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SUMMARY

E3 ubiquitin ligases (E3s) play a critical role in molecular and cellular mechanisms. However, a large

number of E3-substrate interactions (ESIs) remain unrevealed. Here, we integrated the increasing

omics data with biological knowledge to characterize and identify ESIs. Multidimensional features

were computed to obtain the association patterns of ESIs, and an ensemble predictionmodel was con-

structed to identify ESIs. Comparison with non-ESI cases revealed the specific association patterns of

ESIs, which provided meaningful insights into ESI interpretation. Reliability of the prediction model

was confirmed from various perspectives. Notably, our evaluations on leucine-rich repeat family of

F box (FBXL) family were consistent with a proteomic study, and several substrates for SKP2 and

an orphan E3 FBXL6 were experimentally verified. Moreover, a cancer hallmark ESI landscape was

studied. Taken together, our study catches a glimpse at the omics-driven ESI association patterns

and provides a valuable resource (http://www.esinet.dicp.ac.cn/home.php) to assist ubiquitination

research.
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INTRODUCTION

Protein ubiquitination refers to ubiquitin conjugation at a target substrate through three enzymes,

including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin protein ligase

(E3), and mainly results in degradation of a specific substrate (Scheffner et al., 1995). It is one of the most

prevalent post-translational modifications in eukaryotic cells (Suresh et al., 2016). Dysregulations of ubiq-

uitination will induce serious diseases, such as cancer (Hoeller and Dikic, 2009; Mani and Gelmann, 2005).

During protein ubiquitination, E3s play a key role by specifically recognizing the target substrates. Given

the specificity and diversity, E3s are regarded as potential therapeutic targets in cancer (Bassermann

et al., 2014). However, apart from several well-defined E3s, e.g., MDM2 (Rayburn et al., 2005) and

NEDD4 (Ye et al., 2014), most of them remain poorly characterized, making it a great challenge to fully un-

derstand the ubiquitination system.

Typically, substrates for E3s are discovered by biochemical experiments (e.g., two-hybrid screen or co-

immunoprecipitation) in a case-by-case manner (Chan et al., 2012; Maddika et al., 2011), which are

commonly time- and resource-consuming. Recently, some high-throughput methods (Tan et al., 2013; Yu-

mimoto et al., 2012) have been utilized on ESI recognition. However, the screened results are still mixed

with plenty of false discoveries, and proteome-wide ESI identifications are still far behind. It is indispens-

able to build effective computational methods to assist ESI recognition. A platform of UbiBrowser (Li

et al., 2017) has been constructed to predict ESIs, providing references for deciphering a proteome-

wide ESI network. However, it mainly depends on mechanism-agnostic enrichment of pairwise protein fea-

tures among known E3-substrate pairs, overlooking the expression or functional correlations between E3s

and substrates. In contrast to the limited knowledge of E3-substrate interactome, extensive omics data are

available, owing to the efforts on collection and organization of high-throughput biological data by public

repositories, like The Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/) (Cancer Genome Atlas

Research Network et al., 2013) and Clinical Proteomic Technology Assessment for Cancer (CPTAC, https://

cptac-data-portal.georgetown.edu/cptacPublic/) (Edwards et al., 2015). They have been widely employed

in functional description of cancer-driving factors or interactions (Xue et al., 2017; Ye et al., 2016). Associ-

ation-centric heuristic methods are commonly the optimal option for omics-based analysis (Stuart et al.,

2003; Wang et al., 2016), and functional related or interacting components can be identified. However,
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Figure 1. Workflow of a Comparative Characterization on ESIs

(A) The association patterns of ESIs were obtained by comparison between positive and negative reference datasets, where three different negative

reference datasets (NRDs) were prepared for comprehensiveness.

(B) Omics-based associations. The Spearman correlations between E3s and substrates were calculated based on both transcriptomics and proteomics.

(C) Network-based associations. The ESIs were mapped onto three networks including one PPI network and two co-expression networks constructed,

respectively, based on transcriptomics and proteomics data. The associations were calculated from the shared neighbors on the networks.

(D) Pathway-based associations. Pathways are taken as mediators between E3 and substrates, and the pathway-based association evaluates whether one E3

is tightly related with the pathways their substrates belong to, or vice versa.

(E) Diagram of ESI prediction model. It was an ensemble of three types of random forest (RF) classifiers trained with different categories of NRDs.

See also Tables S1, S2, S3, and S4.
given the reversibility and dynamics of ubiquitination, it is still unclear whether E3-substrate interaction

(ESI) can be correctly described by omics-based associations. In addition, progressively accumulated bio-

logical knowledge, like the annotated pathways in Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al., 2017) and experimentally verified protein-protein interaction (PPI) records in BioGrid

(Chatr-Aryamontri et al., 2017), provide an alternative way to create mechanistic descriptions on ESIs.

Here, we put forward to characterize and predict ESIs in an integrative way. It turns out that integrating

omics (especially proteomics data) with network or pathway information can help distinguish ESIs from

various negative categories (even indirect regulating relations). A case study on leucine-rich repeat family

of F box (FBXL) proteins demonstrated that our evaluations outperformed both the UbiBrowser and a pro-

teomics-based approach. Moreover, we portrayed a cancer-oriented ESI landscape by identifying poten-

tial ESIs for cancer hallmark proteins. In addition, to facilitate the utility of our model, both confirmed and

potential ESIs along with their association features were distributed on a website (http://www.esinet.dicp.

ac.cn/home.php).

RESULTS

Workflow of a Comparative Characterization on ESIs

We developed a computational model for both describing and predicting ESIs by integrating omics with

network and pathway (Figure 1, see also Transparent Methods). First, previously reported ESIs were

collected as a positive reference dataset (PRD, Table S1), whereas three negative reference datasets

(NRDs) covering randomly combined E3s and proteins (‘‘E3-random,’’ Table S2), non-ESI PPIs (‘‘Other

PPIs,’’ Table S3), and pairwise E3-indirect regulatory proteins (‘‘E3-Indirect,’’ Table S4) were prepared as

control (Figure 1A). For both PRD and NRDs, multidimensional association features between two proteins

were calculated by integrating omics (Figure 1B), networks (Figure 1C), and pathways (Figure 1D). Then,

specific ESI association patterns were recognized by comparing ESIs with three categories of NRDs. Finally,

a prediction model was constructed through a weighted ensemble of three types of random forest classi-

fiers (RFs) (Figure 1E).

