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Glycation, oxidation, nitration, and crosslinking of proteins are implicated in the pathogenic mechanisms of type 2 diabetes,
cardiovascular disease, and chronic kidney disease. Related modified amino acids formed by proteolysis are excreted in urine.
We quantified urinary levels of these metabolites and branched-chain amino acids (BCAAs) in healthy subjects and assessed
changes in early-stage decline in metabolic, vascular, and renal health and explored their diagnostic utility for a noninvasive
health screen. We recruited 200 human subjects with early-stage health decline and healthy controls. Urinary amino acid
metabolites were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Machine
learning was applied to optimise and validate algorithms to discriminate between study groups for potential diagnostic utility.
Urinary analyte changes were as follows: impaired metabolic health—increased Nε-carboxymethyl-lysine, glucosepane, glutamic
semialdehyde, and pyrraline; impaired vascular health—increased glucosepane; and impaired renal health—increased BCAAs
and decreased Nε-(γ-glutamyl)lysine. Algorithms combining subject age, BMI, and BCAAs discriminated between healthy
controls and impaired metabolic, vascular, and renal health study groups with accuracy of 84%, 72%, and 90%, respectively. In
2-step analysis, algorithms combining subject age, BMI, and urinary Nε-fructosyl-lysine and valine discriminated between
healthy controls and impaired health (any type), accuracy of 78%, and then between types of health impairment with accuracy
of 69%-78% (cf. random selection 33%). From likelihood ratios, this provided small, moderate, and conclusive evidence of early-
stage cardiovascular, metabolic, and renal disease with diagnostic odds ratios of 6 – 7, 26 – 28, and 34 – 79, respectively. We
conclude that measurement of urinary glycated, oxidized, crosslinked, and branched-chain amino acids provides the basis for a
noninvasive health screen for early-stage health decline in metabolic, vascular, and renal health.
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1. Introduction

Diabetes mellitus, cardiovascular disease (CVD), and chronic
kidney disease (CKD) are major noncommunicable chronic
diseases in adults linked to premature death and loss of
productive life in Westernised countries. Type 2 diabetes
mellitus (T2DM) linked to development of insulin resistance
and dysglycemia in prediabetes accounts for ca. 90% of cases
of diabetes [1]. Spontaneous and potentially damaging
modifications of proteins by reactive oxygen species (ROS)
have been implicated in the pathogenesis of this disease
development [2–4]. Protein glycation by glucose to form
fructosamine adducts, particularly as assessed by glycated
hemoglobin A1C, is a major clinical measure of glycemic
control in diabetes and at lower levels is considered a diag-
nostic marker of prediabetes [5]. More recently, advanced
glycation end products (AGEs), formed by the degradation
of proteins glycated by glucose and by the direct reaction
of proteins with reactive dicarbonyl compounds such as
methylglyoxal, have been proposed as both mediators of
health decline leading to T2DM, CVD, and CKD [6–8]. Exam-
ples of the latter are association of fructosamine-derived AGE,
glucosepane, with development of T2DM [6] and association
of increased formation of the methylglyoxal-derived AGE,
hydroimidazolone MG-H1, with insulin resistance, risk of
CVD, and development of CKD [9–11]. Oxidized and gly-
cated proteins are targeted for cellular proteolysis which
forms related oxidized and glycated amino acid metabolites,
also called protein oxidation and glycation free adducts.
These are released from cells and excreted in urine [12]. Oxi-
dized and glycated amino acids are also absorbed from the
intestinal tract after digestion of oxidized and glycated pro-
teins of ingested food [13]. Pyrraline, an AGE formed only
at the high temperatures of culinary processing of food, is
absorbed and is a marker of the dietary AGEs [9]. Measure-
ment of urinary fluxes of oxidized and glycated amino acids
gives an estimate of total body exposure to these adduct-
s—except for Nε-fructosyl-lysine (FL) which may be further
metabolised enzymatically [14].

Irreversible protein crosslinking increases with age and
may contribute mechanistically to the related age-associated
increased risk of T2DM, CVD, and CKD [1, 15]. Dityrosine
is a major oxidative crosslink, particularly through enzymatic
formation by dual oxidase (DUOX) [16], glucosepane is a
major glycation-derived protein crosslink [17], and Nε-(γ-glu-
tamyl)lysine (GEEK) is a crosslink formed in proteins cata-
lysed by transglutaminases [18]. Dityrosine and GEEK may
also be absorbed from digested proteins in food [19, 20]. Trace
level urinary fluxes of oxidized, glycated, and crosslinked
amino acids reflect the flux of formation of glycated, oxidized,
and crosslinked proteins—with also contributions from food.
We hypothesized that early-stage changes in urinary fluxes
of oxidized, glycated, crosslinked, and branched-chain amino
acids may provide biomarkers supporting the early-stage
diagnosis of impaired metabolic, vascular, and renal disease.
Branched-chain amino acids (BCAAs) have been linked
previously to the development of T2DM and CKD [21, 22].

In this study, we determined urinary fluxes of oxidized,
glycated, crosslinked, and branched-chain amino acids in

healthy human subjects and subjects with early-stage decline
in metabolic, vascular, and renal health, exploring potential
diagnostic utility by data-driven machine-learning approaches.
We based our sample collection and analysis on urine as a
sample type favoured for clinical metabolomic applications
because of the advantages of it being a readily available sam-
ple, ease of sample donation and collection, and less complex
sample matrix than other body fluids such as serum or
plasma. Oxidized, glycated, and crosslinked amino acids
determined were as follows: FL—the major early-stage pro-
tein glycation adduct formed by glucose; MG-H1 and Nε-car-
boxymethyl-lysine (CML)—the major AGEs; pyrraline—a
marker of dietary AGE exposure and absorption [23, 24];
protein crosslinks—glucosepane, pentosidine, dityrosine,
and GEEK; glutamic acid semialdehyde (GSA)—a “protein
carbonyl” marker of oxidative damage; and 3-nitrotyrosine—
a marker of protein nitration [25]. Protein modification anal-
ysis classes and associated processes reported thereby are
summarised in Table 1.

