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Abstract: Cellulose is one of the most affordable, sustainable and renewable resources, and has attracted
much attention especially in the form of nanocellulose. Bacterial cellulose, cellulose nanocrystals
or nanofibers may serve as a polymer support to enhance the effectiveness of metal nanoparticles.
The resultant hybrids are valuable materials for biomedical applications due to the novel optical,
electronic, magnetic and antibacterial properties. In the present review, the preparation methods,
properties and application of nanocellulose hybrids with different metal oxides nanoparticles such as
zinc oxide, titanium dioxide, copper oxide, magnesium oxide or magnetite are thoroughly discussed.
Nanocellulose-metal oxides antibacterial formulations are preferred to antibiotics due to the lack of
microbial resistance, which is the main cause for the antibiotics failure to cure infections. Metal oxide
nanoparticles may be separately synthesized and added to nanocellulose (ex situ processes) or they can
be synthesized using nanocellulose as a template (in situ processes). In the latter case, the precursor
is trapped inside the nanocellulose network and then reduced to the metal oxide. The influence of
the synthesis methods and conditions on the thermal and mechanical properties, along with the
bactericidal and cytotoxicity responses of nanocellulose-metal oxides hybrids were mainly analyzed
in this review. The current status of research in the field and future perspectives were also signaled.

Keywords: cellulose nanofibrils; cellulose nanocrystals; bacterial cellulose; metal oxides; hybrids;
bactericide; superparamagnetic; contrast agents

1. Introduction

Cellulose is the most affordable, sustainable and renewable resource, which has attracted much
attention in the last decades and stimulated researchers to develop cellulose-based materials with
novel functions. Cellulosic materials with nanometer size at least in one dimension are referred to as
nanocellulose. This nanomaterial is either isolated from plants or synthesized by bacteria. It shows
high strength, low density, high crystallinity along with biodegradability and biocompatibility [1,2].
Nanocellulose is a very strong material, with a longitudinal Young’s modulus exceeding 100 GPa
and a transverse modulus between 10 and 50 GPa [3,4]. Due to its high stiffness, nanocellulose was
largely used as a reinforcing agent for many polymer matrices. Good results were obtained in the
case of nanocellulose reinforced biopolymers, due to their inherent low mechanical properties [2,4–6].
In addition, nanocellulose may serve as a polymer matrix for organic or inorganic agents in the
form of nanoparticles, nanofibers or nanoplatelets [7,8]. Nanocellulose-based materials cover a huge
range of applications, from biosensors, energy storage devices and flexible electronics to enzyme
immobilization, wound healing, biodegradable packaging, CO2 absorbent materials, water purification
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and oil recovery [2,8]. However, the design of new nanocellulose-based materials for the biomedical
field experienced the biggest expansion [9].

Although a valuable material, nanocellulose did not show special electrical, magnetic or
antibacterial properties required by some biomedical applications. Metal oxides nanoparticles (MONPs)
attracted a high interest due their special optical, electronic, magnetic and antibacterial properties [10].
Zinc oxide (ZnO), copper oxide (CuO), magnesium oxide (MgO) and titanium dioxide (TiO2) are
intensively studied for healthcare products, biocides, catalysts, electronics, optical devices, biosensors
and other cutting-edge applications. The properties of MONPs depend on their size, shape, surface area,
crystallinity and stability, which are controlled by the synthesis method and conditions [11]. In general,
MONPs may be obtained by physical methods such as ball milling, electrospraying or sputtering and
chemical routes such as sol-gel synthesis, hydrothermal method, co-precipitation, chemical vapor
deposition or microemulsion technique [11]. The wet chemical methods allow a better control of the
size, composition and structure and are generally preferred.

Nanocellulose may acquire new properties by combining with metal oxides. Due to their high
surface energy, metal oxide nanoparticles (NPs) have an aggregation tendency when suspended in
aqueous media or inserted in polymers [12]. A strategy for improving dispersion involves the use of
nanocellulose as a supporting material for the fabrication of metal oxides NPs. Nanocellulose/metal
oxides hybrids showing antibacterial, magnetic, sensing properties or improved absorption are required
in packaging, wound healing, magnetic resonance imaging (MRI), drug delivery, bio-separation or
water cleaning [7–10]. Metal oxides are preferred in nanocellulose-based antibacterial formulations
due to their prolonged release and lack of microbial resistance, which is frequently observed in the case
of antibiotics [13]. Indeed, the development of microbial resistance is the main cause for the failure of
antibiotics in curing infections [14]. MONPs are efficient against a broad range of bacteria, viruses or
fungi due to the release of reactive oxygen species (ROS) which kill microorganisms. More precisely,
ROS simultaneously attack the microorganisms on multiple sites leading to their oxidation and death.

