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ABSTRACT: In this work, an artificial neural network was first achieved and optimized for evaluating product distribution and
studying the octane number of the sulfuric acid-catalyzed C4 alkylation process in the stirred tank and rotating packed bed. The
feedstock compositions, operating conditions, and reactor types were considered as input parameters into the artificial neural
network model. Algorithm, transfer function, and framework were investigated to select the optimal artificial neural network model.
The optimal artificial neural network model was confirmed as a network topology of 10-20-30-5 with Bayesian Regularization
backpropagation and tan-sigmoid transfer function. Research octane number and product distribution were specified as output
parameters. The artificial neural network model was examined, and 5.8 × 10−4 training mean square error, 8.66 × 10−3 testing mean
square error, and ±22% deviation were obtained. The correlation coefficient was 0.9997, and the standard deviation of error was
0.5592. Parameter analysis of the artificial neural network model was employed to investigate the influence of operating conditions
on the research octane number and product distribution. It displays a bright prospect for evaluating complex systems with an
artificial neural network model in different reactors.

1. INTRODUCTION

As the number of motor vehicles increases, the gasoline quality
of vehicles is of great significance to the environment.1 Alkylate
oil is considered as a typical clean fuel blending component
with a low-sulfur content and high research octane number
(RON),2 which is obtained from the alkylation process of
isobutane and butene catalyzed by strong acid. Currently,
large-scale industrial plants still adopt concentrated sulfuric
acid (H2SO4) as the mainstream alkylation catalyst.3 The
alkylation process has several rapid reactions with a large
number of products, many of them isomers, which make the
reaction network and product distribution not easy to deal
with,4 and the trimethylpentanes (TMPs, RON = 100−109.6)
are main products.5 Besides, there are various byproduct
components with different RONs, including C5−7 (light ends,
LEs, RON = 24.8−93.0), dimethylhexanes (DMHs, RON =
55.5−76.3), methylheptanes (RON = 21.7−26.8), and C9+
(heavy ends, HEs, RON = 70−91).6 Moreover, RON is
regarded as a core index of alkylate oil, and it can be measured
by running the fuel in a cooperative fuel research engine with a

standard test condition.7 This method is time-consuming,
expensive, and labor-intensive. In the lab, product components
are usually analyzed by gas chromatography, and RON is
calculated by eq 1

∑= × yRON RONi i (1)

where RONi is the RON of each component and yi represents
the yield of each component.6

Owing to the low reciprocal solubility of hydrocarbons and
H2SO4, the isobutane/butene alkylation system is heteroge-
neous,8 and reactions occur either in the acid phase or phase
interface,9 which lead to the complex product component
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distribution. Therefore, mass transfer among the different
phases plays a vital role in the alkylation process.10 Various
reactors have been applied to intensify alkylation processes,
such as the stirred tank reactor (STR), STRATCO horizontal
stirred reactor,8 eductor reactor,11 liquid−liquid cyclone
reactor,12 microstructured reactor,13 rotating packed bed
(RPB),14 and so forth. Lots of research studies indicate that
the RON and product components are dramatically affected by
feedstock compositions, reactor structure, operating condi-
tions, and so on. Thus, some mathematical and correlation
models were proposed for the estimation on RON and
distribution of products in the specified reactors. Nurmakanova
et al. calculated the thermodynamic characteristics and
reaction kinetics factors using density functional theory
(DFT) to build a mathematical model of isobutane alkylation
with olefins catalyzed by H2SO4 in a hollow horizontal
cylinder, which was used to predict the product distribution of
alkylation caused by the changes in the feedstock composi-
tions.15 Ivashkina et al. also employed the DFT calculation and
developed a mathematical model in a STRATCO reactor to
define the influence of feedstock compositions on product
distribution and RON of alkylate oil.16 Besides, Liu et al.
established a correlation model of the ionic liquid catalyzed
alkylation process in STR, and the effects of different operating
conditions on the product distribution and RON were
associated effectively in this model.6 These mathematical
models demanded plenty of foundational data based on
thermodynamic characteristics, reaction kinetics factors,
reaction mechanisms, and reactor characteristics, which were
difficult to be acquired entirely for complex alkylation
processes. Various reactors have different equipment structures
and hydrodynamics parameters. Hence, the existing correlation
model relied heavily on each variable used and only worked for
the specified reactor, where the RON and product components
are simply related to operating conditions. In the view of
different alkylated reactors, three features significantly
influence the accurate prediction of the alkylation process,
which is given as follows: (1) the different feedstock
components and operating conditions on alkylation pro-
cesses;17 (2) the intricate reaction mechanisms for complex
product distribution;18 and (3) the diverse mass transfer
characteristic of each reactor. Therefore, the RON and product
distribution in different research systems is a multidimensional
nonlinear issue, and a novel model is worthy of construction
for effectively solving multidimensional nonlinear problems.
Deep learning has made a significant progress in addressing

