored

TFAP4 levels 36 h after transfection and observed that TFAP4 was

indeed expressed at near WT levels in the miR-290-295_KO mESCs

(Fig 4A). We then sequenced the transcriptome of the siPOOL-

transfected cells and assessed their DE (Dataset EV7), which also

confirmed near-WT Tfap4 RNA levels (Fig 4B). In addition, we

observed a striking number of misregulated genes in the Tfap4

siPOOL samples with a large portion of them being inversely regu-

lated (and therefore rescued back toward WT levels) compared to

the initial DE in miR-290-295_KO mESC lines (Fig 4B). To discrim-

inate and quantify rescued genes, we divided the log2FC observed

in miR-290-295_KO vs. WT by the log2FC observed in the

siPOOL-transfected miR-290-295_KO mESCs and defined rescued

genes to be within the range [−0.5, −2] (orange dots in Fig 4B).

We observed 287 rescued genes for which TFAP4 acted in an acti-

vating and 210 for which it acted in a repressive manner. Thus,

the misregulation of Tfap4 provoked by the loss of miR-290-295

might explain almost a quarter of the DEGs observed in the miR-

290-295_KO mutant.

The binding motif of TFAP4 has been previously described in hu-

mans (Jackstadt et al, 2013). To refine our set of rescue-identified

potential TFAP4-targets, we scanned the genome for potential

TFAP4-binding sites, only keeping rescued genes with a binding site

upstream of the promoter (< 1 kb distance), which resulted in 121

genes (Dataset EV7). We subjected this reduced set to a gene ontol-

ogy analysis (Bindea et al, 2009). Most of the groups identified by

the analysis (i.e., “regulation of cell growth,” “regulation of WNT

signaling pathway”) (Fig 4C and Dataset EV7) are in line with previ-

ous reports of TFAP4 being an important regulator involved in

developmental processes (Wong et al, 2021). TFAP4 has been

shown to activate the Wnt/β-catenin in human cancer and to drive
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cancer malignancy (Song et al, 2018; for review Wong et al, 2021).

Furthermore, Tfap4 has been described to regulate stemness and

proliferation (Jung et al, 2008; Jackstadt et al, 2013). Thus, we con-

clude that TFAP4 might be an essential regulator of stemness and

development.

Restoration of TFAP4 levels is not sufficient to rescue miRNA_KO
mutant phenotypes

In order to further assess the extent to which TFAP4 upregula-

tion contributes to the observed multiple defects of miRNA_KO

mESC lines (Bodak et al, 2017a), we deleted Tfap4 in Drosha_KO

mESC line (Drosha &Tfap4_dKO) (Fig EV4B). The deletion of the

BHLH domain of Tfap4 was validated at the DNA and protein

levels (Fig EV4B and C). As previously observed in Dicer_KO

mESCs (Bodak et al, 2017b), both Drosha_KO and Drosha &

Tfap4_dKO mESC lines present a strong proliferation defect com-

pared to WT mESCs (Fig EV4D), indicating that this defect is

not caused by the upregulation of Tfap4.

We furthermore aimed to examine the pattern of expression of

the pluripotency markers NANOG and OCT4 by immunofluores-

cence. WT mESCs have been shown to express NANOG heteroge-

neously, whereas miRNA_KO mESCs display homogenous

expression of NANOG. In contrast, OCT4 expression remains

◀ Figure 3. Validation of predicted miRNA targets.

A MA plot of the DGE analysis in miR-290-295_KO mESCs.
B DE of predicted miR-290-295 target genes in miR-290-295_KO versus WT for genes grouped by number of filtered miR-290-295 MREs/interactions (similar to

Fig 2C).
C Cumulative distribution function of DE in miR-290-295_KO for different gene groups. Colored log2FoldChange (log2FC) distributions correspond to different identifi-

cation methods for miR-290-295 target genes based on different datasets (Fig 1A). Integrative approach refers to the 360 miR-290-295-targeted genes out of the 759
candidate miRNA target genes that have been identified in the integrative analysis of this paper (Fig 1A). TargetScan targets were filtered for three strongly
expressed members of the miR-290-295 cluster and from these the top 360 (in terms of TargetScan/context++ score) are shown. AGO2-binding targets were first fil-
tered by seed matches to the same three strongly expressed miR-290-295 members, then the 360 targets with the strongest binding signals were selected.
miRNA_KO-upregulated genes are the 3609 miRNA_KOUP genes used in the integrative analysis (see Materials and Methods section).

D Funnel analysis representing the number of genes identified by the integrative approach in each indicated category ending with miR-290-295 regulated transcrip-
tion factors previously implicated in stem cell functions and pluripotency in the scientific literature.

E Interaction scores from our integrative analysis (Fig 1A) for all transcription factors predicted to be targeted by miR-290-295. The number of distinct miRNA binding
sites for the miR-290-295 cluster, mean of interaction score, and maximum of interaction score is shown.

F, G Integrated data for Tfap4 gene show multiple lines of evidence for its regulation by miR-290-295. In addition to the data shown and described in Fig 1C and D, a
second AGO2-binding dataset, based on cross-linking immunoprecipitation and sequencing (CLIP-seq), has been integrated. Response elements for miR-290-295
cluster members are denoted in red and labeled.

H Top: Immunoblot analysis of TFAP4 in WT, Drosha_KO, Dicer_KO, Ago2&1_KO, and miR-290-295_KO mESCs. LAMINB1 was used as a loading control. Blot is a repre-
sentative image of three biological replicates. Bottom: Bar graph showing quantification of CIC intensity, normalized to LAMINB1 and relative to the WT sample in
three biological replicates.

I Top: Immunoblot analysis of TFAP4 after transfection of miRNA mimics (miR-291a-5p, miR-291a-3p and miR-291a-5p + miR-291a-3p combined) in miR-290-
295_KO mESCs. Immunoblots were stained with Coomassie blue dye as a loading control. Blot is a representative image of three biological replicates. Bottom: Bar
graph showing quantification of TFAP4 intensity, normalized to Coomassie and relative to the WT sample in three biological replicates.

J Top: Mature sequences of 5p and 3p miRNAs of the miR-290-295 family and the mature sequence of the human miR-302c-3p. Colors indicate identical seed
sequences. Bottom: AGO2 CLIP-seq shows a peak at the miR-302c-3p binding site on human TFAP4.

Data information: In (A), significant genes in MA plot were determined using an adjusted P-value of 0.1. In H and I, bar graphs show mean intensity of TFAP4 signal �
SD normalized to LAMINB1 or Coomassie. Values are relative to WT or the negative control mimic, which was set to 1. P-values were calculated using a Student’s t-test
comparing each value to the WT. *P-value < 0.05, **P-value < 0.01, ****P-value < 0.0001. Box plot in panel (B) follows the same specification as described in Fig 2B
and D. The sizes of the presented groups are 97, 164, 89, 10 (from left to right).
Source data are available online for this figure.

▸Figure 4. Tfap4 is a key regulator of gene expression in mESCs.

A Immunoblot validation of siPOOL-mediated knock down of Tfap4. TFAP4 levels were compared between untreated WT versus miR-290-295_KO cells treated with a
negative control and a Tfap4-targeted siPOOL. Immunoblots were stained with Coomassie blue dye as a loading control. Blot is a representative image of two biologi-
cal replicates.

B Scatterplot of DEG in miR-290-295_KO control versus siPOOL-Tfap4. SiPOOL experiments were performed in miR-290-295_KO cells and DE was assessed relative to a
negative control siPOOL transfection. Only genes that are statistically significantly differentially expressed in miR-290-295_KO are shown. Genes predicted to be tar-
geted by miR-290-295 are marked in blue. Genes are defined as rescued (orange) if the log2FoldChange-ratio between miR-290-295_KO control and siPOOL-Tfap4 is
in the range [−2, −1/2]. Tfap4 is marked by a red dot.