A distinct class of metal oxides, superparamagnetic iron oxides nanoparticles with very small
size (SPIONs), usually below 15 nm, is intensively studied for magnetically controllable drug delivery
systems, cell labeling, biosensors and contrast agents for MRI [14]. SPIONs are non-toxic in small
concentration, biodegradable and biocompatible and display a high MRI contrast effect. MRI is a
non-invasive high spatial resolution technique for diagnostics, which measures the proton relaxation
under an external magnetic field. SPIONs lead to the image contrast by dephasing the proton spin and
decreasing of spin–spin relaxation time (T2). For biomedical applications, SPIONs need to be covered
by a biocompatible shell to prevent aggregation or degradation and to delay the immune response [15].
Nanocellulose proved to be an excellent biocompatible matrix for SPIONs in MRI applications.

Several reviews on nanocellulose hybrids designed mostly for packaging applications have
been already published [7–9]. Nonetheless, to the best of our knowledge, no detailed review on
nanocellulose/metal oxides intended for biomedical applications was reported so far. In the present
paper, the preparation methods, properties and application of nanocellulose hybrids with different
metal oxides, ZnO, TiO2, CuO, MgO or Fe3O4, are discussed. Bacterial cellulose (BC) and plant
derived cellulose nanocrystals or nanofibers are considered as substrates to enhance the effectiveness
of these nanoparticles.

2. Nanocellulose—Isolation from Different Sources, Structure and Properties

Cellulose can be isolated from wood, plants, algae, tunicates or agriculture waste biomass by
chemical treatments, such as alkali extraction and bleaching, which remove lignin, hemicelluloses
and impurities [1,2]. Cellulose contains β-1,4-linked glucopyranose units, each glucopyranose unit
bearing three hydroxyl groups. These hydroxyl groups are the source of the high hydrophilicity and
biodegradability of cellulose [2]. Their ability to form strong hydrogen bonds provides cellulose with
high strength and insolubility in water and usual solvents.
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Nanocellulose may be obtained from these cellulose sources by mechanical disintegration
(high-pressure homogenization, high power ultrasonication or microfluidization) or by chemical
treatments, usually hydrolysis with strong acids (sulfuric, hydrochloric, orthophosphoric or
formic) [6,16]. In general, the mechanical disintegration is preceded by chemical or enzymatic
pre-treatments with the role of reducing the energy needed for defibrillation. TEMPO-mediated
oxidation is considered a clean process, which does not only facilitate the defibrillation process,
but also reduces the number of passes and, thus, the energy consumption [17]. Moreover, carboxyl and
aldehyde groups are efficiently introduced on the surface of cellulose by TEMPO-oxidation [18,19].
Plasma jet submerged in the liquid suspensions of cellulose was also proposed as an environmentally
friendly pretreatment for the defibrillation and functionalization of cellulose [19,20].

Nanocelluloses with different characteristics are obtained by these processes: (a) microfibrillated,
nanofibrillated cellulose or cellulose nanofibrils (CNF), characterized by a higher aspect ratio and
flexibility, are obtained by mechanical treatment as the main step and (b) cellulose nanocrystals (CNC)
or (nano)whiskers, with lower aspect ratio and high crystallinity, are obtained by acid hydrolysis.
CNFs structure contains more amorphous regions than CNCs due to the milder chemical and mechanical
treatments applied for the isolation of nanocellulose that do not alter the fibrous structure [21]. On the
contrary, during acid hydrolysis the amorphous regions of cellulose are attacked and disintegrated
resulting rod-like rigid high crystalline CNCs [22]. AFM images of CNF and CNC celluloses are shown
in Figure 1a,b [23,24].
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Figure 1. AFM images of (a) cellulose nanofibrils (CNF) [23], (b) cellulose nanocrystals (CNC) [24] and
(c) bacterial cellulose (BC) [6].

Several attempts for biomedical applications of CNF and CNC isolated from plants and
wood were also reported [25–27]. No toxicity in vitro and in vivo was detected for CNF modified
by tempo-oxidation and carboxymethylation [26]. Moreover, previous reports have shown that
high purity CNF may be applied in wound healing and scaffolding [27]. Similarly, cell culture
experiments demonstrated that electrospun cellulose/CNC nanocomposites were nontoxic to human
cells, showing rapid cells proliferation on the surface and inside the scaffolds [28].