2. Materials and Methods

2.1. Subject Study Groups and Sampling. A total of 200 study
participants of the BIOCLAIMS cohort, recruited and inves-
tigated at the Medical University and Karl Franzens Univer-
sity of Graz, Austria, between May 2011 and November 2014,
were investigated in this study. This cohort was conceived,
subjects were recruited, and samples were collected as part
of the EU FP7 BIOCLAIMS research project. The underlying
hypothesis of this project was that maintenance of good
health may be improved with biomarkers of good health or
“health biomarkers” [26, 27]. We hypothesized that the range
of flux of protein damage by glycation, oxidation, nitration,
and crosslinking found in subjects of good health, singly or
combinations thereof, may serve as health biomarkers and
this could be tested by studying the changes in fluxes of
related analytes in early decline in health—representing a
challenge to health homeostasis. We selected early decline
in metabolic, vascular, and renal health as examples of
major health impact through further progression to type
2 diabetes, CVD, and renal failure. Measurement of uri-
nary glycated, oxidized, nitrated, and crosslinked amino
acids provide a surrogate measure of this. Changes in
these analytes may thereby be used to diagnose early-
stage decline of health. The subjects were assigned to one
of the four groups.

2.1.1. Group 1: Healthy Controls (n = 55). The inclusion
criteria for these subjects were as follows: BMI 18.5-
29.9 kg/m2, carotid artery intimal medial thickness ðCIMTÞ
≤ 75th percentile at the left plus right side, homeostatic
model assessment of insulin resistance (HOMA-IR) index
≤ 2:5 mUl-1mM, A1C < 38mmol/mol, (or either HOMA-
IR or A1C was allowed above this threshold but not both)
estimated glomerular filtrate rate ðeGFRÞ > 60ml/min/1:73
m2 (deduced from increased serum creatinine by the
Modification of Diet in Renal Disease Study equation
[28]), and clinical chemistry tests within the normal
range ± 10%. The clinical chemistry tests included the
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Table 1: Glycated, oxidized, and nitrated amino acid metabolites.

Metabolite class Urinary metabolite Comment

Glycation

Nε-(1-Deoxy-D-fructos-1-yl)lysine (FL)

HC
CO2

–

NH3
+

(CH2)4 NH2

+

OH

O

OH

HO
OH

Early-stage glycation adduct [25]. Formed from
glucose nonenzymatically and reporting on exposure

to increased glucose concentration. Repaired
intracellularly by fructosamine 3-phosphokinase
[14]. Free adduct absorbed after digestion of food

proteins [69].

MG-derived hydroimidazolone
(MG-H1)

N

NH CH3

O

H

CO2
–

HC

NH3
+

(CH2)3 NH
A major quantitative arginine-derived AGE formed
from methylglyoxal. Linked to increased fasting and
postprandial glucose exposure, insulin resistance,

and cardiovascular disease [9, 10, 47, 70]. Free adduct
absorbed after digestion of food proteins [9].

HC

CO2
–

NH3
+

(CH2)4 NH2 CH2 CO2
–

+

Nε-Carboxymethyl-lysine (CML)

A major quantitative lysine-derived AGE—particularly
in food. Formed by the oxidative degradation of FL
from and other sources. Free adduct absorbed after

digestion of food proteins [71].

CH
CO2

–

NH3
+

(CH2)4

NH (CH2)3

N

NN 
H

HO
HH

OH

CHH3N
+ CO2

–

Glucosepane

Major quantitative crosslink formed in protein
glycation [17].

+

CH
CO2

–

NH3
+

NH
N

HN N
(CH2)4

HC
CO2

–

NH3
+

(CH2)3

Pentosidine

Low level pentose sugar-derived glycation crosslink
and intense fluorophore. Considered to reflect pentose

phosphate pathway activity [72].

HC

CO2–

NH3
+

(CH2)4 N

HOCH2

H
O Pyrraline 

Glucose-derived AGE formed at high temperatures
of culinary processing; originating only from

food [23, 24].

Oxidation Dityrosine (DT)

CH
CO2

–

NH3
+

CH2HO

HC
CO2

–

NH3
+

CH2 OH

Oxidative crosslink formed spontaneously in
oxidative stress and enzymatically by dual oxidase

(DUOX) [16, 25].

CO2
–

HC (CH2)2

NH3
+

O

H

Glutamic semialdehyde (GSA)

Major “protein carbonyl” formed by the oxidative
deguanidylation of arginine and oxidative

ring-opening of proline [73].
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following: red and white blood cell counts, hemoglobin,
hematocrit, thrombocyte count, serum electrolyte, creatinine,
urea, uric acid and cystatin C concentrations, γ-glutamyl-
transpeptidase, cholinesterase, aspartate aminotransferase,
alanine aminotransferase activity, pancreatic amylase and
lipase activity, serum fasting glucose, C-reactive protein, total
cholesterol, HDL and LDL cholesterol, triglyceride,
apolipoprotein-A1 and apolipoprotein-B, total protein, albu-
min, iron, transferrin and ferritin concentrations, and thyroid
gland stimulating hormone activity.

2.1.2. Group 2: Mild Impairment of Metabolic Health (n = 44).
The inclusion criteria for these subjects were as follows:
HOMA-IR index > 2:5 [29] and A1C 38-46mmol/mol [30]
with eGFR > 60ml/min/1:73m2 and CIMT ≤ 75th percentile
at the left plus right side.

2.1.3. Group 3: Mild Impairment of Vascular Health (n = 58).
The inclusion criteria for these subjects were as follows:
CIMT > 75th percentile for age and sex on the left and right
sides [31] with eGFR > 60ml/min/1:73m2, HOMA-IR
index ≤ 2:5, and A1C < 38mmol/mol (or either HOMA-IR
or A1C was allowed above this threshold but not both).