Constructing an ESI Network

Initially, an ESI network composed of 1,806 previously reported ESIs involving 300 E3s and 1,089 substrates

was constructed to describe the complex relations between E3s and substrates (Figure 2A). Similar to other

biological networks (Goymer, 2008; Rolland et al., 2014), it exhibited an approximate scale-free topology

(Barabasi, 2009) (linear model fitting R2 index = 0.78). Most hubs in the ESI network were E3s; they had

significantly higher (p value = 4.073 10�7 based on t test) degrees than substrates, suggesting that a large

number of substrates can be recognized by the same E3s. However, when mapping onto the global PPI

network, such difference disappeared (p value = 0.9634 by t test); E3s and substrates exhibited similar

degree distribution and their degrees were much higher than those on the ESI network (Figure 2B), empha-

sizing that the impacts rendered by ubiquitination may be spread to various processes by non-ESI interac-

tions. Besides, a cancer hallmark subgraph (Figure 2C) was extracted. On this subgraph, nodes belong to

genes recorded in the ‘‘Catalogue of somatic mutations in cancer’’ (COSMIC) (Forbes et al., 2017) and

edges are annotated with the ubiquitinated consequences of substrates. It suggests that a large fraction

of the reported ESIs will lead to degradation of substrates. Some E3s (e.g., BRCA1 and KEAP1) are tumor

suppressors; their mutations might induce the accumulation of carcinogenic substrates (e.g., AKT, IKK-b,

and JAK2), which will promote the development of cancer and affect key signaling pathways, such as

AKT or nuclear factor (NF)-kB signaling pathway, confirming that ubiquitination can affect cancer develop-

ment and progression in alternative ways. To be more comprehensive, further refining of the ESI network is

indispensable.
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Figure 2. ESI Network

(A) An ESI network. E3s (red) and their corresponding substrates (yellow) are connected as edges, where green nodes stand for proteins acting as both E3s

and substrates.

(B) Degree distribution of E3s (red bars) and substrates (blue bars) on the ESI network (horizontal axis) and the global PPI network (vertical axis). Centers of

boxes represent median values. Bottom and top bounds of boxes represent 25th and 75th percentiles.Whiskers mark 1.5 times of the interquartile range

(C) Cancer hallmark ESI subgraph. Node borders were colored according to their functions in cancer; blue stands for tumor suppressor gene (TSG), red

stands for oncogene, orange represents genes with both functions, whereas the functions of gray-border ones are still unclear. The edge color represents

the ubiquitinated consequence of substrates; blue stands for degradation, whereas red refers to activity change or other non-degradation effects. Nodes

are labeled with the corresponding gene symbols of proteins.

See also Table S1.
Omics-Based Associations Alone Are Not Capable of ESI Recognition

Proteomics data offer the most direct resource to capture the expression relevance between E3s and sub-

strates, given that ESIs often results in substrate degradation. In addition, as ubiquitination is also involved

in transcription regulation (Hammond-Martel et al., 2012), transcriptomics data were also employed to es-

timate transcriptional associations (see Transparent Methods). Notably unexpected, E3s and substrates

were not negatively correlated in both mRNA and protein levels (Figure 3A, median levels for ESIs were

all near zero). However, when compared with NRDs, ESIs exhibited differences in both omics: ESIs showed

higher correlations than ‘‘E3-random’’ cases on average (Figure 3A). ‘‘Other PPIs’’ were more mutually

correlated than ESIs; indirect regulations were similar with ESIs in terms of proteomics, but differences

emerged in terms of transcriptomics. Still, more features are required because the slight differences

make it difficult to separate ESIs from other possibilities.
180 iScience 16, 177–191, June 28, 2019
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Figure 3. Comparative Association Profiles of ESIs

(A) Omics-based associations. Different colors in the box plots represent different datasets. PCT refers to proteomics-based correlations between two

proteins in tumor tissues. Three different forms of transcriptomics-based associations were calculated. RCT/RCN means the mRNA correlations in

tumor/normal tissues; RCF refers to two proteins’ correlations in terms of the fold change on mRNA of tumor tissues relative to matched normal tissues.

(B) Network-based associations. Five features were calculated: CNR.PPI, CNR.CXNR, and CNR.CXNP refer to the common neighbor rate (CNR) between two

proteins in the PPI network, mRNA co-expression network, and protein co-expression network respectively; CCR.PPI/CCP.PPI stands for the CNR between

co-expressed factors (mRNAs/proteins) in PPI network.

(C) Pathway-based associations. WCR/WCP evaluates the transcriptomics/proteomics-based correlations between E3 and the pathways their substrates

belong to, whereas WCRS/WCPS estimates the correlations between E3s0 pathways and substrates based on transcriptomics/proteomics.

(D) Permutation test on each form of pathway associations. WCRP, WCRSP, WCPP and WCPSP respectively represent the permutation test based P-values

obtained for WCR, WCRS, WCP and WCPS. Data distributions for A-D are all discribed by box-plots. Centers of boxes represent median values. Bottom and

top bounds of boxes represent 25th and 75th percentiles. Black lines mark 1.5 times of the interquartile range. Dots represent points falling outside this range.

(E) The AUROCs of knn-classifiers trained based on each single feature. The gray bars stand for standard deviation of AUROCs for five repetitive classifiers.

Performances of classifiers based solely on omics were only around 0.5, but inclusion of network and pathway knowledge improved the performance.

Statistical significance (p < 0.01, Wilcoxon test) for difference between each kind of NRDs and ESIs was marked by *.

See also Figures S1–S3.
E3s and Substrates Share Neighbors on PPI Network but Lack Connections on Co-expression

Networks

Omics-based associations simply investigated on the ‘‘one-to-one’’ expression relations, ignoring the fact that

cascades of other proteins also take part in the ubiquitination process. Consequently, three network systems

were applied to measure the relations between E3s and substrates systematically (see Transparent Methods).

As a result, ESIs and NRDs showed significantly different distributions on the network-based associations (Fig-

ure 3B). No matter on which kind of network, the average correlations of ESIs were significantly (p value<0.01)

less than ‘‘Other PPIs.’’ On the PPI network, E3s and substrates are more likely to be connected by common

neighbors than ‘‘E3-random’’ or ‘‘E3-indirect’’ (Figure 3B, CNR.PPI). However, this tendency was changed on

the co-expression network; especially on the protein co-expression network (Figure 3B, CNR.CXNP), the

ESIs were less connected compared with all other NRDs, even the random cases, reflecting that the ESIs inter-

rupt the expression correlations despite the probably transient and dynamic properties. When the co-expres-

sion networks and PPI network were integrated, the profile (Figure 3B, CCR.PPI and CCP.PPI) was similar with

that based on PPI network. The network-based associations can assist to differentiate the substrates of E3s

from indirect or random situations in a relatively more accurate manner than the omics-based associations.
Pathway-Based Associations Improve ESI Discriminability and Provide Hypothesis on Their

Upstream or Downstream Processes

As a special kind of bionetworks, a pathway refers to a cascade of molecular interactions with interdependent

functions. A total of 306 human pathways in KEGG (Kanehisa et al., 2017) were considered as intermediary to

examine the functional associations between E3s and substrates (see Transparent Methods). With regard to

mRNA-based pathway associations (i.e., WCR, WCRS), ESIs only exhibited modest higher associations than

‘‘E3-random’’ and ‘‘E3-Indirect’’ (Figure 3C); however, permutation tests on these associations indicated that

specificities (i.e., WCRP, WCRSP) of the pathway-based associations of ESIs were much higher than those of

the others (Figure 3D). It suggests that although E3s were not highly correlated or co-expressed with their

substrates compared with random or indirect regulatory cases in mRNA level (Figures 3A and 3B), they

may be closely related with the other members of the pathways their substrates belong to, or vice versa.