C Gene ontology analysis of 121 putative TFAP4 target genes using ClueGO. Only members of the top five terms (indicated by different colors) are shown. Colors and
edges indicate associated terms.

D Representative images of NANOG (red) and OCT4 (green) immunofluorescence staining in WT, Drosha_KO and Drosha & Tfap4_KO mESCs. Scale bar = 20 μm.
E Quantification of NANOG fluorescence signal intensity in WT, Drosha_KO and Drosha & Tfap4_KO mESCs show no significant rescue of NANOG intensity in Drosha &

Tfap4_KO.

Data information: In (C), statistical significance for GO terms was determined by ClueGO and is indicated in the figure. In (E), box plots show nuclear intensity of NANOG in
~ 300 cells per genotype. P-values were generated using ordinary one-way ANOVA. ****P-value < 0.0001. In panel (E), the box plot’s central band represents the median rela-
tive intensity for each genotype. The boxes represent the interquartile range and the whiskers represent the maximum andminimum relative intensity values.
Source data are available online for this figure.
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homogenous (Cirera-Salinas et al, 2017; Bakhtina et al, 2021). Both

Drosha_KO and Drosha & Tfap4_dKO mESC lines present a homoge-

nous expression of NANOG compared to the expected heterogeneity

in WT mESCs (Fig 4D and E). OCT4 levels were similar in all cell

lines (Figs 4D and EV4E).

Taken together, our data show that 24% of the perturbations

in gene expression observed upon the loss of the miR-290-295

family are restored by the reduction of TFAP4 levels, suggesting

an important role for TFAP4 in regulation of gene expression in

mESCs. However, the deletion of Tfap4 in Drosha_KO is not suffi-

cient to rescue mutant phenotypes. Our analysis revealed addi-

tional TFs as miRNA target candidates. Some of which, such as

MYCN and DAZAP2, have been previously described with roles in

pluripotency.

A C

B

D E

Figure 4.
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Limitations of the study

While our aim was to determine the functional miRNA targets in

mESCs, a number of factors limits the accuracy of our results.

A substantial part of our integrative analysis was based on tran-

scriptomics data, and while we showed that predicted targets are

also affected at the protein level, we cannot exclude that some

miRNA targets are only affected at the protein level and therefore

not detected by our approach. Nevertheless, our datasets demon-

strate a strong correlation between Ribo-seq and RNA-seq in mESCs

as previously described in a different cellular context (Guo

et al, 2010). The fact that a smaller subset of predicted miRNA tar-

gets does not show an increased ribosome occupancy in some of the

mutants potentially reflects mutant-specific misregulation events

that overlay the effects caused by the loss of miRNAs.

Another aspect to take into account is that not all miRNAs

require the full set of miRNA genes for their biogenesis (Bodak

et al, 2017a, 2017b). Our approach is partially robust against this

phenomenon, as we considered genes to be potential miRNA targets

even if they are upregulated in only a subset of the miRNA_KO

mutants (i.e., in at least two). Furthermore, based on miRNA_KOs’

sRNA-seq data, we identified only very few noncanonical miRNAs

in mESCs and thus believe this manner is of low relevance in our

context.

We consider limitations in the sensitivity of our approach as

the most challenging to detect. Sensitivity limitations are likely

to come with the filters for miRNA_KO-upregulation and AGO2-

binding. Despite being functionally repressed by miRNAs, some

genes might be downregulated in multiple mutants, for example,

due to a miRNA-regulated TF. Additionally, AGO2-binding might

remain undetected due to technical limitations. Here, we relied

on data from a recent publication that employed a tagged ver-

sion of AGO2 to circumvent the immunoprecipitation step, which

can be a major source of variability. The sensitivity and speci-

ficity of thereby identified AGO2-binding sites were reported to

be drastically improved over previous methods (Bosson

et al, 2014; Li et al, 2020). As the high specificity of our

approach stems from the rigorous exclusion of interactions with

limited evidence for functional miRNA interactions, it is chal-

lenging to improve upon the sensitivity without compromising

the specificity.

One further limitation of our system lies in the use of mESCs to

examine miRNA/mRNA interaction at the functional and molecular

level. Due to the low transfection efficiency of mESCs, it was not

feasible to perform the classical luciferase reporter assay as a means

to validate the direct regulation of Tfap4 by members of the miR-

290-295 cluster. Furthermore, performing these experiments in other

cell types, such as the commonly used HEK293T cells, gave results

that are contradictory to those observed in mESCs

(Appendix Fig S3). This is potentially due to the fact that the miR-

290-295 cluster is stem cell specific and may not be functional in

other biological contexts.

Another challenge is that miRNAs are able to regulate their

targets in a combinatorial manner, that is, several miRNAs can

target the same mRNA at the same time (Cursons et al, 2018).

This can lead to increased repression potential as shown in Fig 4

B. Our works also show the importance of miRNAs as essential

players in complex regulatory networks. Therefore, future works

might improve our understanding of miRNA-mediated regulation

by extending miRNA interaction prediction to heterogeneous

molecular network analysis. Here, machine learning models

(Sch€afer & Ciaudo, 2020), including graph-aware deep learning

models (Zhou et al, 2020) might help to overcome some of these

barriers by generating a system’s level understanding of regula-

tion networks.

Our rigorous approach discards many interactions that would be

falsely predicted by other methods, thus leading to a high-

confidence set of direct and functional miRNA interactions in

mESCs. We expect these data will be useful to the scientific commu-

nity and also trust that they will serve as a robust dataset on which

to anchor future machine learning endeavors that can be applied to

many different biological systems.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental models

WT Mouse ESCs (E14Tg2a) ATCC CRL-1821

Drosha_KO mESCs Cirera-Salinas et al (2017) N/A

Dicer_KO mESCs Bodak et al (2017a, 2017b) N/A

Ago2&1_KO mESCs This manuscript N/A

miR-290-295_KO mESCs This manuscript N/A

Drosha & Tfap4_dKO mESCs This manuscript N/A

Recombinant DNA

pX458-sgRNA_Ago1_1 Addgene #73533

pX458-sgRNA_Ago1_2 Addgene #73534

pX458-sgRNA_Ago1_3 Addgene #73535

pX458-sgRNA_Ago1_4 Addgene #73536
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

pX458-sgRNA_miR290-295_1 This manuscript #172709

pX458-sgRNA_miR290-295_2 This manuscript #172710

pX458-sgRNA_miR290-295_3 This manuscript #172711

pLentiCRISPR-EGFP-sgRNA_TFAP4_BHLH_5_1 This manuscript #185054

pLentiCRISPR-mCherry-sgRNA_TFAP4_BHLH_3_2 This manuscript #185055

Antibodies

Rabbit polyclonal anti-CIC ThermoFisher Cat # PA1-46018

Mouse monoclonal anti-LAMINB1 Abcam Cat#Ab16048

Mouse monoclonal Anti-alpha-TUBULIN (clone
DM1A)