Nanocellulose may be also synthesized by bacteria and fungi through oxidative fermentation.
In particular, nanocellulose is secreted as an exo-polysaccharide from several bacteria such as
Komagataeibacter (formerly Gluconacetobacter), Agrobacterium, Pseudomonas, Rhizobium or Alcaligenes [29].
The microbial synthesis route generates a nanofibrillar structure with unique organization,
which provides BC high crystallinity, porosity and water uptake capability besides biodegradability
and non-toxicity [30]. The most important step in BC formation is the polymerization of glucose,
giving β-1→4 glucan chains, followed by the extracellular secretion of these chains from each pore
in the cell walls of bacteria. Aggregates of about 1.5 nm in width are formed by the association of
adjacent chains. By further combination of the aggregates in protofibrils and subsequently in flat
ribbons the BC network is completed (Figure 1c) [6]. Compared to the nanocellulose from plants,
algae, marine animals or biomass, biosynthesized cellulose has a higher crystallinity and purity due to
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the lack of lignin, hemicelluloses, pectin traces and other impurities. To be used in some biomedical
applications, the bacterial cellulose membrane should be disrupted by mechanical and/or chemical
treatments to provide individual cellulose nanofibers [31] or freeze-dried to obtain 3D nanocellulose
networks as foams or aerogels [2,30]. Although cellulose does not readily degrade in the human body
due to the lack of cellulolytic enzymes, it has less or even a non-immunogenic reaction. BC has a
better biocompatibility than other types of nanocellulose due to its biosynthesis procedure. In addition,
it was accepted by FDA as a “generally recognized as safe” (GRAS) material starting from 1992 [32].
In contact with living tissue, it does not cause toxic or allergic side effects and, due to its high porosity,
it promotes cellular integration into the cellulose scaffold. All these properties recommend BC for
medical applications: soft and bone tissue engineering, wound healing, implants, drug delivery.
At the moment, bacterial cellulose is not produced in industrial facilities, however nanocellulose is
industrially produced in the form of CNF and CNC.

3. Antibacterial Nanocellulose-Metal Oxides Hybrids

The emergence of drug-resistant pathogens is a pressing issue in the biomedical field, especially in
wound healing. Multiple studies were conducted towards the development of a novel class of
antibacterial materials that meet the mandatory requirements (e.g., biocompatibility, non-toxicity,
superior mechanical properties) [33] and also have a bactericidal action that is not based on antibiotics.
One approach consists in the use of a natural polymer which ensures the biocompatibility and serves
as a solid support for inorganic NPs together with metal or metal oxides nanoparticles (Au, Ag, ZnO,
TiO2, CuO) as active antimicrobial fillers [34–39]. Regarding the natural polymer, bacterial cellulose is
a promising option due to its high purity, biodegradability, non-toxicity, high water uptake ability and
3D porous structure that gives it the capacity to retain excess exudates while maintaining an optimal
moisture level at the wound site [40].

3.1. Bacterial Cellulose/ZnO Hybrids

Zinc oxide nanoparticles (ZnO NPs) are widely used in everyday products such as cosmetics,
sunscreens, food packaging and ointments in virtue of their antibacterial properties and ability to
effectively absorb UV radiations [41]. The use of ZnO in the biomedical field is encouraged by the
fact that the Food and Drug Administration (FDA) currently lists it as a generally recognized as safe
(GRAS) material. Photocatalytic cellular membrane disruption and the generation of reactive oxygen
species (ROS) are thought to be the main antibacterial mechanisms of ZnO NPs. The antimicrobial
efficiency of ZnO NPs is correlated with their size and concentration, higher concentrations and
lower particle dimensions generating a stronger bactericidal effect. Zinc is an essential trace element
and plays a major role in modulating wound healing phases. Moreover, the slow release of zinc
ions at the site of the injury has the potential to enhance wound healing [42]. Therefore, ZnO NPs
represent ideal therapeutic agents for inclusion in wound healing mats [40]. There are various ZnO
NPs synthesis approaches [43,44]. The chemical route, in either liquid (sol-gel, co-precipitation,
water–oil microemulsions, hydrothermal, solvothermal or sonochemical methods) or vapor phase
(pyrolysis, inert gas condensation) is most frequently employed because in this case nanoparticles
present good surface properties and high purity [45].