2.1.4. Group 4: Mild Impairment of Renal Health (n = 43).
The inclusion criteria for these subjects were as follows:
an eGFR of 30-60ml/min/1.73m2 and serum cystatin C >
1:04mg/l (upper limit of normal range) with HOMA-IR

index ≤ 2:5 mUl-1mM and A1C < 38mmol/mol (or either
HOMA-IR or A1C was allowed above this threshold but
not both) and CIMT ≤ 75th percentile at the left plus right
side [32, 33]. Their etiology of kidney disease was other than
diabetic kidney disease which was excluded to meet the inclu-
sion criterion of glycemic control in this study group.

Peripheral venous blood samples were collected on Vacu-
tainer tubes, coated with EDTA, heparin or none after over-
night fasting. Heparin plasma and serum were obtained by
centrifugation (1620g, 10 min), and red blood cells were sep-
arated from EDTA whole blood by centrifugation (10000g, 1
min) and washed with NaCl. Clinical chemistry routine var-
iables were analysed the same day, while the other aliquots
were stored at −80°C until analysis. A urine sample, second
void after overnight fasting, was collected, centrifuged to sed-
iment cells present, and supernatant removed and stored at
−80°C until analysis. Urine samples were collected in the sec-
ond void after overnight fasting to decrease contributions of
glycated, oxidized, and nitrated amino acids from digested
proteins in food [34].

The collection of samples from subjects with written
informed consent, use of them, and study protocols were
approved by the Ethics Committee of the Medical University
and Karl Franzens University of Graz, Austria, and were con-
ducted in accordance with the Declaration of Helsinki.

2.2. Measurement of Urinary Glycated, Oxidized, Nitrated,
Crosslinked, and Branched-Chain Amino Acids. Amino acid

Table 1: Continued.

Metabolite class Urinary metabolite Comment

Nitration

CO2
–

HC
NH3

+

CH2 OH

NO2

3-Nitrotyrosine (3-NT)

Major proteolysis product of proteins
endogenously nitrated by peroxynitrite and

nitryl chloride [25, 74].

Transglutaminase-linked crosslink
CHC

CO2
–

NH3
+

(CH2)2

O

NH CH
CO2

–

NH3
+

(CH2)4

Nε-(γ-glutamyl)lysine (GEEK)

Major protein crosslink formed enzymatically.

Branched-chain amino acids (BCAAs)

CO2
–

HC CH

NH3
+

CH2 CH3

CH3

Isoleucine

Valine

CH
CH3

CH3

CO2
–

HC

NH3
+

CO2
–

HC CH2

NH3
+

CH
CH3

CH3 Leucine

Essential amino acids previously linked to the
development of T2DM and CKD [21, 22].

Molecular structures showing ionisation under physiological conditions.
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analytes were quantified in the ultrafiltrate of second void
urine after overnight fast by LC-MS/MS multiple reaction
monitoring (MRM) as described previously [12, 35] with
detection of additional analytes GEEK, leu, ile, and val. Uri-
nary analytes were normalised to urinary creatinine because
spot urine samples were used. Urine samples were filtered
through 3kDa pore size microspin filters (14,000 g, 4°C).
Ultrafiltrate (5 μl) was mixed with a cocktail of stable isotopic
standards (25μl) and analysed by LC-MS/MS using an
Acquity™ ultrahigh performance liquid chromatography-
Xevo-TQS LC-MS/MS system (Waters, Manchester, U.K.).
MRM detection conditions are summarised with chromato-
graphic conditions, calibration, limit of detection, analytical
recovery, and inter- and intrabatch coefficient of variance as
given previously [35] (Table 2). GEEK was detected in a sepa-
rate chromatography run to resolve it from isobaric glu-lys and
lys-glu dipeptides [36]. Analyte amounts in test samples were
deduced by interpolation of analyte/internal standard peak
area ratios deduced from MRMmass chromatograms on cali-
bration curves constructed by analysis of calibration standards.

Natural isotopic abundance analytical standards and sta-
ble isotope-substituted internal standards were purchased
(Sigma-Aldrich, Poole, Dorset, U.K., and Cambridge Isotope
Laboratories, Tewksbury, MA, USA) or synthesised in-house
where unavailable commercially, as previously described
[12, 37]. GSA was prepared fromN-acetyl-L-ornithine using
lysyl oxidase activity from eggshell membrane by modifica-
tion of the method of Akagawa et al. [38]. Briefly, eggshell
membranes (ESM) were isolated from 12 fresh hen eggs,
washed thoroughly with distilled water, and cut into small

pieces (5 × 5mm). Surface water was blotted from ESM with
a filter paper. Nα-Acetyl-L-ornithine (43.6mg, 0.25mmol)
was incubated with ESM (2.5 g) in 25ml sodium phosphate
buffer (20mM, pH9.0, 37°C) for 7 days with shaking.
The eggshell membranes were removed by centrifugation
(6000g, 10min, 20°C), and the reaction mixture adjusted to
pH7.0. Acylase-1 (20mg; grade I from porcine kidney,
≥2,000 units/mg protein, Sigma-Aldrich, Cat no. A3010)
was added, and the reaction mixture was incubated at 25°C
for 2.5 days. The reaction mixture was filtered (3 kDa) to
remove acylase and the resulting GSA solution used without
further purification. GSA was calibrated by derivatisation
with 2-aminobenzaldehyde (OBA) to a dihydroquinazoli-
nium adduct [39] for which the extinction coefficient of
2,800M-1 cm-1 was assumed (as for related α-aminoadipic
semialdehyde adduct) [40]. GSA solution was incubated
with 15mM OBA in water at 20°C for 20min and absor-
bance measured at 465 nm. The yield of GSA was 83%.
The internal standard used for GSA was [2H3]α-aminoadipic
acid ([2H3]AAA; C/D/N Isotopes Inc., Pointe-Claire, Que-
bec, Canada) [41]. Stable isotopic Nε-(γ-[

13C5]glutamyl)
lysine ([13C5]GEEK) was prepared by modification of the fac-
ile synthesis described previously [42]. L-[13C5]Glutamic
acid (5.0mg, 34 μmol) and L-lysine (5.0mg, 34μmol) were
suspended in pentan-1-ol (25μl), methanol (2μl), and water
(2μl) in a 0.3ml reaction vial. The mixture was heated at
130°C for 5 h. The solvent was removed under reduced pres-
sure, and the residues were lyophilised to dryness to give
[13C5]GEEK, 6.8mg (yield: 71%) which was used without
further purification.