Sigma-Aldrich Cat#T6199

Rabbit monoclonal Anti-Drosha (D28B1) Cell Signaling Technology Cat#D28B1

Rabbit polyclonal Anti-Dicer Sigma-Aldrich SAB4200087

Rabbit monoclonal Anti-Ago2 (C34C6) Cell Signaling Technology Cat#2897S

Rabbit monoclonal Anti-Ago1 (D84G10) Cell Signaling Technology Cat#5053

Rabbit polyclonal Anti-Tfap4 Abcam ab223771

Rabbit monoclonal anti-NANOG (D2A3) Cell Signaling Technology Cat#8822

Mouse monoclonal anti-OCT4 BD Biosciences Cat#611202

anti-mouse Alexa Fluor 488 Invitrogen Cat#A32731

anti-rabbit Alex Fluor 568 Invitrogen Cat#A11004

Oligonucleotides and sequence-based reagents

See Table EV1

Chemicals, enzymes and other reagents

Trizol Life Technologies 15596018

ESGRO recombinant mouse LIF protein Millipore ESG1107

DMEM Media Sigma-Aldrich D6429-500ML

Opti-MEM reduced serum media Life Technologies 31985070

Lipofectamine RNAiMax Reagent Life Technologies 13778150

Lipofectamine 2000 Invitrogen 52887

Lipofectamine 3000 Invitrogen 100022052

Penicillin/Streptomycin Sigma-Aldrich P0781-100ML

0.05% Trypsin-EDTA Life Technologies 25300054

PBS1X Life Technologies 10010015

2-ß-mercaptoethanol Life Technologies 31350010

FBS Life Technologies 10270-106

Urea EuroBio GEPURE00-67

NH4HCO3 Sigma-Aldrich 9830

Tris(carboxyethyl)phosphine Sigma-Aldrich 68957

Iodoacetamide Sigma-Aldrich I1149

Sequencing-grade porcine trypsin Promega Cat#V5113

Aqueous formic acid Sigma-Aldrich F0507

Acetonitrile Sigma-Aldrich 271004

Cycloheximide Sigma-Aldrich 1810

Phenol/Choloroform/Isoamyl Alcohol Sigma-Aldrich P2069

Tris-HCl AppliChem A2937

NaCl Merck 1.06404.1000

IGEPAL CA-630 SIGMA I3021-50ML
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

Sodium deoxycholate Sigma-Aldrich 30970

Sodium dodecyl sulfate Sigma-Aldrich L6026

Protease inhibitor cocktail tablets Roche 5892791001

Tween20 Sigma-Aldrich P1379

β-galactosidase tryptic Sigma-Aldrich Cat#4333606

Coomassie VWR 443283M

Actinomycin D Merck A1410

Dimethylsulfoxid Sigma-Aldrich D2650

Proteinase K PanReac AppliChem A3830

Triton-X Roth 9002-93-1

EDTA PanReac AppliChem A2937

Glycine PanReac Applichem A1067

Ammonium persulfate (APS) Sigma-Aldrich A3678

TEMED Sigma-Aldrich T9281

Puromycin dihydrochloride from Streptomyces
alboniger

Sigma-Aldrich P8833

Gelatin from porcine skin Sigma-Aldrich G1890

Acrylamide 4K Solution PanReacAppliChem A1672

mirVana miRNA Mimic negative control Thermo scientific #4464058

mirVana miRNA Mimic mmu-miR-291a-3p Thermo scientific #4464066

mirVana miRNA Mimic mmu-miR-291a-5p Thermo scientific #4464066

siPOOL Tfap4 + negative control siTOOLs Biotech 83383

Software

Targetscan (v7.2) Agarwal et al (2015) http://www.targetscan.org/vert_72/

Cytoscape (3.8.2) Shannon et al (2003) https://cytoscape.org/

ClueGO (2.5.8) Bindea et al (2009) https://apps.cytoscape.org/apps/cluego

STAR (v2.4.2a) Dobin et al (2013) https://github.com/alexdobin/STAR/releases

featureCounts (1.5.0) Liao et al (2014) https://www.rdocumentation.org/packages/Rsubread

DESeq2 (1.18.1) Love et al (2014) https://bioconductor.org/packages/release/bioc/html/
DESeq2.html

Cutadapt (1.8 and 1.13) Martin (2011) https://cutadapt.readthedocs.io/en/stable/

Trim Galore https://github.com/FelixKrueger/
TrimGalore

https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/

Analyst TF (1.5.1) AB Sciex https://omictools.com/analyst-tf-tool

PeptideProphet Keller et al (2002) http://peptideprophet.sourceforge.net/

iProphet Shteynberg et al (2011) http://tools.proteomecenter.org/wiki/index.php?title=
Software:TPP

ProteoWizard (3.0.3316) Chambers et al (2012) http://proteowizard.sourceforge.net/

OpenSWATH Röst et al (2014) http://openswath.org/en/latest/docs/openswath.html

SWATH2stats Blattmann et al (2016) http://bioconductor.org/packages/release/bioc/html/
SWATH2stats.html

MSstats (MSstats.daily 2.3.5) Choi et al (2014) https://bioconductor.org/packages/release/bioc/html/
MSstats.html

Bowtie2 (2.3.4.1) Langmead & Salzberg (2012) http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

Snakemake 5.26.1 Mölder et al (2021) https://github.com/snakemake/snakemake

snakePipes 2.3.1 Bhardwaj et al (2019) https://github.com/maxplanck-ie/snakepipes

snakemake-workflows/rna-seq-star-deseq2 1.0.0 Köster et al (2021) https://zenodo.org/record/4741280
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

NumPy Harris et al (2020) https://numpy.org/

Pandas McKinnery (2010) https://pandas.pydata.org/

SciPy Virtanen et al (2020) https://www.scipy.org/

tqdm https://tqdm.github.io/ https://zenodo.org/record/4663456

scikit-learn Pedregosa et al (2011) https://scikit-learn.org/

scikit-bio http://scikit-bio.org/ https://github.com/biocore/scikit-bio

BioPython Cock et al (2009) http://biopython.org/

gffutils https://github.com/daler/gffutils https://github.com/daler/gffutils

pyBigWig Ram�ırez et al (2016) https://github.com/deeptools/pyBigWig

pyensembl https://github.com/openvax/pyensembl https://github.com/openvax/pyensembl

pybedtools Dale et al (2009) https://github.com/daler/pybedtools

bedtools Quinlan and Hall (2010) https://github.com/arq5x/bedtools2

Matplotlib Hunter (2007) https://matplotlib.org/

Matplotlib-venn https://github.com/konstantint/
matplotlib-venn

https://github.com/konstantint/matplotlib-venn

seaborn (Waskom) https://seaborn.pydata.org/

scikit-plot https://github.com/reiinakano/scikit-plot https://github.com/reiinakano/scikit-plot

pyGenomeTracks Lopez-Delisle et al (2021) https://github.com/deeptools/pyGenomeTracks

UpSetPlot https://github.com/jnothman/UpSetPlot https://github.com/jnothman/UpSetPlot

srna-seq pipeline This manuscript https://github.com/moritzschaefer/srna-seq

snakePipes runs This manuscript https://github.com/moritzschaefer/snakepipelines_pub

Auxiliary library This manuscript https://github.com/moritzschaefer/moritzsphd_pub

Main pipeline producing all data and figures This manuscript https://github.com/moritzschaefer/mesc-regulation_pub

Omics datasets

Drosha_KO mESCs, RNA-seq data Cirera-Salinas et al (2017) GEO: GSE122627

Dicer_KO mESCs, RNA-seq data Bodak et al (2017a, 2017b) GEO: GSE78973

Ago2&1_KO mESCs, RNA-seq data This manuscript GEO: GSE110942

WT Mouse ESCs (E14Tg2a), RNA-seq data Cirera-Salinas et al (2017) GEO: GSE78971

mESC AGOs RIP-seq data Ngondo et al (2018) GEO: GSE80454

Full proteome data of mESC WT and miRNA_KO
mutants

This manuscript ProteomeXchange: PXD014484

Ribosome Profiling data of mESC WT and miRNA_KO
mutants

This manuscript GEO: GSE135577

QuantSeq data of mESC WT and miRNA-290-295_KO
+ sipools

This manuscript GEO: GSE181393

Halo-enhanced AGO2 binding data in mESCs Li et al (2020) GSE139345

CLIP-seq data in hESCs Lipchina et al (2011) SRR359787

iCLIP-seq data in mESCs Bosson et al (2014) GSE61348

Other

Roche Light Cycler 480 Roche

TruSeq stranded total RNA library prep Illumina 20020596

TruSeq Small RNA Library Prep Kit Illumina RS-200-0012

QuantSeq 30 mRNA-Seq Library Prep Kit FWD for
Illumina

Lexogen 15.24

KAPA SYBR FAST for Roche LightCycler 480 Sigma-Aldrich KK4611

iRT-Kit (RT-kit WR) Biognosys Ki-3002-1

TruSeq Ribo Profile Kit Illumina Cat.no. RPHMR12126
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