3.1.1. Hybrids Obtained by Ex Situ Synthesis of NPs

ZnO nanoparticles can be separately synthesized and added to BC producing cultures or
incorporated in the already formed BC pellicle. However, the cytotoxic effect of the inorganic particles
against the BC-producing microorganisms limits the culture addition method and the latter one is
often preferred [46]. Khalid et al. [47] prepared bacterial cellulose/zinc oxide (BC/ZnO) hybrids by
immersing BC pellicles in a suspension of previously synthesized ZnO nanoparticles and mixing the
two components in a shaking incubator at 50 ◦C for 24 h to promote the dispersion of NPs in the BC
network. The nanoparticles were obtained by a simple and efficient method, starting from aqueous
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solutions of zinc nitrate (Zn(NO3)2) and sodium hydroxide (NaOH) [48]. The NPs were round to
oval in shape and had an average size of approximately 38 nm. Field emission scanning electron
microscopy (FE-SEM) images revealed that ZnO NPs were strongly attached to the cellulosic fibers
due to the electrostatic interactions between positively charged Zn2+ ions and negatively charged
hydroxyl groups on the polymeric chains. In addition, they were homogenously distributed, not only
on the surface but also inside the BC network (Figure 2), thus indicating that the homogenization in
the shaking incubator was effective. During the agar disc diffusion assay, the nanomaterials presented
a pronounced growth inhibition effect against some of the most common pathogens involved in burn
wounds infections—Escherichia coli, Citrobacter freundii, Pseudomonas aeruginosa and Staphylococcus
aureus. The wound healing efficiency was investigated using albino BALB/c mice as animal models.
An approximate 190 mm2 contraction of the wound diameters was observed 15 days post-injury for
the BC/ZnO hybrids-treated group and no signs of infection were present. The results were similar to
the positive control group treated with silver sulfadiazine, the therapeutic agent currently used for
burn wounds [47].
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Figure 2. Field emission scanning electron microscopy (FE-SEM) images of surface and cross section of
bacterial cellulose/zinc oxide (BC/ZnO) hybrids confirming ZnO nanoparticles (NPs) inclusion in the
BC network [47].

Some issues that may arise when preparing hybrid materials by immersing or blending the polymer
with previously synthesized inorganic particles include the particle aggregation tendency and their
uneven distribution inside the organic matrix [49,50]. Biocompatible nanomaterials with controlled
quantity and distribution of ZnO on dry or humid BC membranes were obtained using matrix assisted
pulsed laser evaporation (MAPLE) [51]. The nanoparticles were synthesized by reducing zinc acetate,
a zinc oxide precursor, in the presence of ammonia. Transmission electron microscopy (TEM) images
revealed that the average nanoparticles size was around 20–30 nm and high resolution TEM (HRTEM)
analysis highlighted specific lattice parameters for ZnO with wurtzite crystalline structure. Two types
of solvents (water and chloroform) were employed for the MAPLE target preparation in order to study
the solvent influence on the particle distribution. The laser deposition process took place in a vacuum
chamber, using a pulsed laser system working at a wavelength of 266 nm. A better absorption of the
laser source energy by chloroform led to a higher concentration of inorganic particles deposited on BC
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surface compared to the targets prepared from aqueous dispersions. The mass distribution of inorganic
NPs, estimated from atomic force microscopy (AFM) measurements, was approximately 0.28 µg/mm2

for the targets prepared in aqueous dispersion and 0.56 µg/mm2 for the ones in chloroform. The surface
of the hybrids cultured with Escherichia coli for 72 h was observed using SEM. Neat BC had no inhibition
effect on the bacterial development. Contrarily, only a small number of microorganisms adhered on
the surface of the BC/ZnO nanomaterials and their morphology was modified due to the direct action
of Zn2+ ions on the bacterial cell membrane [51]. Biocompatibility assays on human dermal fibroblasts
(HDF) were effectuated only on chloroform-deposited samples considering their enhanced bactericidal
effect due to their higher content of ZnO NPs. Just a slight decrease of cellular viability was observed
for the BC/ZnO hybrids compared to neat BC during the 72 h test duration. Although previous studies
reported that ZnO NPs induce apoptosis in human dermal fibroblasts [52], the good compatibility
observed between MAPLE-prepared BC/ZnO hybrids and HDF could be related to the very thin layer
(~300 nm) of ZnO NPs on the materials surface, that has the ability to completely inhibit bacterial
growth without generating cytotoxicity [51].