Proteomic level presented different tendency; ESIs exhibited lower associations than all three NRDs on

average, but the specificities were higher than ‘‘E3-random’’ and ‘‘E3-Indirect.’’ The ‘‘Other PPIs’’ exhibited

both considerably higher pathway associations and permutation scores than ESIs. It is probably a conse-

quence of the degradation effect or dynamic nature of ESIs. Moreover, the pathway-based associations pro-

moted to discriminate ESIs fromNRDs; some of them (Figure 3E, WCP,WCR,WCPP, WCPSP) even rendered

better performances than network-based features, especially in distinguishing ESIs from ‘‘Other PPIs.’’

The pathway-based associations can also capture which pathway was highly correlated with an ESI

(see Transparent Methods). For example, pathways, like cell cycle (Shabbeer et al., 2013; Zheng et al.,

2016), p53 signaling pathway (Li et al., 2012; Zhang et al., 2014), and transforming growth factor-b signaling

pathway (Gen et al., 2017), all of which have been confirmed as ubiquitination-mediated pathways, were

highly correlated with the E3s in proteomics, and a large fraction of substrates can be located on these

pathways (Figure S1), similar results were observed in the transcriptomics-based pathway associations
182 iScience 16, 177–191, June 28, 2019
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Figure 4. Classification Models for Distinguishing ESIs from NRDs

(A–D) (A) Sample assignment for five rounds of crossover validations and an independent validation. (B–D) Performance of three types of RFE-RFs. The same

ESIs were used as positive samples, whereas ‘‘E3-random’’ (B), ‘‘Other PPIs’’ (C), and ‘‘E3-Indirect’’ (D) pairs were taken as negatives. The horizontal and

vertical axes represent the number of selected features and the corresponding average AUROC got from a 10-fold crossover validation. For each type of

RFE-RFs, five classifiers were constructed by replacing negative samples.

(E) Selected features for each classifier in (B–D).

(F) Density plot of the predicted probabilities across four types of samples in the independent validation dataset.

(G) Threshold selection for positive predictions. Performances under different thresholds (th) were evaluated by F3-score.

(H) Histogram of positively predicted samples across different categories of samples in the independent validation.

See also Table S5.
(Figure S2), implying that our analysis might provide some hypotheses on the upstream or downstream

processes for certain ESIs by referring to the highly correlated pathways.

Pan-Cancer Analysis Show Concordance on the E3-Substrate Association Patterns

The analyses above utilized omics data from Breast Invasive Carcinoma (BRCA) in TCGA. To be more

comprehensive, we asked whether the ESI association patterns were consistent across different cancers.

We recalculated the features based on additional 10 cancers. Parallel analyses based on distinct cancers

manifested that the differential trends between ESIs and NRDs on most available features were consistent

with those shown in BRCA (Figures 3A–3D and S3A–S3J). The concordance also indicates that the multi-

omics data in TCGA can be applicable to gain insights into biological mechanism in a more universal

manner, even though they are originally cancer oriented.

Classification Models Based on the Multidimensional Associations Perform Well in

Discriminating ESIs from NRDs

The considerable differences between ESIs and NRDs in themultidimensional association space prompt us to

construct a classification model wherein three types of reverse-feature-reduction based random forest classi-

fiers (RFE-RFs) were combined to identify ESIs (Figure 4A, see also Transparent Methods). The performance

was quantified by the area under the receiver operating characteristic curve (AUROC). The classificationmodel

showed a satisfying and stable performance (Figures 4B–4D), especially when ‘‘E3-random’’ and ‘‘Other PPIs’’

categories (average AUROCs around 0.87 and 0.85, respectively) were taken as negatives, whereas the perfor-

mance was somewhat declined for ‘‘E3-Indirect’’ (average AUROCs around 0.78). The observation indicated it

is more difficult to separate true substrates from indirect regulatory proteins than other negative cases. For

different types of RFE-RFs, features like CNR.PPI, WCR, and WCP (Figure 4E) were consistently selected for

all classifiers, further confirming the importance of network and pathway-based associations.

Moreover, ESIs were predicted with significantly higher probabilities than all three types of NRDs (Fig-

ure 4F). Both crossover and independent validations show that our model can help separate true and false

ESIs. Although false-positives still existed, the misclassification rate was significantly reduced by inclusion

of three negative categories. In general, random cases are always chosen as negative controls in interac-

tome prediction, based on which the classifier generated much more false-positives (24% of ‘‘E3-Random,’’

83% of ‘‘Other PPIs,’’ and 62% of ‘‘E3-indirect’’ were misclassified as ESIs, Figure 4H). Similar conditions

were observed when only ‘‘Other PPIs’’ or ‘‘E3-Indirect’’ was taken as the control. However, when three

types of classifiers were integrated, the false discovery rate was significantly reduced, with 73% ESIs being

accurately predicted under the threshold of 0.48 (Figures 4G and 4H), whereas only 15% ‘‘E3-Random,’’ 31%

‘‘Other PPIs,’’ and 30% ‘‘E3-indirect’’ being misclassified.

We also trained the models by omics data from other cancers (Table S5). We observed that models trained

based on ovarian serous cystadenocarcinoma(OV) and BRCA, where both transcriptomics and proteomics

data were available, obtained better performance than others with only transcriptomics data, confirming

the importance of multi-omics integration. As data of BRCA were more comprehensive than OV (only

155 ESIs can be assigned with both omics), we mainly utilized data from BRCA in the following study.

Prediction and Validation on Potential Substrates of FBXL Family

To further estimate the model quality, we applied it on the FBXL proteins, of which certain post-transcrip-

tional modifications are often required for the substrates (Skaar et al., 2013). In particular, to avoid circu-

larity of training and predicting samples, we reconstructed the classification model (Figure S4) by removing

known ESIs of FBXLs from the training process. Both known and potential substrates were identified by our
184 iScience 16, 177–191, June 28, 2019
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Figure 5. Evaluations on Substrates of FBXL Family E3s

(A and B) Known (red edge) and predicted (gray edge) ESIs for FBXLs. The meaning of node colors and shapes is the same

as in Figure 2. For clarity, only the high-confidence substrates (with a predicted probability higher than 0.65 and ranked

within top-20 for corresponding FBXL) were shown. (A) A large part of the predicted ESIs are mapped onto cell cycle

pathway by pathway-based associations. (B) In addition to substrates on the cell cycle pathway, the FBXLs were also

predicted to target on other substrates across different pathways.