Ribo-Zero Gold rRNA Removal Kit Illumina Cat.no. MRZG12324

RQ1 RNase-Free DNase Kit Promega M6101

GoScript Reverse Transcriptase Promega A5004

miScript II RT Kit Qiagen Cat No./ID: 218161

DC Protein Assay Reagent Bio-rad 5000113-5

Clarity Western ECL Substrate Bio-rad 1705061

MicroSpin Column SilicaC18 (5-60 μg capacity) Nest Group Inc., Southborough, MA CAT #SEMSS18V

MicroSpin S-400 columns GE Healthcare GE27-5140-01

PVDF membrane Sigma-Aldrich GE10600023

1.5 ml Safe-Lock Tubes Eppendorf 30120086

2 ml Safe-Lock Tubes Eppendorf 30120094

T25: 25 cm2 Filter Flask TPP 90026

T75: 75 cm2 Filter Flask TPP 90076

96-well plate TPP 92096

6-well plate TPP 92006

15 ml CELLSTAR Tubes Greiner 188271

Methods and Protocols

Mouse ESC lines
WT E14, miRNA_KO (Drosha_KO, Dicer_KO, and Ago2&1_KO),

miR-290-295_KO cluster, and Drosha & Tfap4_KO mESC lines (129/

Ola background) were cultured in Dulbecco’s Modified Eagle Media

(DMEM) (Sigma-Aldrich), containing 15% fetal bovine serum (FBS;

Life Technologies) tested for optimal growth of mESCs, 100 U/ml

LIF (Millipore), 0.1 mM 2-ß-mercaptoethanol (Life Technologies)

and 1% Penicillin/Streptomycin (Sigma-Aldrich), on 0.2% gelatin-

coated support in absence of feeder cells. The culture medium was

changed daily. All cells were grown at 37°C in 8% CO2.

CRISPR/Cas9 mediated gene knockout
The generation of Drosha_KO and Dicer_KO mESC lines was previ-

ously described (Cirera-Salinas et al, 2017; Bodak et al, 2017b). The

Ago2&1_KO1 and KO2 cell lines as well as miR-290-295_KO1 and

KO2, were generated using a paired CRISPR/Cas9 strategy on WT

mESCs as described previously (Wettstein et al, 2016). We gener-

ated two independent clones for the Ago2&1_KO line (Ago2&1_KO1,

Ago2&1_KO2) using two different pairs of gRNAs to delete one or

more exons of the Ago1 gene in the previously described Ago2_KO1

mutant mESC line (Ngondo et al, 2018). Ago2_KO1 mESCs

were transfected with pX458-sgRNA_Ago1_1/2 (Addgene #73533

and #73534), and pX458-sgRNA_Ago1_3/4 (Addgene #73535 and

#73536) plasmids (Ngondo et al, 2018). We generated two indepen-

dent miR-290-295_KO mESC lines by transfecting WT E14 mESCs

with pX458-sgRNA_miR290-295_3/2 for KO1 (Addgene #172711,

#172710) and pX458-sgRNA_miR290-295_1/2 for KO2 (Addgene

#172709 and #172710). For the Drosha & Tfap4_KO lines, we gener-

ated one clone by transfecting Drosha_KO mESCs with

pLentiCRISPR-EGFP-sgRNA_TFAP4_BHLH_5_1 and pLentiCRISPR-

mCherry-sgRNA_TFAP4_BHLH_3_2 (Addgene #185054, #185055) to

delete the BHLH domain of TFAP4. After 48 h, the GFP-positive cells

were single cell sorted in 96-well plates. The deletion was genotyped

by PCR using primers listed in Table EV1. All transfected plasmids

are available in the Addgene repository. Positive clones were

expanded and verified by genomic PCR and sequencing.

Extraction of total RNA from mESCs
Total RNA from 1 to 10 million cells was extracted using Trizol

reagent (Life technologies) following the manufacturer’s protocol

(Bodak & Ciaudo, 2016). RNA was quantified using spectrophotome-

try on the Eppendorf Biophotometer. RNA integrity was visually con-

trolled by running 1 μg of total RNA extract on a 1% agarose gel.

RNA-seq
Tru-seq

Prior to library preparation, the quality of isolated RNA was deter-

mined with a Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Up

to 2 μg of polyA purified RNA was used for the library preparation

using the TruSeq paired-end stranded RNA Library Preparation Kit

(Illumina, San Diego, CA, USA) according to the manufacturer’s rec-

ommendations. The library preparation and sequencing (Illumina

HiSeq 2000) were performed by the FGCZ (Functional Genomic Cen-

ter, Zurich). The paired-end sequencing generated about 2 × 60 mil-

lion reads per library.

QuantSeq

Total RNA of 500 ng was used for library preparation using the

QuantSeq 30 mRNA-Seq Library Prep Kit FWD for Illumina (Lexo-

gen) according to the manufacturer’s recommendations. Sequencing

was performed by the FGCZ (Functional Genomic Center, Zurich)

on the Illumina NextSeq500 platform. Single-end sequencing gener-

ated at least 20 million reads per library.

Small RNA-seq
The Illumina TruSeq Small RNA Sample Prep Kit (Illumina, San

Diego, CA, USA) was used with 1 μg of total RNA for the construc-

tion of sequencing libraries by the Functional Genomic Center
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Zurich (Switzerland). Sequencing was performed on an Illumina

Hiseq 2500 sequencer and generated between 20 and 30 million of

single reads of 50 bp per library.

Genomic DNA extraction and PCR
Genomic DNA was extracted from 5 × 105 mESCs using Phenol/

Chloroform/Isoamyl Alcohol (Sigma-Aldrich). Each PCR reaction

was performed using 50–100 ng of genomic DNA. Genotyping PCR

primer sequences are listed in Table EV1.

Quantitative real-time PCR analysis of miRNAs
For miRNA quantification, 1 μg total RNA was reverse transcribed

using the miScript II Reverse Transcription kit (Qiagen) according to

the manufacturer’s instructions (Jay & Ciaudo, 2013). After reverse

transcription, cDNA products were diluted in distilled water (1:5).

Quantification of expression levels was performed on a Light Cycler

480 (Roche) using 2 μl of the diluted products, the KAPA SYBR

FAST qPCR kit optimized for Light Cycler 480 (KAPA Biosystems),

miScript Universal Primer (Qiagen) and a primer for the targeted

miRNA. Differences between samples and controls were calculated

based on the 2−ΔΔCT method using RNU6 control primer (Qiagen) as

normalizer. Quantitative RT-PCR assays were performed in triplicate

(Jay & Ciaudo, 2013). All primers are listed in Table EV1.

Quantitative real-time PCR analysis mRNAs
For mRNA expression evaluation, 1 μg total RNA was DNase treated

using RQ1 DNase (Promega), according to the manufacturer’s proto-

col. DNase-treated RNA was then reverse transcribed using GoScript

Reverse Transcriptase (Promega) after incubation with random

primers. cDNA products were diluted in distilled water (1:5). Quan-

tification of expression levels was performed on a Light Cycler 480

(Roche) using 2 μl of the diluted products, the KAPA SYBR FAST

qPCR kit optimized for Light Cycler 480 (KAPA Biosystems) using

gene-specific primers. Relative expression levels for each gene were

calculated based on the 2−ΔΔCT method using Gapdh or Rrm2 as a

normalizer. Quantitative RT-PCR assays were performed in triplicate

(Jay & Ciaudo, 2013). All primers are listed in Table EV1.