Table 2: Mass spectrometric multiple reactionmonitoring detection of protein glycation, oxidation, nitration, crosslinks, and branched-chain
amino acids.

Analyte group Analyte Rt (min)
Parent ion

(Da)
Ion
(Da)

CE
(eV)

Neutral fragment loss (es)
Internal standard and amount

added

Glycation

FL 28.5 291.0 84.3 31 H2CO2, fructosylamine [2H4]FL, 0.3 pmol

CML 28.5 204.9 130.1 12 NH2CH2CO2H [13C6]CML, 0.25 pmol

MG-H1†
11.6 &
12.5

229.2 114.3 14 NH2CH(CO2H)CH2CH=CH2 [15N2]MG-H1, 1.25 pmol

Glucosepane 16.5 429.2 382.1 38 C2H5O [13C6]Glucosepane, 0.25 pmol

Pyrraline 17.9 255.2 84.3 23
2-CHO-5-HOCH2-pyrrole,

H2CO2
[13C6,

15N2]Pyrraline, 1.00 pmol

Oxidative
damage

Dityrosine 19.9 361.2 315.3 15 H2CO2 [2H6]DT, 0.25 pmol

GSA 32.2 114.0 68.0 15 H2CO2 [2H3]AAA, 2.5 pmol

Nitration
damage

3-NT 23.2 227.1 181.2 13 H2CO2 [2H3]3-NT, 0.25 pmol

TG crosslink GEEK 9.3 276.1 147.1 12 NH2CH(CO2H)CH2CH=C=O
Nε-(γ-[13C5]glutamyl) lysine,

2.5 pmol

BCAA

Leu 27.6 132.3 86.2 10 H2CO2 [2H3]Leu, 250 pmol

Ile 31.5 132.3 86.2 10 H2CO2 [13C6]Ile, 250 pmol

Val 8.2 117.8 72.0 19 H2CO2 [2H8]Val, 250 pmol
†For MG-H1, Rt values for the 2 epimers are given. LC-MS/MS was performed as described previously [25, 35] with chromatography using two Hypercarb™
(5 μm particle size, 0:2 × 50mm and 0:2 × 250mm) columns, column switching, and elution with 0.1% trifluoroacetic acid (TFA) in water and custom
acetonitrile (MeCN) gradient. Different chromatography conditions were used for assay of GEEK: the column was Hypercarb™ (2 μm particle size, 0:2 ×
150mm) with isocratic elution at 0.2 ml/min with 3.75% MeCN and 0.1% TFA in water (solvent A) for 15min. After each run the column was washed by
elution with 50% tetrahydrofuran in 0.1% TFA in water for 20min and reequilibrated by elution with solvent A at 0.4 ml/min for 15min. Pentosidine was
detected by in-line fluorimetry; excitation wavelength 320 nm, emission wavelength 365 nm [35].
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2.3. Machine Learning. Support vector machine (SVM)
learning methods were used to produce classification algo-
rithms [43]. Only urinary analytes, age, BMI, and gender
were included as features to limit analysis sample require-
ment to urine only. These were developed to discriminate
between study groups in two different setups. In the first
setup, SVMs were used as a supervised machine learning
binary classifier that develops a model from the training data
to discriminate between the healthy and a diseased class
using a linear hyperplane in a high-dimensional space. Sub-
sequently, the trained model is applied to unseen data to pre-
dict the study group class of the related subject. In the second
setup, we developed a two-step algorithm. In step 1, the algo-
rithm was trained to discriminate between healthy and dis-
eased state where all disease impairments were considered
as a disease class. In the second step, the algorithm was
trained to identify one of the three disease impairments.
For the three-class system explored (discriminating between
impaired metabolic, vascular, and renal health study groups),
the trained algorithm classifies the subject into one of three
groups. For all classification experiments, we used a 2-fold
cross-validation system where data is split into 50% each
for training and testing and then this data split is alternated.
This was repeated 100 times to test the stability and general-
izability of the classification system. To assess the diagnostic
characteristics, 8 performance metrics were computed: classi-
fication accuracy, sensitivity, specificity, positive likelihood
rate, negative likelihood rate, positive predictive value, nega-
tive predictive value, and F-measure/score. The false positive
rate is also described (=1 − specificity). The 95% CI are deter-
mined by Student’s t distribution.

2.4. Statistical Analyses. Data are presented asmean ± SD for
parametric distributions and median (lower-upper quartile)
for nonparametric distributions. For two groups, significance
of the difference between means of parametric data was ana-
lysed by Student’s t-test and medians of nonparametric data
by the Mann-Whitney U test for independent samples; for
more than two groups, significance of the difference between
means of parametric data was analysed by ANOVA and
medians of nonparametric data by the Kruskal-Wallis test
for independent samples. Correlation analysis was performed
by the Spearman rank correlationmethod. Data were analysed
using SPSS, version 24.0. P < 0:05 was considered significant.

3. Results

3.1. Clinical Characteristics of Subjects Recruited. Character-
istics of the subjects recruited with and without early-stage
impairment of metabolic, vascular, and renal health are given
(Table 3). Healthy control subjects without impaired meta-
bolic, vascular, and renal health were younger and had lower
BMI, A1C, and CIMT than study groups with impaired
health. All health impairment study groups had increased
plasma total cholesterol with respect to healthy controls, with
increased LDL cholesterol in impaired metabolic and vas-
cular health and decreased HDL cholesterol and increased
triglycerides and systolic and diastolic blood pressure in
impaired vascular and renal health. Urinary albumin and

total protein were increased only in impaired renal health,
with respect to healthy controls. Changes in plasma LDL
cholesterol and HDL cholesterol were not always accom-
panied by similar changes in plasma ApoB and ApoA1,
respectively.