An alternative route for the preparation of BC-metal oxides hybrids involves the regeneration
of BC from its solutions. Ul-Islam et al. [53] reported the synthesis of regenerated bacterial cellulose
(RBC) hybrids with ZnO nanoparticles by dissolving powdered BC in N-methylmorpholine-N-oxide
(NMMO) monohydrate, an organic cyclic polar solvent, considered nontoxic and easily recyclable [54].
ZnO nanoparticles were synthesized using a previously described method [48] and dispersed in the BC
solution using ultrasound assisted mixing to prevent aggregation. Next, hybrid films were prepared
by casting the solutions using a bar applicator. During solution blending and ultrasonication, the ZnO
nanoparticles became attached to the surface and inside RBC matrix as observed in SEM images.
Agar disc diffusion and optical density methods were applied to investigate the antibacterial activity
of the prepared materials against Escherichia coli bacterial strain. As expected, RBC had no antibacterial
activity and slightly promoted bacterial growth, whereas RBC/ZnO hybrids had a clear bactericidal
effect, the zones of growth inhibition measuring from 34 to 41 mm in diameter. In addition to the
bactericidal effect, the nanomaterials were biocompatible showing negligible toxicity towards animal
osteoblast cells. These characteristics recommend RBC/ZnO hybrids for biomedical applications such
as wound healing and bioelectroanalysis [53].

3.1.2. Hybrids Obtained by In Situ Synthesis of NPs

Another technique used to obtain homogenous hybrid materials consists in the in situ synthesis of
the inorganic particles using BC as a template [55]. The conversion of Zn2+ ions from zinc precursors
into ZnO nanoparticles requires a high activation energy [56]. During ex situ synthesis procedures,
this energy is provided by the calcination process, which takes place at over 500 ◦C. However,
bacterial cellulose cannot withstand such elevated temperatures and decomposes into a carbon
residue [57]. Several strategies for the in situ synthesis of ZnO NPs, directly on the BC pellicle,
were developed. For example, Katepetch et al. [55] used ultrasonic-assisted in situ synthesis to produce
and simultaneously incorporate zinc oxide nanoparticles into the 3D nanofibrous network of BC. First,
bacterial cellulose was impregnated with a zinc acetate solution and Zn2+ ions were trapped inside the
BC pellicle following the interaction with electron rich oxygen atoms of the polar hydroxyl and ether
groups on the surface of cellulose nanofibrils. Afterwards, the pellicles were immersed in ammonium
hydroxide (NH4OH) solution and ultrasonicated [55]. Cavitation, which consists in the generation
and collapse of microbubbles, occurs under the influence of ultrasonic waves and produces elevated
pressure and temperature [58] that favors the formation of ZnO NPs. The impregnation time and
ultrasonic treatment duration had a significant effect on the size and incorporation percentage of ZnO
into BC—a higher impregnation time led to an increased amount of ZnO NPs into the pellicles and a
longer ultrasonic treatment resulted in smaller crystal size (54–63 nm) [55]. The nanohybrids exhibited
promising antibacterial activity against Escherichia coli and Staphylococcus aureus, a 99.8% reduction in
cell viability being estimated during the colony forming unit assay. These results indicated that the
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ultrasonication can successfully replace calcination for the simultaneous synthesis and incorporation
of antibacterial ZnO NPs in organic matrices. Wahid et al. [59] also obtained BC/ZnO nanohybrid
films using a single-pot method. This consisted in the impregnation of BC pellicles in zinc nitrate
Zn(NO3)2 solutions of different concentrations, followed by sodium hydroxide (NaOH) treatment and
vacuum drying with a sheet forming instrument at 80 ◦C for 20 min. Both (ZnNO3)2 impregnation
and alkaline treatment were performed in a shaking incubator for 24 h at room temperature [59].
The hydrophilic nature of BC and its porous structure allowed the migration of Zn2+ ions into the 3D
cellulosic network until the adsorption equilibrium was reached [60]. Afterwards, Zn2+ was converted
to ZnO NPs following the interaction with OH− ions from NaOH. A schematic representation of the
mechanism proposed for the generation of ZnO NPs inside the BC network is shown in Figure 3 [59].
SEM images showed that the obtained nanoparticles, with size ranging from 70 to 100 nm, had an
even distribution inside the polymeric network. During antibacterial assessments on Gram-positive
(Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa)
bacterial strains, it was observed that higher contents of ZnO NPs in the hybrids were associated with
increased diameters of the growth inhibition zones [59]. Moreover, the bactericidal effect was more
pronounced against Gram-positive bacteria as a result of their permeable cellular wall that does not
restrict the penetration of antimicrobial agents [61,62].
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Considering the environmental concerns nowadays, green technologies that reduce the amount of
chemicals used for the synthesis of ZnO NPs were explored. Solution plasma processing (SPP) was
found to be an effective ecofriendly method for the preparation of ZnO/BC composites without the
addition of a reducing reagent (e.g., NH3, NH4OH, NaOH) [63]. Solution plasma (SP) is an electrical
discharge phenomenon that takes place at room temperature, in a liquid medium (e.g., aqueous solutions
or organic compounds), the result being an atmospheric non-equilibrium plasma [64]. The chemical
species generated during SPP—anions (O−, OH−), radicals (H, O, HO) and free electrons, could have
the ability to initiate the conversion of metal ions to metal oxide nanoparticles [65]. This procedure was
successfully applied for the synthesis and deposition of ZnO NPs into BC pellicles. Bacterial cellulose
was saturated in methanol for 72 h and subsequently immersed for 24 h in zinc nitrate or zinc acetate
solutions of various concentrations [63]. The saturated pellicles were placed in a SP glass reactor
containing methanol, and the plasma treatment was performed for 1 h. For comparison purposes,
some pellicles were prepared with NH4OH as a reducing reagent. According to SEM-EDX analysis,
SPP and the classical chemical reduction method produced similar quantities of ZnO NPs but the
ones obtained by SPP were more homogenously dispersed inside the polymeric network. The type
of ZnO precursor influenced the inorganic nanoparticles morphology and their interactions with BC
nanofibers [63]. Moreover, FT-IR analysis revealed that the increase of Zn2+ precursor concentration
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generated superior Zn2+-BC and ZnO-BC interactions. The results from both disc diffusion and colony
counting method showed strong antibacterial activity against Staphylococcus aureus and Escherichia coli,
thus recommending the nanocomposites for applications in wound healing and water disinfection
applications [63].