Western blot analysis
Whole-cell extracts were obtained by lysing the cells in RIPA buffer

(50 mM Tris–HCl pH 8, 150 mM NaCl, 1% IGEPAL CA-630 (w/v),

0.5% sodium deoxycholate (w/v), 0.1% sodium dodecyl sulfate (w/

v) and protease inhibitors). Protein concentrations were determined

by Bradford assay (Bio-Rad Laboratories). The extracts were sepa-

rated on SDS-PAGE gels and transferred to polyvinylidene fluoride

membranes (Sigma Aldrich). After blocking (5% milk in TBST:

50 mM Tris-Cl, pH 7.5. 150 mM NaCl, 0.1% Tween20), membranes

were incubated with primary antibodies diluted in blocking solution

overnight at 4°C. Membranes were incubated with one of the follow-

ing antibodies overnight: DROSHA antibody 1:2,000 (Cell Signaling;

Cat#D28B1), DICER antibody 1:2,000 (Sigma Aldrich; SAB4200087),

AGO1 antibody 1:1,500 (Cell Signaling; Cat#5053), AGO2 antibody

1:1,500 (Cell Signaling; Cat#2897S), TFAP4 antibody 1:1,000

(ab223771; Abcam), TUBULIN antibody 1:10,000 (Sigma Aldrich;

Cat#T6119), CIC antibody 1:1,000 (Invitrogen: Cat#PA146018),

LAMINB1 antibody 1:5,000 (Abcam: Cat#Ab16048). For secondary

antibody incubation, the anti-rabbit or anti-mouse IgG HRP-linked

antibody (Cell Signaling Technology) was diluted to 1:10,000.

Immunoblots were developed using the SuperSignal West Femto

Maximum Sensitivity Substrate (Invitrogen) and imaged using the

ChemiDoc MP imaging system (Bio-Rad Laboratories). TUBULIN

levels or the Coomassie brilliant blue staining of the membrane are

used as loading controls.

ImageJ was used to quantify band intensity for each sample,

which was then normalized to the Coomassie, TUBULIN, or

LAMINB1 loading control. Band intensities in the mutants were rep-

resented as a fold-change relative to the wild-type sample. Three

biological replicates were used to perform the quantification. Paired

t-tests between the control and each sample were used to assess sta-

tistical significance.

Transfection of mESCs with miRNA mimics
The 100,000 mESCs (miR-290-295_KO cell line or Drosha_KO) were

seeded 24 h prior to transfection. Cells were transfected with miRNA

mimics (Horizon, PerkinElmer) for miR-291a-5p (20 nM final concen-

tration), miR-291a-3p (20 nM final concentration), or a combination

of both (10 nM final concentration, each) using the Lipofectamine

RNAiMax transfection reagent (Invitrogen), according to the manu-

facturer’s protocol. A negative control miRNA mimic was also used

(Table EV1). Media were changed 16 h after transfection and cells

were harvested 36 h after transfection for protein extraction.

mESC transfection with siPOOLs
The 200,000 mESCs (miR-290-295_KO and Drosha_KO cell lines)

were seeded 24 h prior to transfection. Cells were transfected with

siPOOLs (siTOOLs Biotech) against Tfap4 or a negative control

siPOOL at a final concentration of 5 nM using the Lipofectamine

RNAiMax transfection reagent (Invitrogen), according to the manu-

facturer’s protocol. Media were changed after 24 h of transfection

and cells were harvested after 36 h of transfection using 0.05%

Trypsin for further processing (RNA and protein extraction).

Proliferation assay
Proliferations assays were performed as previously described by

(Cirera-Salinas et al, 2017) in triplicate after 50,000 WT (E14),

Drosha_KO, or Drosha & Tfap4_KO cells were seeded into gelatin-

coated 6-well plates. The number of cells per ml was plotted using

Prism. Two-way ANOVA was used to assess significance between

different genotypes.

Immunofluorescence
The 100,000 E14 mESCs per well were seeded on fibronectin (1 μg/
ml in PBS) coated coverslips into a 6-well plate on the day before

the experiment. Washed cells were fixed with 3.7% formaldehyde

in 1 x PBS for 10 min. After fixation, cells were washed two times

with 1 x PBS at RT. Cells were permeabilized using CSK buffer

(0.5% Triton X-100, 10 mM HEPES, 100 mM NaCl, 3 mM MgCl2,

and 300 mM Sucrose) for 4 min on ice followed by two washes with

1 x PBS at RT. Cells were blocked with 1% BSA in 1 x PBS-T (1 ×
PBS + 0.1% Tween 20) for 20 min at RT before incubating with the

primary antibody at RT for 1 h. The following primary antibody

concentrations were used: NANOG (D2A3) antibody 1:500 (Cell Sig-

naling; Cat#8822), OCT4 antibody 1:500 (BD Biosciences;

Cat#611202). Afterward, coverslips were washed three times with 1

× PBS-T and incubated with a fluorochrome-conjugated secondary

antibody for 1 h at RT in the dark. The following secondary
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antibodies were used: anti-mouse Alexa Fluor 488 1:2,000 (Invitro-

gen; Cat#A32731), anti-rabbit Alex Fluor 568 1:2,000 (Invitrogen,

Cat#A11004). Prior to a counterstaining with DAPI (100 ng/ml) for

5 min at RT, the cells were washed two times with 1 × PBS-T and

once with 1 × PBS. Coverslips were mounted using Vectashield onto

clean microscope slides, sealed with nail polish, and stored at

−20°C until imaging with a DeltaVision Multiplex microscope at the

ScopeM facility. The images were analyzed using Cell Profiler.

Proteome analysis by SWATH-MS
TheMS data acquisition (SWATH-MS and DDAmode) was performed

on TripleTOF 5600 mass spectrometer equipped with a NanoSpray III

source and operated by Analyst TF 1.5.1 software (AB Sciex). The

samples were injected onto a C18 nanocolumn packed in-house

directly in a fused silica PicoTip emitter (New Objective, Woburn,

MA, USA) with 3-μm 200 �A Magic C18 AQ resin (Michrom BioRe-

sources, Auburn, CA, USA) and reverse phase peptide separation was

performed on a NanoLC-Ultra 2D Plus system (Eksigent–AB Sciex,

Dublin, CA, USA). The total acquired data were analyzed using a

pipeline configured on the Euler-Portal platform at ETH Zurich.

Sample preparation and protein digestion

The four distinct mESC lines (i.e., WT, Drosha_KO, Dicer_KO, and

Ago2&1_KO) were prepared in biological duplicates (e.g., two inde-

pendent CRISPR/Cas9 mutants), totaling 10 distinct samples for pro-

teomic analysis. Corresponding cells from each 10 cm plate, were

washed and scraped with ice-cold phosphate-buffered saline (PBS

1X). Then, their pellets (~ 5 × 106 cells) collected by centrifugation

at 1000 rpm, were frozen in liquid nitrogen and left at −80°C. The
cell pellets were lysed on ice using a lysis buffer containing 8 M urea

(EuroBio), 50 mM NH4HCO3 (Sigma-Aldrich), and complete pro-

tease inhibitor cocktail (Roche). The mixture was sonicated at 4°C
for 5 min using a VialTweeter device (Hielscher-Ultrasound Technol-

ogy) at the highest setting and centrifuged at 800 x g at 4°C for

15 min to remove the insoluble material. An equal volume of 200 μl
per sample was used for protein digestion, prior to which all samples

were reduced by 5 mM tris(carboxyethyl)phosphine (Sigma-

Aldrich), and alkylated by 30 mM iodoacetamide (Sigma-Aldrich).

The samples, adjusted to 1.5 M UREA, were digested with

sequencing-grade porcine trypsin (Promega) at a 1:50 protease/pro-

tein ratio overnight at 37°C in 100 mM NH4HCO3 (Sigma-Aldrich).