3.2. Urinary Amino Acid Metabolites. Urinary levels of gly-
cated, oxidized, nitrated, crosslinked, and branched amino acid
analytes for the 4 study groups are given in Table 4. Urinary
fluxes of modified amino acids in healthy controls were in
the order: FL>CML>MG-H1≈pyrraline>GSA>glucosepane>
GEEK>DT>3-NT. For protein crosslinks, levels of urinary fluxes
were in the order: glucosepane>GEEK>pentosidine>DT. For
BCAAs, urinary excretion was in the order: val>leu>ile. With
respect to healthy controls, changes found were as follows:
impaired metabolic health—increased urinary excretion of
CML, glucosepane, pyrraline, and GSA; impaired vascular
health—increased glucosepane; and impaired renal health—
increased BCAAs and decreased GEEK.

In correlation analysis, for healthy control subjects, there
was no association of any urinary biomarkers with subject
age. FL correlated positively with MG-H1 (r = 0:84) and 3-
NT (r = 0:62), and MG-H1 correlated positively with 3-NT
(r = 0:72). BCAAs correlated positively with each other
(r = 0:74 – 0:82). There were also positive correlations of pyr-
raline with FL, CML, and MG-H1 (r = 0:43), suggesting sig-
nificant contributions to urinary fluxes of these analytes
from food—Table S1. In subjects with impaired metabolic
health, surprisingly, there were no correlations of A1C or
HOMA-IR with urinary glycation adducts. There were
negative correlations of all BCAAs with A1C (r = −0:38 to
−0.39) and positive correlations of BCAAs with eGFR (r =
0:38 – 0:50), GSA (r = 0:57 – 0:61), and GEEK (r = 0:45 –
0:54). There were positive correlations of pyrraline with
CML, MG-H1, GSA, and GEEK (r = 0:44 – 66), suggesting
these analytes had significant contributions from food—
Table S2. In subjects with impaired vascular health, there
were positive correlations of CIMT, A1C, and glucosepane
with age (r = 0:86, r = 0:51, and r = 0:37, respectively) and
negative correlation of eGFR with age (r = −0:51). Subjects
with impaired vascular health, therefore, have age-related
increase in CIMT thickness along with age-related early-
stage decline in glucose tolerance and renal function and
increased glucose-mediated protein crosslinking. There
were positive correlations of pyrraline with CML (r = 0:57),
MG-H1 (r = 0:42), GSA (r = 0:49), and DT (r = 0:39),
suggesting these analytes had significant contributions from
food—Table S3. In subjects with impaired renal health,
there were positive correlations of CIMT (r = 0:79) and
glucosepane with age (r = 0:46), suggesting that subjects with
impaired renal function have increased CIMT and increased
glucose-mediated protein crosslinking with age. There were
positive correlations of pyrraline with CML (r = 0:50) and
MG-H1 (r = 0:55), suggesting again these AGE free adducts
had significant contributions from food—Table S4.

3.3. Machine Learning Analysis. We performed machine
learning-based analysis on subject groups with and without
early-stage decline in metabolic, vascular, and renal health.
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Several methods for subject assignment to one of the above
four groups were tested with the SVM method producing
superior diagnostic performance [43]. Features included in
algorithm training were as follows: age, gender, BMI, alcohol
intake, smoking status (current, former smoker, and never
smoked), and urinary metabolites—FL, CML, MG-H1,
GSP, pentosidine, pyrraline, DT, GSA, 3-NT, GEEK, and
leu, ile, and val or total BCAA. Selection of optimal subset
of features was data-driven to those combinations that min-
imise the group assignment error rate.

In the initial computations, we trained algorithms for
each health impairment and healthy subjects. Few features
were required for optimum diagnosis outcome. We found
three combinations of features, Sets 1 – 3, which gave similar
diagnostic performance: Set 1 features—age, BMI, and uri-
nary excretion of FL and valine; Set 2 features—age, BMI,
and urinary excretion of leu; and Set 3 features—age, BMI,
and urinary excretion of val (Table 5). Diagnostic accuracies
were 71 – 90%, sensitivities 68 – 88%, and specificities 71 –
92%. The highest accuracies for impaired metabolic, vascular,
and renal health were 84%, 72%, and 90%, respectively, with

lowest false positive rates of 13%, 24%, and 8%. The highest
positive likelihood ratios for impaired metabolic, vascular,
and renal health were 8.0, 3.2, and 13.2, respectively, indicat-
ing that this biomarker set gave moderate evidence of
impaired metabolic health, limited evidence of impaired vas-
cular health, and convincing evidence of impaired renal
health [44].

As a second approach, we performed a two-step algo-
rithm analysis where step 1 distinguished between good
health and impaired health of any kind investigated and then
step 2 distinguished between the three different types of
impaired health—metabolic, vascular, or renal (Figure 1).
In step 1, outcome of the algorithm computations indicated
that again few features were required for this: age, BMI, and
urinary excretion of FL and valine. For step 1, the accuracy
was 78% (random selection = 0:50) and sensitivity/specificity
was 82/77% (Table 6). The positive likelihood ratio was 3.7,
indicating the test provides moderate evidence of health
impairment. In step 2, a 3-class algorithm was produced to
distinguish between metabolic, vascular, or renal health
impairment. Outcome of the algorithm computations

Table 5

(a) Algorithm outcome to detect health impairment comparing against good health

Algorithm Set 1 Set 2
Features Age, BMI, FL, and val Age, BMI, and leu
Health impairment Metabolic Vascular Renal Metabolic Vascular Renal