the issues that have been resisting the artificial intelligence
community for many years,19 and it has been proven to be
excellent in discovering a intricate structure of the multi-
dimensional data.20,21 There were kinds of successful
applications in deep learning, such as crystal identification
and discovery,22 thermodynamic properties prediction for
complex materials,23 predictions of chemical reactions,24

process performances,25−31 and so forth. The artificial neural
network (ANN), as a typical sort of deep learning, is
prevalently and widely employed in the chemistry and
chemical industry.32−40 The ANN can learn and adapt in
response to the given input−output patterns and adjust itself
to minimize the fitting error. Furthermore, the ANN can
ascertain the essential of relationships.41 When the ANN was
applied, there is no need to consider the inherent mechanism
of processes or phenomena. Some highly nonlinear, multi-
dimensional, and complex problems can be solved efficiently

by the ANN model. As a part of intelligent engineering, the
ANN displays the tremendous potential for different chemical
systems via the training of experimental data.
In this work, the ANN model was first adopted and

optimized to evaluate the C4 alkylation process catalyzed by
H2SO4 in the STR and RPB. Ten-independent input
parameters, including feedstock compositions, operating
conditions, and reactor types, were involved in the ANN
model. Three significant elements of the ANN model, which
contained algorithm, transfer function, and framework, were
investigated to select the most suitable model. The product
distribution and RON of the H2SO4-catalyzed isobutane/
butene alkylation process both in the STR and RPB were
predicted, and the parameter analysis was conducted.

2. MODEL SECTION
As a basic building block, we used a fundamental ANN model,
which had the feedback and feedforward capabilities to fitting
the multidimensional and nonlinear issue. The ANN frame-
work and result analysis process were stated in the following
text.

2.1. Data Preparation. Limited by the publicly reported
data, the feasibility of the ANN model as a general model for
multiple reactors was demonstrated by taking the STR and
RPB data as examples. 36% data points were obtained in the
STR, and 64% data points were obtained in the RPB.14,42 The
detail data sets are given in Tables S1−S3 of the Supporting
Information. The structures of STR and RPB are presented in
Figure 1. The operating conditions and reactor types were

considered as input parameters of the ANN model, and the
detailed data have been listed in Table 1. Particularly, as the
input parameters, the mixing state in STR was set as Boolean,
who only has the value of true or false. The true represented
the mixing with feeding in STR, and the false represented the
mixing after feeding in STR.
RON was determined by the product distribution of alkylate

oil. In this work, the yield of C5−7 (yC5−7
), C8 (yC8

), C9+ (yC9+
),

TMPs (yTMPs), and DMHs (yDMHs), the yield ratio of TMPs to
DMHs (TMPs/DMHs), and RON were considered as the

Figure 1. Schematic diagram of STR and RPB. (a) Structure diagram
of stirring paddle and vessel body in STR; (b) structure diagram of
RPB and size of packing.
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output parameters. The relationship of the product distribution
is shown in eq 2. TMPs and DMHs were the two components
with the highest and lowest RON in octane, respectively, and
their ratio was considered as eq 3.