The next day, the peptide digests were purified on MicroSpin Column

SilicaC18 (5–60 μg capacity, Nest Group Inc., Southborough, MA),

and solubilized in 50 μl of 0.1% aqueous formic acid (FA) with 2%

acetonitrile (ACN). The final peptide amount was determined using

Nanodrop ND-1000 (Thermo Scientific), and the samples were

adjusted to 1 μg/μl of peptide concentration. Prior to MS injection,

an aliquot of retention time calibration peptides from an iRT-Kit (RT-

kit WR, Biognosys) was spiked into each sample at a 1:20 (v/v) ratio

to correct relative retention times between acquisitions, and each

sample injected into the duplicates (i.e., technical replicates).

SWATH assay library generation

The samples were recorded in data-dependent acquisition (DDA)

mode to generate a mouse SWATH assay library, which is used for

targeted data extraction from SWATH-MS recorded data. Fifteen

mESC samples recorded in DDA mode were combined with 65 avail-

able DDA files originating from fractionated mouse liver peptide

digest to create a common mouse assay library. The nanoLC gradi-

ent used for all acquired DDA data was linear from 2 to 35% of

buffer B (i.e., 0.1% formic acid in ACN) over 120 min at a 300 nl/

min flow rate. Electrospray ionization was performed in positive

polarity at 2.6 kV, and assisted pneumatically by nitrogen (20 psi).

Mass spectra (MS) and tandem mass spectra (MS/MS) were

recorded in “high-sensitivity” mode over a mass/charge (m/z) range

of 50 to 2,000 with a resolving power of 30,000 (full width at half

maximum [FWHM]). DDA selection of the precursor ions in a sur-

vey scan of 250 ms was as follows: the 20 most intense ions (thresh-

old of 50 counts) corresponding to 20 MS/MS-dependent

acquisitions of 50 ms each, charge state from 2 to 5, isotope exclu-

sion of 4u, and precursor dynamic exclusion of 8 s leading to a max-

imum total MS duty cycle of 1.15 s. External mass calibration was

performed by injecting a 100-fmol solution of β-galactosidase tryp-

tic. Raw data files (.wiff) were centroided, and converted into

mzXML as a final format using openMS.

The converted data files were searched in parallel using the

search engines X! TANDEM Jackhammer TPP (2013.06.15.1 -

LabKey, Insilicos, ISB) and Comet (version “2016.01 rev. 3”) against

the ex_sp 10090.fasta database (reviewed canonical Swiss-Prot

mouse proteome database, released 2017.12.01) appended with

common contaminants and reversed sequence decoys (Elias &

Gygi, 2007) and iRT peptide sequence. The search parameters were

conducted using Trypsin digestion and allowing two missed cleav-

ages. Included were ‘Carbamidomethyl (C)’ as static and ‘Oxidation

(M)’ as variable modifications. The mass tolerances were set to

50 ppm for precursor ions and 0.1 Da for fragment ions. The identi-

fied peptides were processed and analyzed through the Trans-

Proteomic Pipeline (TPP v4.7 POLAR VORTEX rev 0, Build

201403121010) using PeptideProphet (Keller et al, 2002), iProphet

(Shteynberg et al, 2011), and ProteinProphet scoring. Spectral

counts and peptides for ProteinProphet were filtered at FDR of

0.009158 mayu-protFDR (=0.998094 iprob). The raw spectral

libraries were generated from all valid peptide spectra through an

automated library generation workflow on the Euler-Portal platform

as described earlier (Schubert et al, 2015). The final generated spec-

tral library contained high-quality MS assays for 37,988 tryptic pep-

tides from 4,107 mouse proteins.

SWATH-MS measurement and data analysis

Reverse phase peptide separation during SWATH-MS acquisition

was performed with a linear nanoLC gradient from 2 to 35% of

buffer B (0.1% formic acid in ACN) over 60 min at a 300 nl/min

flow rate. Quadrupole settings in SWATH acquisition method were

optimized for the selection of 64 variable-wide precursor ion selec-

tion windows as described earlier (Röst et al, 2014). An accumula-

tion time of 50 ms was used for 64 fragment-ion scans operating in

high-sensitivity mode. At the beginning of each SWATH-MS cycle, a

TOF MS scan (precursor scan) was also acquired for 250 ms at high-

resolution mode, resulting in a total cycle time of 3.45 s. The swaths

overlapped by 1 m/z, thus covering a range of 50–2,000 m/z. The

collision energy for each window was determined according to the

calculation for a charge 2+ ion centered upon the window with a

spread of 15. Raw SWATH data files were converted into the

mzXML format using ProteoWizard (version 3.0.3316) (Chambers

et al, 2012), and data analysis was performed using the Open-

SWATH tool (Röst et al, 2014) integrated in the Euler-Portal
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workflow. The OpenSWATH workflow input files consisted of the

mzXML files from the SWATH-acquired data, the TraML assay

library file created above, and the TraML file for iRT peptides.

SWATH data were extracted with 50 ppm around the expected mass

of the fragment ions and with an extraction window of +/−300 s

around the expected retention time after performing iRT peptide

alignment. The runs were subsequently aligned with a target FDR of

0.01 and a maximal FDR of 0.1 for aligned features. In the absence

of a confidently identified feature, the peptide and protein intensities

were obtained by integration of the respective background signal at

the expected peptide retention time. The recorded feature intensities

after OpenSWATH identification were filtered through R/Bioconduc-

tor package SWATH2stats (Blattmann et al, 2016) to reduce the size

of the output data and remove low-quality features. The filtered

fragment intensities were introduced into the R/Bioconductor pack-

age MSstats (version MSstats.daily 2.3.5), and converted to a quan-

tification matrix of relative protein abundances using functions of

data pre-processing, quality control of MS runs, and model-based

protein quantification (Choi et al, 2014). Quantification matrices

were used as an input data template to perform further differential

analysis by one-way ANOVA test for multiple-group comparison. A

Tukey’s HSD post hoc test revealed significant changes across con-

trol samples (WT) and three different cell line clones (i.e.,

Drosha_KO, Dicer_KO, and Ago2&1_KO). The raw counts and differ-

ential expression data are available as excel files (Dataset EV4).

Ribosome profiling and data analysis
Ribosome profiling sample/library preparation and sequencing

Ribosome profiling and parallel RNA-seq were performed in duplicate

for WT, Drosha_KO, Dicer_KO, and Ago2&1_KO mESC lines, follow-

ing the TruSeq Ribo Profile Kit (RPHMR12126, Illumina) with minor

modifications (see below), using one 15 cm dish of confluent mESCs

per replicate. Cells were briefly pretreated with cycloheximide

(0.1 mg/ml) for 2 min at 37°C and then immediately harvested by

scraping down in ice-cold PBS (supplemented with cycloheximide).