(C) Boxplot of the predicted results on candidate ESIs. The putative ESIs identified by PAC (orange box) were observed

with significant higher probabilities than the remaining ones (green box). *p < 0.01 (Wilcoxon test, two sided, unpaired).

See also Figure S4 and Table S6.
model. Considering 89 confirmed ESIs of FBXLs, 39 pairs that can be assigned with the multidimensional

features were calculable by our model, and 27 of the 39 (69%) cases were correctly recalled, whereas only 13

among the 39 cases were predicted by UbiBrowser (Table S6).

Multiple FBXLs were predicted to target on substrates belonging to the pathways of cell cycle, ribosome

biogenesis in eukaryotes, ubiquitin-mediated proteolysis, and spliceosome (Figures 5A and 5B). The

mostly influenced pathway is the cell cycle pathway, where multiple known substrates like MYC, SMAD4,

and CCNE1 were correctly linked to SKP2, and other unreported ones like CCNA2 and CDK1 were pre-

dicted to be recognized by FBXL3, FBXL6, and FBXL10, indicating the potential cross-regulatory mecha-

nism on the cell cycle pathways by FBXLs. This is consistent with the fact that F box proteins play key roles

in cell cycle regulation (Zheng et al., 2016).

To test on the quality of our model, we compared our predictions to a proteomics-based experimental

study (Tan et al., 2013), where a well-designed parallel adaptor capture (PAC) proteomic method was
iScience 16, 177–191, June 28, 2019 185
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Figure 6. Experimental Validations on High-Confident Predictions

(A and B) Validations on interactions between substrates and FBXLs. HEK293T cells were transfected with SFB-tagged SKP2 or FBXL6. SKP2 and FBXL6 were

purified with S protein beads and immunoblotted with antibodies against substrates. (A) Interactions between SKP2 and DDB1, Cyclin A2 (CCNA2),

Caspase-3 (CASP3), as well as HSP90AA1 were examined. (B) Interactions between FBXL6 and CDK4, CCNA2, HSP90AA1, HSPD1, as well as VDAC2 were

examined.

(C) Increased FBXL6 correlates with reduced CCNA2 and VDAC2 expression. HEK293T cells were transfected with SFB-FBXL6 at different doses (0, 1, and 3

or 6 mg) for 48 h. Expression of CCNA2 and VDAC2 were analyzed by western blot.

(D) FBXL6 mediated the ubiquitination of CCNA2. SFB-FBXL6 vector was transfected into HEK293T cells along with or without haemagglutinin-tagged

ubiquitin (HA-Ub). Cells were cultured for 48 h, and cell lysates were probed with CCNA2 antibody.

(E) FBXL6 and SKP2 mediated the ubiquitination of CCNA2. HEK293T cells were transfected with SFB-CCNA2 and HA-Ub along with Myc-FBXL6 or Myc-

SKP2 for in vivo ubiquitination assay. CCNA2 was purified with S protein beads and ubiquitination of CCNA2 by FBXL6 and SKP2 were analyzed.

(F) HA-Ub and SFB-VDAC2 were co-transfected with control or FBXL6-shRNA into HEK293T cells. Cells were treated with 20 mM MG132 for 4 h before

collection. VDAC2 was purified with S protein beads and western blotted with antibodies against HA, FLAG, and FBXL6.

(G) HEK293T cells were transfected with SFB-FBXL6, SFB-SKP2, along with CCNA2-V5 for in vitro half-life assay under 100 mg/mL of cycloheximide (CHX)

treatment. Cells were collected at different time points and immunoblotted with antibodies against CCNA2 and GAPDH. S/L: short/long exposure.

(H) Quantification of relative CCNA2 levels in (G) and replicated experiments were performed using ImageJ, and data are represented as mean G SEM.

*p < 0.05 (t test, two sided, unpaired) for the comparisons of both SKP2 and FBXL6 to empty vector (EV). The experiments were repeated three times, and the

most representative image is shown.

See also Figure S5.
applied to discriminate putative substrates for FBXLs. Among all the candidate pairs we predicted, the

intersection with putative ones identified by PAC show significant (Wilcoxon test, p value = 1.036 3

10�6) higher probabilities than the others (Figure 5C), confirming the reliability of our model. Besides,

among all 89 confirmed ESIs of FBXLs, 27 cases were correctly identified by our model, whereas only

5 and 22 can be discriminated by the PAC method and UbiBrowser, respectively (Table S6).

Furthermore, we experimentally checked on several high-confidence substrates of SKP2 and FBXL6 (see

Transparent Methods). For SKP2, its interactions with four predicted substrates were validated, where the

interaction with CCNA2 was already reported by previous studies (Nakayama et al., 2000) and the other

three proteins including CASP3, DDB1, and HSP90AA1 have not been discovered (Figure 6A, S5A, and

S5B). For FBXL6, an orphan E3 without any known substrates, its interactions with five predicted

substrates including CDK4, CCNA2, HSP90AA1, HSPD1, and VDAC2 were validated (Figures 6B and

S5A–S5D). Moreover, we found that FBXL6 inhibited CCNA2 and VDAC protein expression in a dose-

dependent manner (Figure 6C). In addition, FBXL6 and SKP2 significantly increased both endogenous

and exogenous CCNA2 protein polyubiquitylation (Figures 6D and 6E). In contrast, knockdown of

FBXL6 expression by transducing shRNA_FBXL6 significantly inhibited polyubiquitylation of VDAC2 (Fig-

ures 6F and S5E). Also, we examined CCNA2 protein levels in the presence of cycloheximide. As ex-

pected, SKP2 and FBXL6 significantly decreased the stability of CCNA2 protein (Figures 6G and 6H).

These experimental results prove that our predictions can provide credible references on identification

of promising ESIs.

Inferences on Potential E3s for Cancer Hallmark Proteins

To be more comprehensive, the ultimate prediction model (Figure S6) was reconstructed by incorporating

all known ESIs into the training procedure. Finally, about 2,80,000 pairs of proteome-wide potential ESIs

were inferred by our model. To investigate whether cancer hallmark proteins might be ubiquitinated by

certain E3s (see Table S7 for all investigated E3s), candidate pairs with COSMIC-recorded proteins as sub-

strates were retrieved. Among them, 79 pairs were predicted as high-confidence (p > 0.75, Figure 7A) cases

for cancer hallmark proteins, where 22 of them were previously revealed and another 57 were predicted

(19 of them have been reported or examined in previous literatures, Table S8). A number of crucial path-

ways for cancer, e.g., NF-kB signaling pathway, Notch signaling pathway, and apoptosis, were influenced

by these E3s (Figure 7A). Besides, these predicted hallmark ESIs show the ‘‘multi-to-multi’’ relations be-

tween E3s and substrates again. This information is important for E3s that may be taken as promising ther-

apeutic targets for cancers. It is essential to make sure that drugs targeting on certain E3s will not lead to

undesirable outcomes by disturbing unexpected ESIs for the multifunctional E3s.