+ + =
− +

y y y 100%C C C5 7 8 9 (2)

=
y

y
TMPs/DMHs TMPs

DMHs (3)

Equations 2 and 3 reveal the two simple linear programming
problems in this multidimensional issue. Hence, yC5−7

, yC9+
,

yTMPs, yDMHs, and RON were training in this model. TMPs/
DMHs and yC8

were marked as checking parameters through
linear programming. At first, the absolute value of the
maximum fitting error was required below 100% for the
preliminary selection. When the most maximum error absolute
value of some ANN models below 50% frequently, the check
standard limited as 50%. In other words, if the absolute value
of maximum error over 50%, the ANN results would be given
up and retrained again.
In the training step, the data were divided into the training

(70%), testing (15%), and validation (15%) groups, randomly.
All data were normalized in −1 to 1 at first avoiding a large gap
among the original data. The mapping relations of data
normalization were retained to reverse the fitting results.
2.2. ANN Framework. The ANN model was trained by

the most input data with the corresponding output data
(input/output pairs), which obtained from literatures.14,42

Each set of inputs produced a specific set of target outputs.43

Figure 2 shows the calculation flow chart of the ANN model.
It is well known that main elements of the ANN, such as
transfer function, algorithm, and framework,43 which needs to
be considered carefully during the process of designing and
training. The term “framework” refers to the layer number of
the ANN and the neuron number of each layer. In general, the
layers are consisted of an input layer, one or more hidden
layers, and an output layer. The number of neurons in the
input layer and the output layer is determined by the numbers
of input and output parameters, respectively. In order to
explore the optimal framework, the number of neurons in each

hidden layer and the number of the hidden layers need to be
determined. The nodes are similar to the neurons of the
nervous system of humans communicating with the brain. The
nodes of the input layer triggered signals to the nodes of the
hidden layer, and the hidden layer may be single or
multilayered. Afterward, these signals from the hidden nodes
propagate to the output layer and generate the output signal.44

The training process consists of adjusting the weight associated
with each connection between neurons until the predicted
outputs for each set of input−output data were as close as
possible to the experimental data.
The most widely widespread use of the network type is a

multilayered feedforward network trained with the back-
propagation learning algorithm. The back-propagation learning
algorithm is based on the selection of a suitable error function,
whose values are determined by the experimental and
predicted outputs of the network.

2.3. Statistical Analysis. The mean square error (MSE)
was employed as a standard index to investigate the model
accuracy, which can be computed via eq 4.

=
∑ −= s e

n
MSE

( )i
n

i i1
2

(4)

where si represents the predicted value, ei means the
experimental value (including yC5−7

, yC8
, yC9+

, yTMPs, yDMHs,
TMPs/DMHs, and RON), and n is the number of the
aggregate data.
The definition of the correlation coefficient (R2) was on

behalf of the percentage of the predicted value matching the
experimental value. R2 is determined as follows

=
∑ − ̅
∑ − ̅

=

=

R
s e

e e

( )

( )
i
n

i

i
n

i

2 1
2

1
2

(5)

where e ̅ shows the average value of the experimental results. R2

is always between 0 and 1. In general, the higher the R2, the
better the model fits the data.
The standard deviation of error (STDerror) can be regarded

as an essential indicator of the estimation and was mostly used

Table 1. Input Parameters of the ANN Model

no. input parameters ranges data type

1 reaction time(t) 2−15 min in STR
2−10 min in RPB

numeric

2 temperature (T) 0−8 °C numeric
3 volume ratio of acid to

hydrocarbon (A/HC)
0.5−2 numeric

4 stirring speed of STR
(NSTR)