The in situ synthesis of ZnO NPs is highly dependent on the ability of the supporting material to
adsorb Zn2+ ions from the zinc oxide precursor solution. Metal ions are adsorbed at the active sites level,
more specifically, the surface functional groups [66]. It was reported that carboxylic groups can act as
proton donors and ion exchange sites [67]. Previous study showed that the introduction of carboxyl
groups to cellulose generates a significant increase in the adsorption capacity of copper, cadmium and
lead ions [68]. Moreover, the electrostatic repulsions that occur among negatively charged carboxylate
ions allow a homogenous dispersion of individual cellulose fibers in water [69]. A method for
fabricating carboxyl modified bacterial cellulose consists in 2,2,6,6-tetramethylpiperidine-1-oxyl radical
(TEMPO) mediated oxidation that leads to the replacement of primary hydroxyl groups of cellulose
with carboxyl groups [70]. Likewise, carboxyl groups may be introduced to cellulose via anhydrides.
In particular, BC membranes (BCM) were modified with maleic anhydride resulting carboxylated and
crosslinked BC membranes (mBCM) that were used as template for the in situ synthesis of ZnO NPs [40].
Nanoparticles were generated by the reduction of zinc acetate with different concentrations of sodium
hydroxide in anhydrous ethanol medium. The resulting ZnO/BCM bionanomaterials were freeze-dried
and dried again for 1 h at 120 ◦C before characterization (Figure 4) [40]. It was found that more than 50%
of the ZnO NPs were released from the unmodified BCM during immersion in PBS, while less than 10%
were released from the mBCM modified membranes. ZnO/mBCM hybrids presented a high porosity
and uniformly distributed NPs in the BCM matrix. This structural characteristic was associated with
an enhanced water vapor transmission rate (WVTR) for ZnO/mBCM compared to neat BCM [40].
WVTR is an important parameter for wound dressings and values between 2500–3000 g/m2/day are
required to prevent wound scabbing due to dehydration or bacterial infections caused by excess
moisture [71]. Excellent antibacterial activity is also a mandatory feature of an ideal wound dressing [33].
Even if higher doses of ZnO NPs are associated with an enhanced bactericidal action, the amount of
antimicrobial particles loaded in the polymer should be carefully adjusted to prevent the occurrence of
cytotoxic effects [72]. According to the results obtained from the cytotoxicity tests on mouse fibroblasts,
skin irritation tests on New Zealand white rabbits and antibacterial assessments on Staphylococcus aureus
and Escherichia coli, a 5 wt% ZnO NPs content in mBCM was considered optimal. This nontoxic
ZnO/mBCM bionanomaterial that showed antibacterial activity and good biocompatibility, leading to
rapid re-epithelialization and wound closure (Figure 3), was proposed as an efficient antibacterial
wound dressing [40].

Taking into account the results obtained during the presented research studies, it might be
concluded that the antibacterial activity of BC/ZnO hybrids generally depends on the concentration
and type of Zn2+ precursor, the method used to synthesize ZnO NPs—which influences their size and
morphology, the technique used to prepare the nanomaterials and the type of bacteria, Gram-positive
ones being more sensitive to the antibacterial action of ZnO NPs.