The cell pellet was collected by brief centrifugation, snap-frozen in

liquid nitrogen, and stored at −80°C. From the cell pellets, lysates

were prepared and ribosome-protected mRNA fragments were gener-

ated by RNase I digestion as previously described using 5 units of

RNase I per OD260 (Castelo-Szekely et al, 2019). Of note, before

RNase I digestion, mESC lysates were spiked-in with Drosophila S2

cell lysates prepared using the same lysate buffers (spike-in ratio

15mESC:1S2, based on OD260 measurements). After digestion,

footprint-containing monosomes were purified via MicroSpin S-400

columns (GE Healthcare) and footprints were purified with miRNeasy

Mini kit (217004 Qiagen). Fragmented RNA of 5 μg was used for ribo-

somal RNA removal using Ribo-Zero Gold rRNA Removal Kit

(MRZG12324 Illumina) according to Illumina’s protocol for TruSeq

Ribo Profile Kit (RPHMR12126, Illumina). Footprints were excised

from 15% urea-polyacrylamide gels (with single-strand RNA oligonu-

cleotides of 26 nt and 34 nt as size markers for excision). Sequencing

libraries were generated essentially following the Illumina TruSeq

Ribo Profile protocol. cDNA fragments were separated on a 10%

urea-polyacrylamide gel and gel slices between 70 and 80 nt were

excised. The PCR-amplified libraries were size-selected on an 8%

native polyacrylamide gel (footprint libraries were at ~ 150 bp). From

the same initial extracts (containing the S2 lysate spike-in), parallel

RNA-seq libraries were prepared essentially as described (PMID

30982898) and following the Illumina protocol. Briefly, after total

RNA extraction using miRNeasy RNA Extraction kit (Qiagen), riboso-

mal RNA was depleted using Ribo-Zero Gold rRNA (Illumina), and

sequencing libraries were generated from the heat-fragmented RNA

as previously described (Castelo-Szekely et al, 2019). All libraries

were sequenced in-house (Lausanne Genomic Technologies Facility)

on a HiSeq2500 platform.

Ribosome profiling data analysis

Initial analysis, including mapping, and quantification of mRNA and

footprint abundance, were performed as previously described

(Castelo-Szekely et al, 2017). Briefly, purity-filtered reads were

adapters and quality trimmed with Cutadapt v1.8 (Martin, 2011).

Only reads with the expected read length (16 to 35 nt for the ribo-

some footprint and 35 to 60 nt for total RNA) were kept for further

analysis. Reads were filtered out if they mapped to Mus musculus

ribosomal RNA (rRNA) and transfer RNA (tRNA) databases

(ENSEMBL v91, (Cunningham et al, 2019)) using bowtie2 v2.3.4.1

(Langmead & Salzberg, 2012). The filtered reads were aligned

against Mus musculus transcripts database (ENSEMBL v91) using

bowtie2 v2.3.4.1. Finally, the remaining reads were mapped against

D. melanogaster transcript database (ENSEMBL v78). Reads map-

ping to transcripts belonging to multiple gene loci were filtered out.

Reads were then summarized at a gene level using an in-house

script and mouse samples were then normalized by using the corre-

sponding fly spike-in read counts. Differential ribosome occupancy

was assessed by DESeq2. The spike-in normalized counts and differ-

ential expression analysis results are available in Dataset EV5.

RIP-seq analysis
RIP-seq data were obtained from (Ngondo et al, 2018). Reads were

trimmed using Cutadapt 1.13 (Martin, 2011) with adapter

TGGAATTCTCGGGTGCCAAGG and arguments “-m 14 -M 40” and

aligned to the mouse genome (GRCm38 primary assembly, annota-

tion: GENCODE vM20) using STAR 2.4.2a (Dobin et al, 2013) with

arguments “--outFilterMismtachNoverLmax 0.05” to allow for 0 mis-

matches for reads < 20 bp. Next, reads were counted using subread-

featureCounts 1.5.0 (Liao et al, 2014) with arguments “-f -O -s 1 --

minOverlap 17” for miRbase v21 (Griffiths-Jones et al, 2006). Differ-

ential loading (as compared to expression) was assessed using

DESeq2 (v. 1.18.1) comparing AGO2 and AGO1 RIP-seq versus Input

(WT sRNA-seq).

RNA-seq analysis
Raw and normalized read counts for both genes and transcripts

were computed by the RNA-seq pipeline from snakePipes 2.3.1

(Bhardwaj et al, 2019) using the ENSEMBL GRCm38.98 primary

assembly and annotation. The following command line arguments

were passed “--trim --trimmer trimgalore --trimmerOptions ‘--

illumina --paired’ --mode ‘alignment,alignment-free,deepTools_qc --

fastqc”. The RNA-seq pipeline was further run for each miRNA_KO

mESC line with an according sample sheet and the “--sampleSheet”

option to perform differential gene expression (DGE) analysis.

Briefly, the pipeline employs TrimGalore/Cutadapt (Martin, 2011),

STAR (Dobin et al, 2013), featureCounts (Liao et al, 2014), and

DESeq2 (Love et al, 2014) to produce read counts and DGE data on

a per-gene basis. Salmon (Patro et al, 2017) was employed to derive

per-transcript expression.
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QuantSeq analysis
In accordance with the QuantSeq manual, first, adapters were

trimmed using TrimGalore with arguments “--stringency 3

--illumina” then the polyA tail was trimmed using TrimGalore with

argument “--polyA.” Next, snakePipes (Bhardwaj et al, 2019) RNA-

seq pipeline was run with the arguments “--libraryType 1

--featureCountOptions ‘--primary’ --mode alignment, alignment-free,

deepTools_qc.” The RNA-seq pipeline was further run for miR-290-

295_KO mESC line with according to sample sheet and the addi-

tional “--sampleSheet” option to perform DGE analysis.

Integration of multi-OMICs miRNA interaction data
Retrieval and preparation of TargetScan score

Conserved and non-conserved site context score tables were down-

loaded from TargetScan mouse 7.2 (Agarwal et al, 2015) and con-

catenated. The weighted context++ score from these data

(explained in (Agarwal et al, 2015) and on the TargetScan website)

is referred to as TargetScan score in this manuscript.

AGO2 binding data analysis

AGO2 binding peaks were downloaded from GEO (GSE139345) as pro-

vided by (Li et al, 2020) andmiRNA seedmatches (7merA1, 7merm8, and

8mer; 6mers were discarded) in peaks were identified for all mouse

miRNAs (miRBase v21 (Griffiths-Jones et al, 2006)). Seed matches were

then mapped to gene regions to further associate them with a gene ID (if

applicable) and the region type (50UTR, CDS, or 30UTR).

Integration of AGO2 binding, TargetScan, miRNA loading, and differen-

tial gene expression in miRNA_KO mESC lines

AGO2 binding data and TargetScan scores were preprocessed as

explained above and reduced such that there was only a single entry

for each (gene, region_type, miRNA, seed_match_type)-tuple. In the

rare cases of duplicates, the associated scores (peak size for AGO2

binding data and context++ score for TargetScan interactions)

were computed as the exponentially decaying weighted

sum (i.e., 1�max_valueþ 1
2 � second_value� 1

4 � third_value).
Next, prepared TargetScan scores were joined on the set of unique

keys (gene, region_type, miRNA, seed_match_type) such that data

entries without a match in one of the datasets were kept with miss-

ing data fields set to 0 (as in an outer-join operation). The result

was stored as integrated, unfiltered set of interactions.

Filtering and scoring of integrated interaction data

Filtering was performed in three steps. First, interactions with an

AGO2-binding value of 0 (which was the case for regions without

detected peaks) were deleted. Next, interactions where the corre-

sponding miRNA was loaded in Argonautes with less than 10 counts

per million (CPM) in WT mESCs were deleted. Finally, interactions

were deleted where the corresponding mRNA was not in the set of

commonly upregulated genes (miRNA_KOUP). This set was defined

as those genes that passed a significance threshold (adj. P-

value < 0.2, which roughly corresponds to a P-value of 0.05) with a

positive log2FC (>0) in at least two miRNA_KO mutants. The loose

significance threshold was chosen to avoid discarding functional

miRNA targets with low levels of upregulation and we found it

acceptable due to the increase in statistical power through the com-

bination of multiple mutants. Filtering for negative TargetScan

scores (< 0) was performed for interactions in the 30UTR

comparison, whereas interactions in the 50UTR and CDS were dis-

carded if the MRE showed the weak 7mer-A1 seed type.

To allow for a confidence ranking of interactions, the mean of

the four feature scores WT miRNA loading, AGO2 binding, TargetS-

can score, and mutant upregulation was used as the interaction

score. The four scores were produced by scaling to [0, 1] after

applying the log2 to the miRNA loading and AGO2 binding peak

enrichment. The mutant upregulation was computed as count of

mutants with statistically significant upregulation (adj. P-value

< 0.1, log2(fold-change) > 0.5).