Besides, we observed that BRCA1, a tumor suppressor with E3 activity, was also predicted as the substrate

for multiple E3s when the prediction was conducted based on data of TCGA-BRCA (Figure 7A). However,

some interactions were not high-confidence ones any more in other cancers (Figure 7B), implying the

assumption that predicted results for mutant substrates can be cancer type specific.
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Figure 7. High-Confidence ESIs Predicted for Cancer Hallmark Substrates

(A) The left side shows the highly correlated pathways by which the E3s (rows of the right-side matrix) may exert their ubiquitination effects. The right side

represents the high-confidence (prob>0.7) ESIs with cancer hallmark proteins as substrates, where the rows and columns stand for E3s and substrates,

respectively.

(B) Predictions for BRCA1 across different cancers.

See also Figure S6, Tables S7 and S8.
DISCUSSION

Progressive accumulation in multi-omics data (Cancer Genome Atlas Research Network et al., 2013; Ed-

wards et al., 2015) and prior biological knowledge (Chatr-Aryamontri et al., 2017; Kanehisa et al., 2017)

allow for a data-driven investigation on ESIs. Here, we aimed to construct an ESI landscape and describe

the association profiles between E3s and substrates by integrating different data resources.

Our study provides a glance at the association patterns of ESIs by combining multi-omics data and biolog-

ical knowledge, where three types of negative control were taken into consideration. An initial scale-free

ESI network composed of 1,806 reported ESIs was constructed, where plenty of cancer hallmark genes

act as hubs, and the numbers of interacting substrates for different E3s vary considerably. It may suggest

a general rule that some E3s are with a broad-spectrum function and that they can regulate various types of

substrates, whereas the others only have effects on certain substrates. Unexpectedly, although a large frac-

tion of ESIs will lead to substrate degradation (Figure 2C), E3s and substrates did not show significantly

negative correlations in the omics-based associations (Figure 3A), suggesting that no consistent expres-

sion relation exists for ESIs and indicating the heterogeneity of ubiquitination mechanism. Nonetheless,

integrating omics with network or pathway information greatly enhanced the differences between ESIs

and NRDs, and the degradation effect emerged. Notably, the pathway-based associations can help iden-

tify downstream or upstream processes such as DNA replication (Faircloth et al., 2011) and mammalian

target of rapamycin signaling pathway (Xia et al., 2016). The effectiveness and consistency of omics-driven

association features for ESI identification also indicate the reusability of cancer omics-resources.

Different from the models utilized by UbiBrowser (Li et al., 2017) where only one negative category was

considered, our model combined three negative categories covering ‘‘E3-random,’’ ‘‘Other PPIs,’’ and

‘‘E3-Indirect.’’ Both crossover and independent validations have demonstrated the model’s effectiveness,

and the inclusion of three negative categories has significantly reduced the false discovery rate. Moreover,

the false discoveries (e.g., SKP2-CUL1, FBXL19-UBE2T, Figures 5A and 5B) can be reduced further by

removing E1s, E2s, and scaffold proteins in E3 complexes from candidate substrates, as most of them

are already defined by studies on well-characterized E3s, like FBXW7 and MDM2. Taken together, our pre-

dictions can provide assistance on ESI recognition, but further experimental investigations are also

required to confirm the interactions.

Our model also exhibits effectiveness for substrates that require certain forms of modifications before

ubiquitination. Taking FBXL family as an illustration, our predictions output consistent results with a previ-

ous proteomic experimental study (Tan et al., 2013) and with a significantly improved recall (27/89 versus

5/89). When compared with UbiBrowser, our model also showed higher recall (27/89 versus 22/89), and

the superiority was even higher in terms of calculable cases (27/39 versus 13/39), suggesting the advantage

of our model, especially for substrates with knowledge background. Furthermore, a number of un-reported

predictions of ESIs for SKP2 and FBXL6 were validated by experimental investigations. All the above imply

the effectiveness of our prediction model.

In conclusion, our study provides a data-driven way to portray the ESI landscape, offering meaningful hy-

pothesis on the latent E3-substrate association patterns, promising ESIs or even regulatory mechanism. For

convenience, a website (http://www.esinet.dicp.ac.cn/home.php) is developed for browsing the multi-

scaled association features of confirmed (1,806 pairs) and proteome-wide predicted (about 2,80,000 pairs)

ESIs. It provides a valuable resource and assistance for further studies on protein ubiquitination.
Limitations of the Study

The data-driven prediction model’s application scope is limited by currently available data resources,

especially the proteomics data that is indispensable for most prediction-dependent multidimensional

features. Although we utilized a relatively comprehensive proteomics database CPTAC wherein 10,602
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proteins (about 400 E3s were included) were measured, some E3s like FBXL2, FBXL5, and FBXL22 were still

not covered.We cannot calculate themultidimensional features for these items, thus lacking predictions on

these E3s. As more proteomics data and network or pathway knowledge are being accumulated, we envi-

sion a continual optimization of the prediction results.

In addition, the fate of ubiquitinated substrates depends on the linkage of ubiquitin chains (Senft et al.,

2018). Although most of the reported ESIs can lead to substrate degradation by K48 or K11 linkage, ubiq-

uitination can also induce other outcomes, like activity or stability change. Our present prediction model

mainly focuses on whether there is an interaction between an E3 and a substrate; however, the linkage-

dependent ubiquitinated consequence was not considered. In our future studies, we will attempt to

deduce the linkage information as well.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.05.033.
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Supplemental Figures  

Figure S1. E3-pathway correlations based on proteomics. Related to Figure 3. The core 

matrix exhibits the associations between E3s and pathways. For clarity, only the top-50 

frequent pathways which can link E3s to substrates' pathways based on proteomics were 

listed out in the rows, and the corresponding top-50 correlated E3s were listed as columns. 

The left-most column shows the pathway category information. NUW annotates the Number of 

Ubiqutinated substrates on the pathWay. wcpM refers to the mean wcp (see Materials and 

methods) score across the top-50 E3s for a corresponding pathway.  

 

  



Figure S2. E3-pathway correlations based on transcriptomics. Related to Figure 3. The 

core matrix exhibits the associations between E3s and pathways. For clarity, only the top-50 

frequent pathways which can link E3s to substrates' pathways based on transcriptomics are 

listed out in the rows, and the corresponding top-50 correlated E3s are listed as the columns. 

The left-most column shows the pathway category information. "NUW" annotates the Number 

of Ubiqutinated substrates on the pathWay. "wcrM" refers to the mean wcr (see Materials and 

methods) score across the top-50 E3s for a corresponding pathway. 