0−1400 rpm numeric

5 rotational speed of RPB
(NRPB)

none or 150−1200 rpm numeric

6 pressure (P) 0.3−1 MPa numeric
7 mole percentage of

isobutane (n1)
86.5−96.8% numeric

8 mole percentage of
2-butene (n2)

0−13.5% numeric

9 mole percentage of
isobutene (n3)

0−3.2% numeric

10 mixing with/after feeding
in STR (mSTR)

mixing with feeding or mixing
after feeding in STRa

Boolean

aIn the STR, mixing with feeding or mixing after feeding would affect
the product distribution.42

Figure 2. Calculation flow chart of the ANN model. (k1
i and b1

i are
the weights and biases of the first hidden layer; kj

u and bj
u are the

weights and biases of each next hidden layer; ko
v and bo

v are the
weights and biases of the output layer).
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by researchers, which refers to a group of statistics that provide
information about the dispersion of the predicted values.29

STDerror was calculated as given below

=
∑ −

−
=

n
STD

(error error)

1
i
n

error
1

2

(6)

where the error indicates the residual of the predicted and
experimental value and error means the average of errors.

3. RESULTS AND DISCUSSION
We used a workstation (Dawning Information Industry Co.,
LTD.) with double Intel Xeon Silver 4116 CPUs (2.1 GHz
and 12 cores 24 threads), 128 GB DDR4 2666 MHz error
correcting code memory, and a NVIDIA Quadro P2000 GPU.
The data normalization, ANN model realization, and result
check were performed in MATLAB.
3.1. Transfer Function Choosing. The transfer function

was the ligament between the upper and lower neural network
layers. The tan-sigmoid transfer function, log-sigmoid transfer
function, and purelin function were considered in this model,
and the functions were as follows

‐ =
+

−−f xtan sigmoid transfer function: ( )
2

1 e
1i x2 i

(7)

‐ =
+ −f xlog sigmoid transfer function: ( )

1
1 ei xi (8)

=f x xpurelin function: ( )i i (9)

where xi was input data, f(xi) stood for on behalf of output
data.
From the input layer to the final hidden layer, the data were

learned and feedbacked to modify the weights and biases.
Nonlinear functions were more suitable in these parts. Because
of the input-data normalization in −1 to 1, only the tan-
sigmoid can hold the data integrity. Herein, the tan-sigmoid
was chosen as the transfer function from the input layer to the
hidden layers. The output layer was just a data export without
data learning ability, which means that the purelin function was
an appropriate choice between the final hidden layer and the
output layer.
3.2. Algorithm Selection. As the core of the model, the

algorithm should be considered cautiously. There were 13
algorithms listed in Table 2. Besides, the number of neurons in
the first hidden layer was dependent on both the number of
inputs and inner relationship of inputs. Each neuron covered
some characteristic of all the inputs. When several input
variables had the apparent linear fitting relationship, the
number of neurons can be reduced. In the alkylation process,
the effects of each operating condition are nonlinear and
irreplaceable. Hence, the inputs constituted a multidimensional
and multicharacteristic matrix and needed at least 10 neurons
to achieve the ANN model. In order to achieve the quick
calculation and comparison,43 an ANN model with 10 nodes in
the single hidden layer was applied to test 13 algorithms.
Figure 3 displays the MSEs of different algorithms in the

ANN model with the tan-sigmoid as transfer function, and the
separated figures are listed in Figure S1 in the Supporting
Information. From the comparison of algorithms, the MSE
curves of BFG, CGF, CGB, SCG, and OSS had some similar
features, where the training MSE curves were divergent and the
testing MSE curves were prone to fall in local nadir. Local

nadir affected the convergence significantly, and it was difficult
to seek out the authentic convergence. The GD and its
derivative algorithms (GDX, GDM, and GDA) had the
problem of slow convergence. Besides, the MSE curves of
GDA were oscillating. The CGP and RP were also not
recommended because they both had the issue that the testing
MSE curves had local valley and the training MSE curves did
not converge totally. Based on the LM model, training MSE
had a sharp gradient decline, which had the apparent local
valley point and influenced the training MSE curve to
converge. However, testing the MSE curve was divergent
directly. The convergence speed of the BR algorithm was fast,
and the BR model was not dropped into the local nadir.
Hence, BR was the optimal choice, and it was adopted in the
following models. The training MSE was 1.624 × 10−3 and the
testing MSE was 5.245 × 10−2, and all the MSEs of each
algorithm are presented in Table 3.