3.2. Bacterial Cellulose/TiO2 Hybrids

BC-based antibacterial nanomaterials were also obtained by incorporating titanium dioxide
nanoparticles (TiO2 NPs) into the cellulosic network. Titanium dioxide nanoparticles present great
antibacterial and photocatalytic potential especially when they are comprised from mixed crystalline
phases of anatase and rutile [73,74]. Due to their chemical stability, non-toxicity and UV blocking
ability, they were included in many consumer products, such as food additives (E171), toothpaste,
medicines, cosmetics and sunscreens [74]. Studies showed that these properties are well maintained
even after incorporation in natural polymeric matrices [75]. BC-TiO2 interactions consist of physical
adsorption on the surface of nanofibers or the formation of hydrogen or covalent bonds at the site of
free hydroxyl groups in the cellulose macromolecules [76]. Multifunctional materials, based on BC and
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TiO2 nanoparticles were prepared by Brandes et al. using an ex situ sol-gel method [77]. Summarily,
BC hydrogels were immersed in an aqueous dispersion of TiO2 and agitated in an orbital shaker for 3 h
at 30 ◦C, thus allowing the nanoparticles to be retained in the gaps between the cellulosic nanofibers.
The first clue of the successful incorporation of NPs in the BC hydrogels was their color transition from
translucent to opaque after impregnation with TiO2. The hybrid hydrogels were freeze-dried and
characterized by SEM, EDX and FT-IR analysis. SEM images showed a high density of TiO2 NPs on
the surface of the BC nanofibers. The occurrence of molecular interactions and adhesion between the
inorganic NPs and the cellulosic support was confirmed by O-H, C-OH and C-O-C peaks shifting in
the FT-IR spectrum [77].
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Khan et al. estimated that the antimicrobial properties of TiO2 may reduce the risk of
bacterial contamination of newly formed tissues when used in tissue engineering applications [78].
TiO2 NPs were synthesized by drop wise addition of TiCl4 in benzyl alcohol under nitrogen flow.
High resolution transmission electron microscopy-selected area electron diffraction (HRTEM-SAED)
images confirmed the formation of highly crystalline NPs with very small dimensions (20–30 nm) and
lattice planes corresponding to the anatase phase of TiO2. Powdered BC was dissolved in NMMO/water
solvent system (RBC) and the inorganic NPs were incorporated using ultrasound assisted mixing.
The RBC/TiO2 films were prepared by solution casting. EDX analysis demonstrated the presence and
homogenous dispersion of NPs inside the polymeric matrix. An extensive biological characterization
was performed to determinate the suitability of the obtained nanomaterials for the intended applications.
It was observed that the microbial development was strongly inhibited by both TiO2 NPs and
RBC/TiO2 hybrids, the bactericidal effect of plain TiO2 being more pronounced. The antibacterial
mechanisms were determined using established fluorometric assessments (ROS mediated oxidation
of dichloro-dihydro-fluorescein diacetate and in vitro glutathione oxidation). They were related to
the decomposition of bacterial cellular membranes by the highly reactive ROS generated by the NPs
and oxidation of the thiol groups from amino acids present in bacterial cells. The nanomaterials also
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showed a good biocompatibility, their entire surface being uniformly covered by animal fibroblast cells
after 7 days of incubation. More than that, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) test showed only a negligible decrease in cellular proliferation for RBC/TiO2 compared
to neat RBC. The results obtained during this study provide a strong foundation for the future usage of
RBC/TiO2 nanomaterials in biomedical applications particularly as antibacterial scaffolds or wound
healing mats [78].

3.3. Bacterial Cellulose/CuO Hybrids

Similar to TiO2 NPs, nano-sized CuO presents good photocatalytic and photovoltaic properties due
to the narrow band gap in its crystal structure. More than that, Cu and CuO nanoparticles were found
to have an excellent growth inhibition effect even at low concentrations against fungi, algae, yeasts,
Gram-positive and Gram-negative bacterial species [60,79]. There are a variety of techniques that can
be applied to synthesize CuO nanostructures (CuO NSs), the most known being the chemical methods
such as sol-gel, microemulsions, sonochemical, hydrothermal and alkoxide-based preparation [80].