Accuracy (%) 83.5 (83.0 – 84.1) 70.5 (69.8 – 71.2) 89.9 (89.4 – 90.4) 84.0 (83.4 – 84.5) 71.6 (70.9 – 72.2) 85.4 (84.9 – 85.9)

Sensitivity (%) 79.1 (78.1 – 89.1) 69.7 (68.6 – 70.7) 87.8 (86.8 – 88.8) 79.9 (78.9 – 81.0) 67.7 (66.5 – 69.0) 80.6 (79.5 – 81.7)

Specificity (%) 87.1 (86.1 – 88.1) 71.4 (70.1 – 72.7) 91.6 (90.9 – 92.4) 87.2 (86.3 – 88.1) 75.6 (74.4 – 76.9) 89.2 (88.3 – 90.1)

Positive likelihood ratio 7.95 (7.24 – 8.65) 2.77 (2.59 – 2.96) 13.2 (12.2 – 14.2) 7.73 (7.09 – 8.36) 3.17 (2.97 – 3.37) 9.56 (8.74 – 10.4)

Negative likelihood ratio 0.24 (0.23 – 0.25) 0.43 (0.41 – 0.44) 0.13 (0.12 – 0.14) 0.23 (0.22 – 0.24) 0.43 (0.41 – 0.44) 0.22 (0.20 – 0.23)

Positive predictive
value (%)

83.9 (82.9 – 84.9) 72.6 (71.7 – 73.5) 89.6 (88.8 – 90.4) 83.9 (83.0 – 84.8) 75.2 (74.3 – 76.0) 86.1 (85.2 – 87.1)

Negative predictive
value (%)

84.2 (83.6 – 84.8) 69.4 (68.6 – 70.2) 90.9 (90.2 – 91.6) 84.7 (84.1 – 85.4) 69.4 (68.6 – 70.2) 85.6 (85.2 – 86.5)

F-measure 0.81 (0.80 – 0.82) 0.71 (0.70 – 0.72) 0.88 (0.87 – 0.89) 0.82 (0.81 – 0.82) 0.71 (0.70 – 0.72) 0.83 (0.82 – 0.83)

Diagnostic odds ratio 25.6 (23.1 – 28.1) 5.7 (5.3 – 6.1) 78.5 (70.0 – 87.0) 27.1 (24.6 – 29.6) 6.5 (6.1 – 6.9) 34.3 (30.9 – 37.7)

Diagnostic performance data are reported as mean (95% CI) of 100 times repeated 2-fold validation experiments.

(b) Algorithm outcome with 2-fold validation to detect health impairment by type using the SVM algorithm comparing against good health

Algorithm Set 3
Features Age, BMI, and BCAA
Health impairment Metabolic Vascular Renal

Accuracy (%) 84.2 (83.6 – 84.7) 71.8 (71.1 – 72.4) 88.3 (87.8 – 88.9)

Sensitivity (%) 80.1 (79.2 – 81.0) 68.7 (67.6 – 69.8) 85.2 (84.0 – 86.5)

Specificity (%) 87.4 (86.5 – 88.3) 75.0 (73.9 – 76.1) 90.8 (90.0 – 91.6)

Positive likelihood ratio 8.04 (7.35 – 8.73) 3.13 (2.90 – 3.35) 11.6 (10.7 – 12.5)

Negative likelihood ratio 0.23 (0.22 – 0.24) 0.42 (0.40 – 0.43) 0.16 (0.15 – 0.17)

Positive predictive value (%) 84.2 (83.3 – 85.1) 74.8 (74.0 – 75.6) 88.5 (87.6 – 89.3)

Negative predictive value (%) 84.8 (84.3 – 85.4) 69.8 (69.1– 70.5) 89.3 (88.5 – 90.1)

F-measure 0.82 (0.81 – 0.82) 0.71 (0.71 – 0.72) 0.86 (0.86 – 0.87)

Diagnostic odds ratio 27.9 (25.2 – 30.6) 6.6 (6.1 – 7.1) 56.8 (51.1 – 62.5)

Diagnostic performance data are reported as mean (95% CI) of 100 times repeated 2-fold validation experiments.

9Oxidative Medicine and Cellular Longevity



indicated that features required for this are as follows: age, BMI,
and urinary excretion of val. The accuracy for step 2 was 69–
78% (random selection = 0:33). The positive likelihood ratios
were in the range of 2.6 – 4.6, indicating a small increase in
likelihood of health impairment with a positive outcome.

4. Discussion

This study produced quantitative estimates of glycated, oxi-
dized, nitrated, crosslinked, and branched-chain amino acids
in healthy subjects and changes in early-stage decline of met-
abolic, vascular, and renal health. The levels found suggested
that for amino acid crosslinks, glucosepane had the highest
urinary excretion, and for oxidized amino acids, GSA had
the high urinary excretion. The urinary excretion of 3-NT
was relatively low. This study also revealed the potential diag-
nostic utility of urinary BCAAs and FL. Positive likelihood
ratios suggested that the use of urinary excretion of BCAA
and FL as features in diagnostic algorithms gave small, moder-
ate, and conclusive evidence of increased likelihood of early-
stage cardiovascular, metabolic, and renal disease, respectively.

We chose urine analysis as the basis for our health screen.
The ease of sample collection and analysis sees urine analysis
as a current focus of development in quantitative clinical
metabolomics. Compared to plasma or serum, urine has the
disadvantage of being less well-buffered than plasma or
serum and metabolite levels influenced by the time since pre-
vious bladder voiding and food consumption. In the current
method, urine ultrafiltrate is mixed with stable isotopic stan-

dards in 0.1% trifluoroacetic acid which stabilizes analytes
from risk of degradation at neutral and high pH; all are stable
at low pH and ambient temperature. A further advantage
is that plasma concentrations of glycated, oxidized, and
nitrated amino acids are highly dependent on glomerular fil-
tration rate due to related renal clearance whereas urinary
concentrations of glycated, oxidized, and nitrated amino
acids are not—being related rather to flux of protein glyca-
tion, oxidation, and nitration [11, 45]. For these reasons, we
chose urine analysis as a preferred sample analysis protocol
for health screening related to markers of protein glycation,
oxidation, and nitration—although in machine learning
analysis, only FL and BCAAs were informative features for
subject group classification.