To allow for a ranking of genes, such that miRNA targets with the

highest confidence are ranked highest, interaction scores were

grouped and combined on a per-gene basis in the following manner:

the mutant upregulation score (which is logically the same for all

interactions of the same gene) was added to the geometric mean of

the maximum and of the sum of the three summed miRNA-associated

features. Here, the rationalewas to rank genes higher if they were sub-

ject to larger numbers of interactions, however, to avoid high ranking

of genes with a large number of interactions with low scores, the geo-

metric mean dampened their score while favoring genes with large

numbers of interactions and interactions with high scores.

Validation of predictions and integrative approach

The differential expression observed in the miR-290-295_KO was

used as the basis to compare log2FC distributions for different sets

of genes using CDF plots, distribution mean differences, and Kol-

mogorov–Smirnov tests. The control set of expressed genes was

established using a TPM-expression filter of 1. The gene set reflect-

ing the integrative approach of this paper was defined by filtering

the 360 miR-290-295-targeted genes out of the 759 miRNA target

genes that have been identified in the integrative analysis of this

paper (Fig 1B). The other gene sets were generated and compared

to demonstrate the relevance of the integration of multiple datasets

for the high prediction accuracy. Where applicable, gene sets were

purposefully sized to contain the same number of genes (360) as the

miR-290-295-filtered integrative approach gene set. Except from the

integrative approach gene set, for the other gene sets miR-290-295-

filtering was performed more stringently such as to only include the

strongly expressed members miR-291-3p, miR-294-3p, miR-295-3p,

which all share the same seed sequence. The TargetScan targets

were filtered for those three strongly expressed members of the

miR-290-295 cluster and genes were ranked by TargetScan interac-

tion scores (context++ score). AGO2-binding targets were first fil-

tered by seed matches to the three miR-290-295 members. Then the

genes with the strongest AGO2-binding signals were selected. The

miRNA_KO-upregulated genes were the commonly upregulated

genes used in the integrative analysis and defined in the Methods

section. Filtered-up genes were the miRNA_KOUP genes filtered for

the three miR-290-295 members. The Interaction score-based set is

based on target gene grouping of unfiltered, but scored (interaction

score as previously defined) interactions, and ranking of the genes

using the following aggregation: max Sð Þ þ log10 Sj jð Þ þ 1ð Þ � ∑s= Sj j,
where S is the set of interaction scores for all interactions of a given

gene. Lowly upregulated genes are defined as genes with a minimal

expression of 1 TPM and a log2FC between 0.1 and 0.5 in all three

mutants. Low-up genes + integrative filtering used the same set

of genes but filtered for AGO2-binding to one of miR-290-295

members.
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HEAP and CLIP coverage analyses in mESCs and hESCs
AGO2-binding data in mESCs (Halo-enhanced AGO2-pulldown

(HEAP) and iCLIP-seq approaches) were obtained from GEO

(GSE61348: Bosson et al, 2014; GSE139345: Li et al, 2020). For the

iCLIP-seq data, peaks were lifted from mm9 to mm10 annotation.

AGO2 PAR-CLIP-seq data in hESCs were obtained from SRA

(SRR359787: Lipchina et al, 2011) and processed using the snake-

Pipes ChIP-seq pipeline with default parameters and the GRCh38

Gencode 29 annotation. HESC miRNA expression was obtained from

(Hinton et al, 2014). Human-mouse ortholog genes were obtained

from ENSEMBL BioMart (Smedley et al, 2015).

Conservation of miRNA interactions in human
The hESC PAR-CLIP data (Lipchina et al, 2011) is of comparably

low resolution and was likely not to lead to representative peak call-

ing results. Instead, we used this data to test whether our mESC-

predicted interactions showed conservation through AGO2-binding

in hESCs. Potentially conserved interactions were identified by scan-

ning for interaction-specific seed matches in the 30UTRs of the inter-

action’s human gene orthologs. Such identified potentially

conserved interactions were associated with the number of PAR-

CLIP read counts at the human MRE and with the hESC miRNA

expression (Hinton et al, 2014) on a per-miRNA family basis (given

our seed-based analysis). Three different negative control sets were

used: (i) MREs/interactions that were lacking miRNA expression in

hESCs, (ii) MREs in human orthologs matching randomly chosen

seed sequences (from the set of seeds from mESC predicted interac-

tions), (iii) MREs in human orthologs matching scrambled seed

sequences. MREs identified in human that corresponded to the same

seed sequence found in the mouse ortholog along with miRNA

expression above 10 CPM and detected AGO2-binding signal at the

MRE site were considered as functionally conserved.

Analysis of cooperative miRNA effects
The number of MREs/interactions per gene was correlated with dif-

ferent metrics including the number of HEAP peaks, the mean HEAP

peak intensity, and differential ribosome occupancy. These correla-

tion analyses were performed for two groups of interactions. Filtered

interactions as obtained from our integrative analysis and unfiltered

interactions as derived from TargetScan interactions (but still fil-

tered for mESC miRNA loading).

The number of MREs/interactions was also associated with the

upregulation observed in miR-290-295_KO on a per-gene basis,

where interactions were filtered for miR-290-295 family members.

Gene ontology analysis of predicted miRNA targets
Predicted miRNA targets, commonly upregulated (described above)

and commonly downregulated (defined same as their upregulation

counterpart, but with negative log2FCs) genes were subjected to a

gene set enrichment analysis using the gseapy python library on the

gene set libraries BioPlanet 2019, WikiPathways 2019, KEGG 2019,

GO Biological Processes 2021, GO Cellular Components 2021 and

GO Molecular Function 2021. The visualization was performed cus-

tomarily with seaborn and matplotlib.

Gene ontology analysis of Tfap4 targets
Potential Tfap4-targets (as determined from their degree of rescue in

the siPOOL-treated cells) were further filtered for TFAP4-binding

sites in the genome. The PWMScan website (Ambrosini et al, 2018)

was used with default parameters. The GRCm38/mm10 genome was

selected and scanned for human CIS-BP TFAP4 binding motifs. The

resulting bed file was downloaded and used to select those genes

that had a binding motif closely upstream to their transcription start

site (< 1 kb distance). Gene ontology analysis was performed for

these genes using ClueGO (Bindea et al, 2009) with the following

options: Network specificity was set to medium-1, GO term fusion

was enabled, only pathways/terms with PV < 0.05 were shown

and terms from WikiPathways, KEGG, GO Biological Processes, GO

Cellular Components and GO Molecular Function from 2021/05/13

were used.

Custom data analyses, visualizations
Data analyses and visualizations were realized as described in the

last sections using bash and python scripting, organized in a snake-

make pipeline (Mölder et al, 2021). PCA analysis was performed

using scikit-learn (Pedregosa et al, 2011).

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• RNA-seq data: Gene Expression Omnibus for Ago2&1_KO mESCs

GSE110942 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE110942)

• QuantSeq data: Gene Expression Omnibus for mESC WT and miR-

290-295_KO + siPools GSE181393 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE181393)

• Ribosome Profiling data: Gene Expression Omnibus GSE135577

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE135577)

• Proteomic data: ProteomeXchange PXD014484 (http://www.ebi.

ac.uk/pride/archive/projects/PXD014484)

• Integrative analysis source code: GitHub (https://github.com/

moritzschaefer/mesc-regulation_pub)

• RIP-seq analysis pipeline: GitHub (https://github.com/

moritzschaefer/srna-seq)

• RNA-seq and QuantSeq analysis pipelines: GitHub (https://github.

com/moritzschaefer/snakepipelines_pub)

• Auxiliary scripts and functions: GitHub (https://github.com/

moritzschaefer/moritzsphd_pub)

Expanded View for this article is available online.
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