 

 

  



Figure S3. Pan-cancer based multidimensional association patterns of ESIs. Related to 

Figure 3. The association features were computed based on additional 10 tumors including 

Ovarian Serous Cystadenocarcinoma (OV) (A), Bladder Urothelial Carcinoma (BLCA) (B), 

Colon Adenocarcinoma (COAD) (C), Head and Neck Squamous Cell Carcinoma (HNSC) (D), 

Prostate Adenocarcinoma (PRAD) (E), Kidney Renal Clear Cell Carcinoma (KIRC) (F), Kidney 

Renal Papillary Cell Carcinoma (KIRP) (G), Liver Hepatocellular Carcinoma (LIHC) (H), Lung 

Adenocarcinoma (LUAD) (I), Lung Squamous Cell Carcinoma (LUSC) (J). Centers of boxes 

represent median values. Bottom and top bounds of boxes represent 25th and 75th 

percentiles. Whiskers mark 1.5 times of the interquartile range. Dots represent points falling 

outside this range. *: p<0.01, Wilcoxon-test for the differences comparing to the ESI dataset. 

 

  



Figure S4. Performance of classifiers trained for FBXLs. Related to Figure 5. The same 

ESIs were used as positive samples, while (A) "E3-random", (B) "Other PPIs", and (C) 

"E3-Indirect" pairs were respectively taken as negative samples, and samples with FBXL 

proteins were removed. The horizontal and vertical axes represent the number of selected 

features and the corresponding average AUROC got from a 10-fold crossover validation. For 

each type of RFE-RFs, 5 classifiers were constructed by replacing negative samples. (D) The 

best performance features for each classifier in (A), (B) and (C).  

 

  



Figure S5. Experimental validations of high-confident ESIs. Related to Figure 6. (A) 

Validations on interactions between CCNA2 and FBXLs. HEK293T cells were transfected with 

SFB-tagged RFP, SKP2, FBXL6 and FBXL15. SFB-tagged proteins were purified with S 

protein beads and immunoblotted with antibodies against substrate of CCNA2 and FLAG. (B-D) 

Validations on interactions between substrates (B) Casp3-V5 was cotransfected with empty 

vector or SFB-SKP2 or SFB-FBXL6 into HEK293T cells. Western blotted with antibodies 

against FLAG and Caspase3. CDK4-V5 (C) or VDAC2 (D) were cotransfected with empty 

vector or SFB-FBXL6 into HEK293T cells. Western blotted with antibodies against FLAG and 

V5. (E) SFB-VDAC2 cotransfected with MYC-FBXL6, HA-Ub into HEK293T cells. Cells were 

treated with 20 M MG132 for 4 h before collection. VDAC2 was purified with S-beads and 

western blotted with antibodies against HA, Myc and FLAG. All experiments have three 

biological replicates, and the most representative image is shown. 

 



Figure S6. Performance of the final classifiers. Related to Figure 7. All calculable ESIs 

were included as positive samples and the same number of (A) "E3-random", (B) "Other PPIs", 

and (C) "E3-Indirect" pairs were respectively taken as negative samples. The horizontal and 

vertical axes represent the number of selected features and the corresponding average 

AUROC got from a 10-fold crossover validation. For each type of RFE-RFs, 5 classifiers were 

constructed by replacing different negative samples. (A) The best performance features for 

each classifier in (A), (B) and (C).  

 

  



Supplemental Tables 

Table S5. Performance of classifiers based on different cancers. Related to Figure 4.  

NC stands for the number of calculable ESIs based on the data of certain cancer. AUC1, 

AUC2 and AUC3 are respectively got from RFs trained by "E3-random","Other PPIs" and 

"E3-Indirect" samples. T: Transcriptomics; P: Proteomics. 

Cancer NC AUC1 AUC2 AUC3 Omics 

BRCA 576 0.87 0.86 0.79 T+P 

OV  155  0.91  0.86  0.78 T+P 

BLCA 808  0.85  0.75  0.74  T 

COAD 808  0.84  0.75  0.71  T 

HNSC 809 0.85  0.76  0.70 T 

LIHC 809  0.85  0.77  0.74  T 

LUAD 808  0.85  0.78  0.75  T 

LUSC 809  0.87  0.79  0.74  T 

PRAD 810  0.85  0.77  0.74  T 

KIRC  811  0.85  0.77  0.69  T 

KIRP 811  0.84  0.77  0.73  T 

 

  



Transparent Methods 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Anti-flag (M2) Sigma-Aldrich F3165-5MG 

Anti-V5 Invitrogen R960-25 

Anti-CDK4 Cell Signaling Technology 12790 

anti-caspase-3 Cell Signaling Technology 9662S 

Anti-DDB1 Proteintech 11380-1-AP 

anti-cyclin A2 Proteintech 18202-1-AP 

anti-HSP90AA1 Proteintech 13171-1-AP 

anti-HSPD1 Proteintech 15282-1-AP 

anti-VDAC1/2 Proteintech 10866-1-AP 

anti-HA Proteintech 51064-2-AP 

anti-Myc Proteintech 16286-1-AP 

Deposited Data 

Transcriptomics data  Cancer Genome Atlas 

Research et al., 2013 

http://cancergenome.nih.go

v/ 

Proteomics data  Edwards et al., 2015 https://cptac-data-portal.ge

orgetown.edu/cptacPublic/ 

Experimental Models: Cell Lines 

HEK293T American Type Culture 

Collection 

HEK293T 

Software and Algorithms 

R  https://www.r-project.org 

Cytoscape Shannon et al., 2003 http://www.cytoscape.org/ 

R package of Random 

forest 

Liaw, 2002  

R package of caret Kuhn, 2008  

R package of DMwR Torgo, 2010  

Other 

E3Net Han et al., 2012 http://pnet.kaist.ac.kr/e3net/ 

hUbiquitome Du et al., 2011 http://202.38.126.151/hmdd/hubi

/ 

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/


Uniprot The UniProt, 2017 http://www.uniprot.org/ 

BioGrid Chatr-Aryamontri et al., 

2017 

https://thebiogrid.org/ 

KEGG Kanehisa et al., 2017 http://www.kegg.jp/ 

UbiBrowser Li et al., 2017 http://ubibrowser.ncpsb.org/hom

e/index 

Website of known and 

predicted ESIs 

This paper http://www.esinet.dicp.ac.cn/ho

me.php 

Association features of 

ESIs and three negative 

categories 

This paper http://www.esinet.dicp.ac.cn/dow

nload.php 

ESI collection 

To be as comprehensive as possible, a positive reference dataset of ESIs were mainly 

integrated from four databases: E3Net(Han et al., 2012), hUbiquitome (Du et al., 2011), 