We defined impaired metabolic health herein by refer-
ence to detection of impaired glucose tolerance by increased
A1C and to insulin resistance represented by the HOMA-IR.
This is associated with exposure to increased glucose concen-
trations as judged by continuous glucose monitoring studies
[46]. It was surprising that urinary excretion of glucose-
derived FL was not increased in impaired metabolic health,
cf. the marked increase in urinary excretion in patients with
diabetes [47]. This may be due to efficient repair of FL free
adduct by fructosamine 3-phosphokinase at levels formed
in prediabetes [48] and a relatively large and variable contri-
bution from food which may have increased data dispersion
and thereby precluding detection of differences between
study groups. Increased glucose exposure was rather reflected
in increased urinary excretion of the glucose-dependent

Table 6: Algorithm outcome with 2-fold validation to detect health impairment using the SVM algorithm.

Algorithm Step 1 – 2-class (good vs. impaired health)
Step 2 – 3 class algorithm

(impaired metabolic, vascular, or renal health)
Features Age, BMI, FL, and val Age, BMI, FL, and val
Health impairment All Metabolic Vascular Renal

Accuracy (%) 78.2 (77.7 – 78.7) 73.4 (72.9 – 74.0) 68.7 (68.1 – 69.3) 78.1 (75.5 – 78.7)

Sensitivity (%) 81.5 (80.4 – 82.6) 54.9 (53.1 – 56.8) 58.6 (57.2 – 60.0) 67.4 (65.9 – 68.7)

Specificity (%) 77.0 (76.3 – 77.7) 81.5 (80.4 – 82.6) 75.4 (74.2 – 76.6) 82.6 (81.7 – 83.5)

Positive likelihood ratio 3.67 (3.57 – 3.77) 3.43 (3.20 – 3.66) 2.64 (2.51 – 2.77) 4.59 (4.19 – 4.98)

Negative likelihood ratio 0.24 (0.22 – 0.25) 0.55 (0.53 – 0.57) 0.55 (0.53 – 0.56) 0.39 (0.38 – 0.41)

Positive predictive value (%) 57.7 (57.0 – 58.3) 57.8 (56.5 – 59.1) 62.3 (61.3 – 63.2) 63.0 (61.9 – 64.2)

Negative predictive value (%) 91.8 (91.4 – 92.2) 80.9 (80.4 – 81.4) 73.5 (72.9 – 74.0) 85.9 (85.2 – 86.5)

F-measure 0.67 (0.66 – 0.68) 0.55 (0.54 – 0.56) 0.60 (0.59 – 0.61) 0.64 (0.63 – 0.65)

Diagnostic odds ratio 14.7 (14.0 – 15.4) 5.4 (5.0 – 5.8) 4.3 (4.1 – 4.5) 9.8 (8.9 – 10.7)

Diagnostic performance data are reported as mean (95% CI) of 100 times repeated 2-fold validation experiments.

Samples from 200 individuals
2-class algorithm

Impaired health
(n = 145)

Good health
(n = 55)

(a)

3-class algorithm

Samples from 145 individuals with impaired health

Impaired 
renal health

(n = 43)

Impaired 
cardiovascular health

(n = 58)

Impaired 
metabolic health

(n = 44)

(b)

Figure 1: Training and validation of a multiclass algorithm for detection and discrimination of (a) good health versus impaired health disease
and (b) impaired metabolic, vascular, and renal health.
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glycation-derived crosslink, glucosepane. Glucosepane is
formed from the degradation of FL and is not repaired enzy-
matically, potentially providing greater sensitivity for detec-
tion of dysglycemia. In analysis of protein glycation and
oxidation adducts in plasma protein in a prospective study,
we recently found that levels of glucosepane were the best
predictor of development of T2DM [6]. Increased urinary
excretion of GSA and CML—formed oxidatively from FL
[25]—in early-stage impaired metabolic health may be
indicative of oxidative stress. There was also increased uri-
nary excretion of pyrraline which may indicate increased
food consumption in this study group. The positive corre-
lations of CML and GSA with pyrraline suggest that urinary
increases of these metabolites were linked to increased food
consumption. Surprisingly, there was no increase in urinary
BCAAs in impaired metabolic health. Increased plasma
levels of BCAA were found previously in overweight and
obese subjects and correlated positively with insulin resis-
tance [49, 50].

Vascular health impairment was associated with
increased urinary excretion of glucosepane. Both glucose-
pane and CIMT correlated positively with age. Glucosepane
is a major protein crosslink and may impact negatively on
vascular contractility and function [25].

Renal health impairment was associated with decreased
urinary excretion of individual and total BCAAs and also
decreased urinary GEEK. The latter is a protein crosslink
formed enzymatically by transglutaminases. Increased trans-
glutaminase activity was associated with development of
CKD [51]. Our finding is consistent with decreased removal
of the GEEK crosslinks produced by increased transglutami-
nase activity in early-stage decline in renal function. A
decrease of urinary excretion of BCAAs in chronic renal
insufficiency was found previously—reviewed in [22], linked
to both change in tubular transport and decreased interorgan
exchange from impaired output by peripheral tissues [52].

In the machine learning-based analysis, we found that
combinations of age, BMI with FL, and val, leu, or total
BCAA was able to discriminate between healthy controls
and subjects with early-stage metabolic, vascular, or renal
health decline. Declining metabolic health, referenced to
A1C and HOMA-IR, is associated with increased risk of
developing type 2 diabetes [53]. Declining vascular health,
referenced to increased CIMT, reflects asymptomatic athero-
sclerosis and increased risk of myocardial infarction and
stroke [54]. Declining renal health, referenced to increased
serum creatinine and decreased eGFR, is a measure of
increased risk of renal disease linked to premature mortality
and progression to renal failure [55]. The dominant involve-
ment of subject age is expected as a nonmodifiable risk factor
for these health impairments and BMI through association
with insulin resistance of impaired metabolic health.

