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Considering the Appropriateness
of the Factor Analytic
Operationalization of
Allostatic Load
In a recent issue of Psychosomatic Medicine, Wiley et al.
(1) made a valuable contribution to the discussion of the
optimal measurement of allostatic load (AL). In the most
comprehensive factor analytic investigation of AL to date,
they found that a bifactor model with a general AL factor
and seven physiological system factors fits better than a
higher-order model in which the seven system factors
loaded on the general AL factor. Similar models have been
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applied by the author (T.B.) and others to operationalize AL
(2–4). Here, we consider the primary theoretical assump-
tions underlying latent variable modeling, argue that the
construct of AL is inconsistent with these assumptions,
and propose alternate operationalizations of AL.

UNDERLYINGCONSTRUCT (COMMONCAUSE)
A latent variable model is estimated based on the patterns of
covariance in a set of variables. By including an AL general
factor in a latent variable model, researchers are positing that
an underlying construct is the common cause of the observed
covariation in all of the modeled biological measures. Al-
though the theoretical relation of the common cause or con-
struct to the original variables differs in bifactor versus
higher-order models, in either case, wemust ask:What could
this common factor be? Wiley et al. stated that the AL factor
“[captures] the notion that there is an underlying process
influencingmultiple physiological systems” ((1): p. 4). How-
ever, the observation of a general factor estimated from inter-
individual summary statistics (i.e., covariances) says little
about what this process may actually be.

INDEPENDENCE CONDITIONAL ON THE
LATENT TRAIT
A primary assumption of latent variable models is that once
the effect of the latent factors has been accounted for, the mea-
sured variables—in this case, the biological measures—are in-
dependent. This is unlikely to be the case with AL measures.
Levels of different biomarkers are linked causally to each
other, rather than only through the common cause latent vari-
able(s). For example, body mass index (BMI) has previously
been used as a metabolic system AL biological measure
(e.g., (2,5)). However, Mendelian randomization studies have
found that increased BMI has a causal effect on levels of
other metabolic biological measures as well as levels of AL
biomarkers used to represent other physiological systems,
such as blood pressure and inflammation (e.g., (6)). Thus,
it is most likely that the biomarkers are not conditionally in-
dependent but are instead dynamically related in complex
networks. Such networks can produce observed correla-
tions between variables that have no common cause (7).

INTERCHANGEABILITY OF INDICATORS
A further assumption of the latent variable model is that the
definition of the latent variable does not change when dif-
ferent sets of indicators are used (8). This holds because
the indicators are affected by, but do not affect, the latent
variable. Another key finding ofWiley et al. was that fitting
models in which the biological measures from each of the
7 physiological systems were excluded caused no large
changes in AL factor loadings (1). This method provides
only a weak test of interchangeability. The stability of gen-
eral intelligence factor loadings has long been a research
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focus for intelligence researchers, so AL researchers may
benefit from applying their approaches to this issue (e.g.,
(9,10)). For example, researchers could compute and corre-
late AL scores from different nonoverlapping multisystem
sets of biological measures (8). The existence of diverse
causal links between AL biological measures from different
physiological systems suggests to us that the nature of what
relates the biomarkers may change depending on which
measures are included in the model. We predict that more
thorough, more powerful tests of the stability of AL factor
loadings will find that it does not hold.
FORMATIVE VERSUS REFLECTIVE INDICATORS
In the common factor model, the biological measures are re-
flective indicators, that is, they are manifested by a common
cause latent variable. However, to the extent that the model
assumptions are violated (previously discussed), the factor
model is not appropriate. Thus, it may instead be profitable
to consider the biological measures as formative indicators,
that is, as variables that define the construct (8). This way
of thinking about how the biological measures relate to AL
is consistent with any number of weighted or sum scores.
It is also consistent with AL theory, in that more severe, more
widespread physiological dysregulation will relate to higher
AL scores.

Alternatively, the associations between AL biological
measures could be modeled using each measure individu-
ally, without the need for any single latent or observed sum-
mary. This could be done with network analysis, which has
been used beneficially by researchers studying symptom
networks in mental disorders (11). Allostatic load indicators
can also be modeled separately without consideration of
their associations. Consistent with this approach, Psycho-
somatic Medicine typically provides data of separate bio-
logical measures when articles report about complex
phenomena such as AL and metabolic syndrome.

Aside from any issues regarding model assumptions,
two further points warrant comment about the models pre-
sented by Wiley et al.