Uniprot (The UniProt, 2017) and BioGrid (Chatr-Aryamontri et al., 2017). (1) E3Net mainly 

collected the ESIs from the MEDLINE literatures and UniProt by a text mining method, which 

extracted E3s and substrates with definite textual description on the specificities between E3s 

and their substrates. We extracted all of the E3-substrate pairs from E3Net as the main part of 

the positive dataset. (2) From another text-mining based database hUbiquitome, which 

collected experimentally validated protein ubiquitination cascades (E1-E2-E3-substrate 

cascades), we also extracted the E3-substrate interactions. (3) Integrating all the E3s recorded 

by E3Net, hUbiquitome as well as UbiNet (Nguyen et al., 2016), we got 589 possible E3s. To 

complement newly-updated ESIs, we searched the Uniprot (release-2017_06) for these E3s 

and extracted E3-substrate pairs which were with definite textual description that certain 

protein was ubiquitinated by certain E3. (4) Additional ESIs were extracted from the physical 

PPIs recorded in BioGrid (version: BIOGRID-MV-Physical-3.4.152) by strict filtering rules: with 

at least one E3, recorded as "physical interactions", recognized by "Low-Throughput" methods, 

modified by "Ubiquitination", and with explicit literature evidences. Besides, ESIs summarized 

in a previous review (Wang et al., 2014) were also included. In total, 1806 pairs of E3s and 

substrates (Table S1) in human were collected as the positive reference dataset. 

Control set collection 

Three categories of negative cases were prepared. The first one ("E3-random") contained 

10000 pairs of randomly paired E3s and proteins (Table S2). The second one ("Other PPIs") 

incorporated 10000 pairs of randomly selected ubiquitination-independent PPIs from BioGrid 

(Table S3). The last one ("E3-Indirect") encompassed 10000 pairs of indirect E3 regulation 



relations which were randomly sampled from the two-step distant E3s and their indirectly 

connected proteins on the PPI network (Table S4). During sampling, known ESIs and 

redundant cases were excluded. 

Cancer hallmark subgraph extraction 

The cancer hallmark subgraph (Figure 2C) was extracted as a representative profile to show 

part of the ESI network. To highlight the functional mechanism of ESIs in cancer, this subgraph 

was confined to two requirements. Firstly, the nodes should be recorded in the COSMIC 

database which focuses on cancer hallmark genes. Secondly, literature investigations were 

conducted to obtain the ubiquitination fate of the substrate on each edge, retained edges 

should be annotated with explicit ubiquitination fate, either degradation or non-degradation, for 

corresponding ESIs (see Table S1 for specific evidences of different edges). 

Omics data preparation 

For transcriptomics, normalized RNA-seq data of different cancers in TCGA (Cancer Genome 

Atlas Research et al., 2013) were downloaded by an R package – TCGAbiolinks (Colaprico et 

al., 2016). For each cancer, the RNA-Seq data contained mRNA expressions of 20501 genes 

across tumor and normal tissues, a fraction of the tumor tissues can be matched with normal 

ones which were taken from the same patients. Proteomics data for BRCA and OV were 

downloaded from CPTAC (Edwards et al., 2015), where the protein expressions were 

quantified by an isobaric peptide labeling approach (iTRAQ). For BRCA, 10599 proteins were 

quantified, while 6160 proteins were measured for OV. 

Omic-based associations 

Four forms of omic-based associations were considered. PCT (A, B) / RCT (A, B) calculated 

the spearman correlation coefficient (SCC) between A and B based on their protein / mRNA 

expressions in tumor tissues. RCN (A, B) calculated the SCC between A and B based on the 

mRNA expressions in normal tissues. RCF (A, B) calculated the SCC between A and B 

regarding the fold change of mRNA-expressions in tumor tissues relative to matched normal 

tissues. 

Network-based associations 

Three networks were considered: the PPI network was composed of 302868 

experimentally-obtained PPIs in BioGrid; the mRNA/protein co-expression network was 

constructed by connecting two genes/proteins with SCCs larger than certain threshold 

(selected as 0.3, since the most significant difference between PRDs and NRDs will be 

observed based on the threshold of 0.3). 

Two forms of network-based associations were computed. On one hand, the common 

neighbor rate (CNR) between protein a and b on network G was calculated as: 



||Neis(b,G)||Neis(a,G)
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baCNRG
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where Neis (*,G) represented the neighbors of node * on network G. On the other hand, 

co-expression and PPI networks were integrated, and the common neighbor rate of 

co-expressed factors on PPI network was computed: 
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where GCXNR/GCXNR denoted the mRNA/protein co-expression network, HN (*,G) represented 

the highly co-expressed neighbors of node * on network G, and only the top-10 co-expressed 

factors were retained. 

Pathway-based associations 

Pathway-based associations were applied to estimate whether one E3 was highly correlated 

with certain pathway its substrates belong to, or vice-versa. The correlation between protein a 

and pathway P with N member genes was calculated as: 
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where m is a member gene of pathway P, wcr and wcp were respectively calculated from 

transcriptomics and proteomics data; particularly, if protein a is also a member of pathway P, it 

will be eliminated from the pathway during calculation. 

Depending on pathways of E3 and substrate respectively, four forms of pathway-based 

associations were generated: 

 }P)|b{wcr(a,PWCR(a,b) ii  max  

)P)|b(wcp(a,PWCP(a,b) ii  max  
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where WCR and WCRS integrated transcriptomics with pathways, WCP and WCPS integrated 



proteomics with pathways.  

Permutation test was applied to examine the specificity of pathway-based associations. 

Taken WCR (a, b) as an illustration, if pathway Pmax has the highest correlation with protein a 

among all known pathways of protein b, we randomly permutated the member genes of Pmax 

by the same number of other genes, and calculated a new wcr (a, Pmax'), repeated this process 

100 times, and the ratio of decreased scores was calculated as WCRP (a, b). The higher 

WCRP (a, b) was, the less likely b was related with a through a pathway with the same size of 

Pmax by chance. Likewise, WCPP, WCRSP, WCPSP were calculated as well. 

Feature selection 

Integration of 4 omic-based, 5 network-based and 8 pathway-based association features 

generated a 17-dimensional feature description for all pairwise proteins. To identify which 

features are more effective in distinguishing ESIs from NDRs, we used recursive feature 

elimination (RFE) algorithm (Guyon et al., 2002), in which each feature was ranked according 

to its importance for feature selection. It was carried out based on an R package of caret (Kuhn, 

2008). 

Classification algorithm 

Together with the RFE feature selection, Random forest (RF) (Breiman, 2001) was applied to 

examine feature importance and train classifiers. This algorithm was implemented by an R 

package of randomForest (Liaw, 2002). Basically, three types of reverse-feature-reduction 

based random forest classifiers (RFE-RFs) were trained, where the positive references were 

the same, but the negative ones were from three different categories respectively. To 

encompass more negative samples, for each type of RFE-RFs, 5 classifiers were built using 

different negative samples. 