In subjects with impaired metabolic health, BMI corre-
lated positively with urinary excretion of MG-H1, which is
maintained when normalised to pyrraline, i.e., corrected for
dietary AGE intake. MG-H1 is the major AGE formed from
the reactive dicarbonyl metabolite, methylglyoxal. This sug-
gests a link of impaired metabolic health with increased
MG exposure, or dicarbonyl stress, for which independent

evidence has emerged recently [56]. The failure of urinary
excretion of CML and MG-H1 to emerge as diagnostic fea-
tures for diagnosis of early decline in metabolic and vascular
health may be due to a large and variable contribution to
urinary excretion of these analytes from digested food,
compared to increases of endogenous formation.

Potential utility of measurement of glycated, oxidized,
nitrated, and crosslinked amino acids and BCAAs in urine
is suggested by the ease of urine sample collection and that
damaged amino acids and disturbance in the levels of BCAAs
may provide biomarkers of early-stage health decline preced-
ing the development of chronic disease of high prevalence,
morbidity, and mortality—diabetes, CVD, and CKD. A urine
screening test for early-stage health decline would be a valu-
able clinical diagnostic asset—particularly when diagnostic
assessment for all three early-stage health declines could be
made from one analytical run. Screening for prediabetes in
overweight and obese adults is considered to be cost effective
when linked to subsequent implementation of lifestyle inter-
ventions to prevent T2DM [57]. There is profound limited
awareness of early-stage CKD with only 9% of people with
stage 3 CKD aware of their health impairment [58]—screen-
ing for CKD by serum creatinine and deduced estimated
GFR (eGFR) is considered not cost effective other than for
patients with T2DM and thereby increased risk of CKD
[59]. In this initial study, however, we conclude that although
there are changes in urinary glycated, oxidized, crosslinked,
and branched-chain amino acids in these early-stage health
declines, their measurement provides some but limited clin-
ical diagnostic classifications for health screening.

An alternative noninvasive measure of insulin resistance
is the 13C-glucose test which requires ingestion of a stable iso-
topically labelled 13C-glucose drink and collection of breath
samples over the subsequent 6 h for measurement of exhaled
[13C]/[12C]CO2 ratio. Our test had similar accuracy and
DOR values for detection of insulin resistance without
requirement for administration of stable isotope and sample
collections over 6 h [60]. An alternative noninvasive method
for detection of impaired glucose tolerance is measurement
of skin autofluorescence but this is compared poorly, with
DOR of 2.7 [61], cf. DOR of 25.6 – 27.1 for methods herein.
Alternative biomarkers for increased CIMT as an indicator
of impaired vascular health are red cell distribution width
and serum podocalyxin with DOR values of 3.9 and 3.2,
respectively [62, 63]. Our algorithms fared better with
values of 5.7 – 6.6. An alternative noninvasive biomarker
of impaired renal health is salivary creatinine for which
the DOR value for the same classification of CKD as
applied herein was 17.8 [64], cf. DOR values herein of
34.3 - 78.5. In the diagnostic algorithm for detection of
any early-stage health decline studied (metabolic, vascular,
and renal health), the negative predictive value of 92%
and DOR of 14.7 (Table 6) could provide the basis for
screening for the absence of early-stage health decline, after
further independent validation.

Potential implementation of this urinary health screening
test would be facilitated with further studies to ease access,
increase sample analysis throughput, and further validation
on one or more independent clinical subject cohorts. Ease
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of access to the test would be improved through urinary sam-
ple donation at primary health care centers. For this, further
studies of sample stability during storage and shipment at
ambient temperature for urinary analytes of Nε-fructosyl-
lysine (FL) and BCAAs would be required. Studies on
sample storage and preanalytical processing validation for
unfocussed metabolomic analysis of urine were recently
reviewed [65]. For analyte quantitation, sample throughput
may be increased with FL, BCAAs, and creatinine analysed
in one run by stable isotopic dilution analysis LC-MS/MS
[66] or alternatively by 1H nuclear magnetic resonance
[67]. We estimate minimum sample analysis time would be
ca. 10 – 20min and 7min, for these methods, respectively.
For further independent validation of diagnostic outcomes,
the assessment of good health versus health impairment
(any type) had sensitivity of 81.5%. From statistical consider-
ations based on this and absolute precision of ±5% [68], a
validation study requires a minimum of 464 subjects for a
1 : 1 ratio of cases and controls.

We studied early-stage health decline as part of the ratio-
nale of the BIOCLAIMS research project and the related
concept of “health biomarkers”—see above. There is also a
consensus view that if health decline can be detected in the
early stages then progression to frank disease may be pre-
vented. This is particularly important for CVD where a first
clinical disease event may be fatal and for diabetes and renal
failure where there are difficult-to-treat debilitating and life-
threatening complications. Also, screening of early-stage
health decline could be made more cost effective if assess-
ments of early-stage development of multiple disease are
made concurrently.

5. Conclusions

(i) We investigated the urinary excretion of oxidized,
glycated, nitrated, crosslinked, and branched-chain
amino acids and their association with early-stage
decline in metabolic, vascular, and renal health

(ii) We found characteristic changes in early-stage
health decline where algorithm features of age, body
mass index (BMI), fructosyl-lysine (FL), and
branched-chain amino acids (BCAAs) combined to
give small, moderate, and conclusive evidence of
increased likelihood of early-stage cardiovascular,
metabolic, and renal disease, respectively

(iii) After further validation, urinary measurement of FL
and BCAAs could help improve ease of access to
diagnosis of impaired metabolic health in prediabe-
tes and asymptomatic arterial stenosis and chronic
kidney disease where remedial lifestyle and thera-
peutic intervention may prevent progression to
advanced disease and premature mortality
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