3.3. Network Optimization. Because the algorithm was
determined, the number of layer nodes and number of hidden
layers were further optimized. ANN models with different
numbers of nodes and different hidden layers were investigated
in Table 4. When node numbers in the first hidden layer
increased to 20, the max error was decreased from 46 to 40%
of 10 nodes. The training MSE of 20 nodes was close to the
model of 10 nodes, but the testing MSE decreased to 3.159 ×
10−2. Therefore, 20 nodes in the first hidden layer were the
optimal choice. Although the number of nodes in the first
hidden layer increased, the model still cannot fit well with the
data due to the fitting error and the MSEs were large.
Afterward, double hidden layers were explored with 20 nodes
in the first layer. As a consequence, the model with 30 nodes in
the second layer has the lowest MSE and deviation. The max
error declined to 22%. The training MSE was only 5.8 × 10−4,
and the testing MSE dropped to 8.66 × 10−3. When nodes in
the second hidden layer were further added, the overfitting
phenomenon would occur in the model. The overfitting would
appear excellent fitting of training data, but it would lose the
equal fitting effect of the testing data. Therefore, the optimal
ANN model consists of 20−30 hidden topological layers, tan-
sigmoid transfer function from the input layer to the second
hidden layer, and purelin transfer function in the output layer.

Table 2. Thirteen Tested Algorithms in the ANN Model

no. algorithm name abbreviation

1 BFGS quasi-Newton backpropagation BFG
2 conjugate gradient backpropagation with Powell−Beale

restarts
CGB

3 conjugate gradient backpropagation with
Fletcher−Reeves updates

CGF

4 conjugate gradient backpropagation with Polak−Ribieŕe
updates

CGP

5 gradient descent backpropagation GD
6 gradient descent with adaptive learning rate

backpropagation
GDA

7 gradient descent with momentum backpropagation GDM
8 gradient descent with momentum and adaptive learning

rate backpropagation
GDX

9 Levenberg−Marquardt backpropagation LM
10 one-step secant backpropagation OSS
11 resilient backpropagation RP
12 scaled conjugate gradient backpropagation SCG
13 bayesian regularization backpropagation BR
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Figures 4 and 5 exhibit convergence and deviations of the
double hidden layer model with 20 and 30 nodes. As displayed
in Figure 4, the MSE converged within 2245 epochs. The
training MSE and testing MSE were 5.8 × 10−3 and 8.66 ×
10−3, respectively. The linear correlation equation between
experimental results and ANN predicted values was y =
0.9992x (fairly close to y = x), and R2 was 0.9997. STDerror of
this model was 0.5592. Consequently, the model output was
fitting to the experimental data dramatically. In Figure 5a, the
deviation among the whole experimental data and ANN
predicted data was within ±22%. Figure 5b−h representsde-
viations of yC5−7

, yC8
, yC9+

, RON, yTMPs, yDMHs, and TMPs/
DMHs. Especially, the deviation of RON was within ±2%, as

presented in Figure 5e. Herein, an optimal ANN model was
completed as the network topology of 10-20-30-5 with
Bayesian Regularization backpropagation and tan-sigmoid
transfer function.
Furthermore, the influence of input parameters on output

parameters was obtained by parameter analysis from the
optimal ANN model. Parameter analysis was obtained by
multiplying weights between each layer, as shown in eq 10,28

and it is shown in Figure 6.