Cross-over validation and independent validation 

The model performance was quantified by AUROC (Lasko et al., 2005) through both 10-fold 

cross-over validations and an independent validation. During the 10-fold cross-over validation, 

to keep sample balance, the same number of ESIs and certain type of NRDs were randomly 

selected from the collected ESIs and NRDs as the cross-over validation set which was 

separated into 10 independent parts, each single part should be used as the testing dataset 

once, and the other 9 were used to train the model, thus the training and testing were 

conducted 10 times. Since the number of NRDs was extremely larger than ESIs, the 

cross-over validation was repeated 5 times by replacing non-redundant NRDs. Regarding 

three categories of NRDs, three types of classifiers were trained and tested by the cross-over 

validations. From the rest samples, another dataset composed of certain number of ESIs, 

"E3-random" pairs, "Other PPIs", and "E3-indirect" pairs was collected as the independent 

validation set. 



F3-Score 

F-Score (Maratea et al., 2014) is utilized to estimate the performance of a probability threshold 

for discriminating ESIs in predictions. It is computed as: 

recallprecision

recallcision
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where β was defined as 3 here, weighing recall higher than precision, thus F3 was computed. 

The rationale lies in that the number of possible NRDs was extremely higher than ESIs which 

were only partially known, emphasis on recall will avoid the overlook of novel predicted ESIs. 

Imputation methods for missing values 

Before prediction, we calculated the multi-dimensional features for candidate samples; 

however, due to data limitation, some samples could not be fully-described by 17 dimensional 

features. For a sample with missing features, if its missing ratio was less than 30%, the KNN 

imputation algorithm which predicted missing values according to weighted average of the K 

nearest neighbors was employed to fill the missing value; otherwise, the samples were omitted 

from predictions. The KNN imputation (distances to others were calculated based on only 

known features) was performed by R package of DMwR (Torgo, 2010). 

Predict novel ESIs 

Candidate ESIs were prepared before prediction. For an investigated E3, 6686 genes which 

were included in at least one pathway and measured in transcriptomics or proteomics were 

paired with the E3 as candidate ESIs; for an investigated substrate, 589 E3s that we have 

collected (Table S7) were paired with the substrate as candidate ESIs. 

Three types of classifiers with the purpose to distinguish ESIs from different categories of 

NRDs were trained before prediction, and each type contained 5 parallel repetitions (each 

repetition was trained by replacing non-redundant NRDs within the same category). For the 

candidate ESIs, we calculated the 17-dimensional association features, and filled up missing 

values. Then, an ensemble classification model was applied on these candidates to predict the 

probability of being ESI as: 
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where i represents the type of classifiers, k represents the repetition, auc represents AUROC 

of a classifier, and probi,k was the predicted probability for the input pair based on the k-th 

classifier of type i. 

Experimental antibodies 

Anti-flag (M2) (F3165-5MG, 1:3,000 dilution) monoclonal antibody was obtained from 

Sigma-Aldrich. Anti-V5 (R960-25, 1:1,000 dilution) monoclonal antibody was purchased from 

Invitrogen. Anti-CDK4 (12790, 1:1,000 dilution) and anti-caspase-3 (9662S, 1:1,000 dilution) 



polyclonal antibodies were purchased from Cell Signaling Technology. Anti-DDB1 (11380-1-AP, 

1:1,000 dilution), anti-cyclin A2 (18202-1-AP, 1:1,000 dilution), anti-HSP90AA1 (13171-1-AP, 

1:1,000 dilution), anti-HSPD1 (15282-1-AP, 1:1,000 dilution), anti-VDAC1/2 (10866-1-AP, 

1:1,000 dilution), anti-HA (51064-2-AP, 1:2,000 dilution) and anti-Myc (16286-1-AP, 1:2,000 

dilution) polyclonal antibodies were purchased from Proteintech. 

Plasmids constructs, cell culture and transfection 

All the expression vectors used in this study (including SFB-SKP2, SFB-FBXL6, SFB-FBXL15, 

SFB-CCNA2, SFB-VDAC2, Caspase3-V5, CDK4-V5, VDAC2-V5, Myc-SKP2 and Myc-FBXL6) 

were generated by polymerase chain reaction (PCR) and then subcloned into pDONR221 

vector as the entry clones using Gateway Technology (Invitrogen). Subsequently, the entry 

clones were recombined into gateway destination vectors fused with various tags (SFB, V5 or 

Myc). The FBXL6 shRNAs were purchased from Dharmacon. HEK293T cells were purchased 

from American Type Culture Collection (ATCC) and cultured at 37°C under humidified air 

containing 5% CO2 in Dulbecco’s modified Eagle’s medium (Gibco, Rockville, MD) 

supplemented with 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin 

antibiotics. Plasmid transfection was performed with the polyethylenimine (PEI) reagent as 

previously described (Longo et al., 2013). 

Tandem affinity purification of SFB-tagged protein complex 

For affinity purification experiments, HEK293T cells were harvested after transfection for 48 h 

and subjected to lysis in NETN buffer (100 mM NaCl, 0.5 mM EDTA, 20 mM Tris-Cl, 0.5% 

Nonidet P-40) with protease and phosphatase inhibitors at 4°C for 1 h. Supernatants were 

obtained after centrifugation (13,000 rpm) at 4°C for 15 min and then incubated with S protein 

beads (Millipore) overnight at 4°C. The beads were washed three times with NETN buffer at 

room temperature. Bound protein complex were released from the beads after boiling with 

4×SDS loading buffer for 10 min and applied for Western blot analysis. 

In vivo ubiquitination assay and half-life assay 

HEK293T cells were plated in 10-cm dishes and cultured until cell confluence came up to 80%. 

The cells were transfected with the indicated plasmids and incubated for 36 h and then treated 

with MG132 (20 µM) for 5 h prior to collection. The cells were lysed in NETN buffer. Lysates 

were incubated with S protein beads for affinity purification as described earlier. Western blot 

was applied onto the pulldown protein complex for ubiquitination analysis of predicted 

substrates. For the half-life assay, HEK293T cells were transfected with empty vector (EV), 

SFB-SKP2 or SFB-FBXL6 along with CCNA2-V5. Forty-eight hours later, cells were treated 

with cycloheximide (CHX, 100 M) for the indicated time points, and cell lysates were probed 

with CCNA2 antibody. 

Network visualization. 



Network visualization was performed with Cytoscape (Shannon et al., 2003). 

Statistical analysis. 

Differences between ESIs and NRDs on each association feature were examined by 

Wilcoxon-test, and differences between node degrees of E3s and substrates were examined 

by t-test. Statistical test and other computations were all conducted by R.  

Data and software availability. 

Most data that support our conclusion have been contained in supplemental tables or 

website(http://www.esinet.dicp.ac.cn/home.php). The multidimensional association information 

can be browsed for both confirmed and inferred ESIs on the website. Other data produced by 

different stages of the computational processes are also available upon request. All 

computational codes are available on request. 
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