IMPROVED MODEL FIT FOR BIFACTOR
APPROACH
The complex causal links between biological measures
from different physiological systems also help to explain
why the bifactor AL model fits better than the hierarchical
AL model. The hierarchical model imposes “proportional-
ity constraints” ((12): p. 115): the ratio of the AL general
factor loadings to the system factor loadings is constrained
to equality within the biological measures of each physio-
logical system. Considering the diverse causal links be-
tween different AL biomarkers, both within and across
systems, these proportionality constraints are likely to be vi-
olated. Furthermore, it has been shown that when the true
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model contains “unmodelled complexity” ((13): p. 407) in
the form of small correlated residuals and cross-loadings,
or even modeled complexity in the form of correlated resid-
uals across factors, fit indices and criteria may be biased in
favor of the bifactor model. Consequently, the better fit of
the bifactor model follows from AL theory and research,
as well as from methodological findings, for reasons other
than those Wiley et al. (1) focused on.

VARIANCE EXPLAINED BY PHYSIOLOGICAL
DYSREGULATION FACTORS
Statistically, a desirable property of a general factor is that it
accounts for most variance in the constituent indicator var-
iables. In the study by Wiley et al., the AL factor explained
only approximately 11% of the variance in the AL biologi-
cal measures. Some of the physiological system-specific
factors were also weak. For example, the hypothalamic-
pituitary-adrenal axis and inflammation factors explained
only approximately 9% and 16% of the variance in their re-
spective biological measures. Note that weak factor satura-
tion of physiological dysregulation factors has also been an
issue in other samples (2,3).
PROPERTIES OF OPTIMAL SCORES FOR AL
Ideally, AL scores should be: 1) calculated using biological
measures from various physiological systems; 2) consis-
tently calculated across samples; and (3) closely related to
criterion variables. Those who desire scores that are rooted
in AL theory would prefer the AL scoring method that pro-
duces the scores most closely related to chronic/repeated
perceived stress. For a pragmatist, the focus may not be
on investigating how different physiological dysregulation
scores relate to prior perceived stress but rather on find-
ing the scores that most strongly predict important health
outcomes such as cardiovascular disease and death. It
may also be advantageous to have scores that explicitly rep-
resent the accumulation of the effects of repeated environ-
mental challenges.

Our theoretical and methodological concerns with the
factor analytic operationalization of AL suggest to us that
factor scores will not prove to be the optimal AL scoring
method. We therefore believe that further research is re-
quired to determine the optimal operationalization(s) of AL.
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The Authors Reply: Pursuing
the Optimal Operationalization
of Allostatic Load
In their commentary on our paper (1), Crook and Booth (2)
raise important questions regarding the theoretical and
methodological appropriateness of applying factor analysis
to model allostatic load (AL). They argue that factor scores
are not the “optimal” measure of AL and conclude that
more research is needed.

From a methodological perspective, Crook and Booth ar-
gue that the poor fit of the hierarchical model may be due to
the proportionality constraint inherent in its structure.Whether
the proportionality constraint or other features of the model
are the sources, it does not change the result that the hierar-
chical model provided an inferior fit to the data than did the
bifactor model. Considering the bifactor model, Crook and
Booth suggested a stronger test of exchangeability by com-
puting and correlating AL scores from nonoverlapping bio-
markers (2). However, unlike intelligence research, studies
on biomarkers tend to have relatively few indicators as a
consequence of feasibility factors (e.g., available blood sam-
ple volume, participant burden, and cost). Separating already
limited biomarker panels into two nonoverlapping sets will
be too few to estimate the bifactor model in many studies.
As advances in multiplexing reduce barriers to assaying nu-
merous biomarkers (3), we look forward to studies that ad-
dress this question.

Crook and Booth also note that, on average, the general
factor explains approximately 11% of the variance in the
biomarkers (2). In psychometric studies of carefully designed
scales, 11%may be considered a small amount of variance,
but this is expected for biomarkers for several reasons.
First, except for the heart rate variability measures, each
biomarker is distinct (e.g., interleukin 6 and tumor necrosis
factor α are separate analytes with unique roles in the im-
mune system and inflammatory processes). Second, bio-
markers have circadian rhythms, which introduce variability
due to the timing of assessment. Third, the timeframe reflected
in each biomarker varies. For example, glycosylated hemo-
globin approximately indexes the previous three months,
overnight urinary epinephrine and norepinephrine index
approximately 12 hours, and blood pressure is compara-
tively momentary. Fourth, the general factor accounted for
variance over and above the covariates age and sex. There-
fore, we expected the general factor to account for a modest
amount of the variance in biomarkers. Furthermore, consid-
ered over and above the effects of age, 11% of the variance
is not necessarily trivial. Finally, the overall model (i.e.,
general + system factors and covariates) accounted for an
average of 55% of the variance in biomarkers, rising to
60% when excluding soluble intracellular adhesion mole-
cule 1 and low-density lipoprotein. If researchers believe
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