∂
∂

= k k k
output
input 1

i
j
u

o
v

(10)

The numerical value of parameter analysis indicated whether
the input parameter has a positive or passive effect on the
output parameter including the influence degree. According to
weights comparison of parameter analysis in RON, A/HC > t
> NRPB > n1 ≈ P ≈ NSTR (positive effects), and n3 > T > n2
(negative effects). By contrast, A/HC and t has dramatic
effects on the RON. In the view of current reports and
industrial processes, A/HC was usually around 1.8,45−47

However, the mass transfer and micromixing of the reactor
would affect t; thus, 5−6 min was the optimal choice both in
RPB and STR.14,42 Then, raising the ratio of isobutane to
butene (n1/n2 or n1/n3), increasing NRPB, and decreasing T
were important for producing the better alkylate oil. When the
weight of n3 is larger than that of n2, 2-butene was beneficial for
obtaining higher quality alkylate oil rather than isobutene. In
Figure 5, mSTR was beneficial for improving the high-RON
components, indicating that the hydrocarbon should be fed

Figure 3. MSEs of different algorithms in the ANN model.

Table 3. Comparison of Different Algorithms in ANN
Models

no. algorithms
hidden
nodes

max.
error %

training
MSE × 102

testing
MSE × 102

1 BFG 10 55% 0.164 1.651
2 CGB 10 50% 0.156 3.036
3 CGF 10 67% 0.078 12.848
4 CGP 10 67% 0.207 2.200
5 GD 10 86% 0.891 3.757
6 GDA 10 86% 0.541 2.107
7 GDM 10 95% 1.484 2.355
8 GDX 10 75% 4.641 3.462
9 LM 10 61% 0.082 263.479
10 OSS 10 55% 0.277 2.738
11 RP 10 61% 0.216 3.783
12 SCP 10 68% 0.178 19.883
13 BR 10 46% 0.162 5.245

Table 4. Comparison of Different Structures in ANN
Models

no. algorithms
hidden
nodes

max.
error %

training
MSE × 102

testing
MSE × 102

1 BR 10 46% 0.162 5.245
2 BR 20 40% 0.170 3.159
3 BR 20, 10a 44% 0.075 1.221
4 BR 20, 20a 25% 0.074 1.200
5 BR 20, 30a 22% 0.058 0.866
6 BR 20, 40a 22% 0.071 0.950
7 BR 20, 50a 31% 0.063 2.070

aIt is a double-hidden layer network.

Figure 4. Convergence curves of training MSE and testing MSE with
epochs in 20 and 30 nodes in double hidden layers.
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along with liquid acid during the process. Last but not the
least, P and NSTR, which were able to control the liquid phase
of hydrocarbon and the liquid−liquid mixing, respectively,
were considered as experimental conditions. NRPB > NSTR

meant that the RPB was more suitable than the STR to
intensify the liquid−liquid two-phase mass transfer and

micromixing for the H2SO4 alkylation process.14 The ANN
model was able to learn the experimental data of various
reactors independently and obtain a multidimensional non-
linear model. By the method of parameter analysis, the effects
of different conditions on product quality were obtained and
assessed. RPB and STR were also compared and evaluated in

Figure 5. Deviations of 20 and 30 nodes in two hidden layers. (a) Whole deviation between the experimental results and ANN predicted values;
(b) deviations of yC5−7

; (c) deviations of yC8
; (d) deviations of yC9+

; (e) deviations of RON; (f) deviations of yTMPs; (g) deviations of yDMHs; and (h)
deviations of TMPs/DMHs.
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the ANN model. As a consequence, the ANN model has
excellent prospects in the field of multidimensional data
simulation.

4. CONCLUSIONS

ANN has been adopted successfully to develop an optimal
model for the prediction and estimation of the product
distribution and RON synchronously in the RPB and STR.
Various influential variables (including feedstock compositions,
operating conditions, and reactor types) were considered as
independent factors. Three significant factors, transfer
function, training algorithm, and framework, were investigated
to obtain the optimal ANN model: a network topology of 10-
20-30-5 with the BR main algorithm and tan-sigmoid transfer
function. By the method of the ANN model, the obtained
results were more realistic, and it has the ability to tolerate
greater noise in the data set, where a similar level of correlation
was obtained between the experimental and predicted product
qualities for the training set, the testing set, and the validation
set. The ANN model was examined to obtain the 0.58 × 10−3

training MSE, 0.866 × 10−2 testing MSE, and ±22% deviation
for the global data set, occupying R2 = 0.9997 and STDerror =
0.5592. Particularly, the ANN model shows a much higher
correlation with a deviation of ±2% between the experimental
and predicted values for predicting RON. Parameter analysis of
the ANN model was applied to obtain the influence of
operating conditions on products in STR and RPB, displaying
that the rotational speed deeply affected the alkylation process.
The unified ANN model has an obvious superiority in quickly
predicting the product distribution and RON for the alkylation
process, expressing a promising application prospect in solving
multidimensional nonlinear complex systems.
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■ NOMENCLATURES2-COL
RON research octane number, dimensionless
MSE mean square error, dimensionless
R2 correlation coefficient, dimensionless
STDerror standard deviation of error, dimensionless
RONi RON of each component, dimensionless
yi yield of each component, %
t reaction time, min
T reaction temperature, °C
A/HC volume ratio of acid to hydrocarbon, dimen-

sionless
NSTR stirring speed of STR, rpm
NRPB rotational speed of RPB, rpm
P system pressure, MPa
n1 mole percentage of isobutane in the feed, %
n2 mole percentage of 2-butene in the feed, %
n3 mole percentage of isobutene in the feed, %
mSTR mixing with/after feeding especially in STR,

Boolean
yC5−7

yield of C5−7, %
yC8

yield of C8, %

Figure 6. Parameter analysis among inputs and outputs.
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yC9+
yield of C9+, %

yTMPs yield of TMPs, %
yDMHs yield of DMHs, %
TMPs/DMHs ratio of TMPs to DMHs, dimensionless
k1

i weights of first hidden layer, dimensionless
kj
u weights of each next hidden layer, dimension-

less
ko

v weights of output layer, dimensionless
b1

i biases of first hidden layer, dimensionless
bj
u biases of each next hidden layer, dimensionless

bo
v biases of output layer, dimensionless

si predicted value (including yC5−7
, yC8

, yC9+
, yTMPs,

yDMHs, TMPs/DMHs, and RON)
ei experimental value (including yC5−7

, yC8
, yC9+

,
yTMPs, yDMHs, TMPs/DMHs, and RON)

n number of the aggregate data
e ̅ average value of the experimental results
error residual of predicted and experimental value
error average of errors
xi input data
f(xi) output data

■ ABBREVIATIONS

ANN artificial neural network
H2SO4 concentrated sulfuric acid
TMPs trimethylpentanes
LEs light ends, including C5−7
DMHs dimethylhexanes
HEs heavy ends, including C9+
STR stirred tank reactor
RPB rotating packed bed
DFT density functional theory
BFG BFGS quasi-Newton backpropagation
CGB conjugate gradient backpropagation with Powell−

Beale restarts
CGF conjugate gradient backpropagation with Fletcher−

Reeves updates
CGP conjugate gradient backpropagation with Polak−

Ribieŕe updates
GD gradient descent backpropagation
GDA gradient descent with adaptive learning rate back-

propagation
GDM gradient descent with momentum backpropagation
GDX gradient descent with momentum and adaptive

learning rate backpropagation
LM Levenberg−Marquardt backpropagation
OSS one-step secant backpropagation
RP resilient backpropagation
SCG scaled conjugate gradient backpropagation
BR Bayesian regularization backpropagation
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