In a recent study by Xie et al. [13], BC/CuO hybrid films were prepared by incorporating the
inorganic component into the BC matrix through homogenization blending. CuO nanosheets with
variable lengths (50–200 nm) and widths (20–50 nm) were uniformly grown on graphene oxide (GO)
platelets. Due to the various functional groups on its surface (e.g., hydroxyl, carboxyl, epoxide),
GO provides nucleation sites for an efficient in situ growth of CuO nanostructures [81]. Moreover,
GO can keep CuO NSs well dispersed in aqueous suspensions [82]. For the preparation of GO-CuO
complexes, cupric chloride (CuCl2) was incorporated into an aqueous graphene oxide suspension by
magnetic stirring at 100 ◦C for 60 min [13]. Afterwards, NaOH was slowly added for the conversion of
the precursor into CuO nanosheets. The formed precipitate was separated by centrifugation, dried
and ground to get GO-CuO powder. BC/GO-CuO nanomaterials were prepared by mixing aqueous
suspensions of GO-CuO with BC slurries followed by drying using a sheet forming instrument
(Figure 5). During the antibacterial assays performed on Staphylococcus aureus and Escherichia coli,
it was observed that the BC/GO-CuO nanomaterials were more efficient against Gram-positive bacterial
strains than that without GO. In addition, BC/GO-CuO hybrid films had better results in terms of
microbial growth inhibition compared to BC/CuO films, thus indicating a synergistic bactericidal
effect between GO and CuO. A possible mechanism of the antimicrobial action could be related to
the direct contact of bacterial cells with the sharp GO-CuO nanostructures. The disruption of cellular
membrane integrity caused by this interaction generates a surface collapse accompanied by cellular
deformation and the increased production of ROS leads to bacterial cell death. The nanomaterials were
non-cytotoxic against mouse embryonic fibroblasts cells (NIH-3T3), a slight increase of cellular viability
(compared to the control group) being indicated by the MTT assay results for the group treated with
BC films containing 10% GO-CuO. In virtue of their good biocompatibility and antimicrobial activity,
the BC/CuO-GO films could represent a new generation of hybrid materials for applications in the
biomedical field [13].

3.4. Bacterial Cellulose/MgO Nanohybrids

MgO nanoparticles are very interesting for biomedical applications because they are non-toxic in
low concentrations (under 250 µg·mL−1) [83], very stable, show antibacterial activity, high thermal
conductivity and have very good dielectric properties [84,85]. MgO is classified as a generally
recognized as safe (GRAS) ingredient by the US FDA [86]. MgO NPs can be synthesized by laser
ablation, microemulsion method, hydrothermal synthesis, sol-gel, wet chemical reactions, microwave or
ultrasound assisted synthesis [84]. In addition to conventional methods, biochemical methods are
increasingly developed for the synthesis of inorganic nanoparticles [86,87]. In particular, natural extract
of Dalbergia sissoo and water were used as reducing agent and solvent instead of harmful compounds
for the synthesis of MgO NPs [87]. One of the most important uses of MgO NPs is as an antibacterial
nanomaterial for biomedical application. In particular, MgO-BC nanohybrids were obtained by in
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situ co-precipitation methods and ex situ incorporation of MgO-NPs in the BC membranes [84].
BC membranes were suspended in a magnesium acetate tetrahydrate (Mg(CH3COO)2·4H2O) precursor
solution. Ammonia was added as a precipitating agent and polyethylene glycol as a surfactant.
The mixture was kept under continuous agitation for 3 h at 70 ◦C. The nanohybrids were dried at 80 ◦C
for 18 h and then at 180 ◦C for 3 h resulting MgO-BC hybrids. In the ex situ method, previously obtained
MgO NPs were incorporated in BC membranes by immersion in water under ultrasonic irradiation
followed by drying and calcination in the same conditions as in the in situ process [84]. The release tests
using an agar disk diffusion method showed a good antibacterial activity for all types of nanohybrids,
however, the ex situ synthesized nanohybrid had the highest antimicrobial activity against both
Staphylococcus aureus and Escherichia coli.
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3.5. Cellulose Nanocrystals/Metal Oxides Hybrids

Owing to the electrostatic interactions between cellulose nanocrystals and zinc oxide, sheet-like
CNC-ZnO nanohybrids were successfully developed by a one-step hydrothermal method [88].
CNCs were prepared by mixing microcrystalline cellulose (MCC) with an acid solution consisting of
90% citric acid and 10% HCl, at 80 ◦C for 6 h. The final CNC suspension (neutralized with NH4OH
and washed with distilled water) was added in an aqueous solution of ZnCl2 containing NaOH as
precipitating agent and homogenized at room temperature. The obtained CNC-ZnO nanohybrids
were introduced into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using the electrospinning
process (Figure 6).

The presence of zinc, carbon and oxygen in the EDX spectrum of hybrid fibers indicated the
successful loading of CNC with ZnO NPs. In addition, FE-SEM images revealed that the morphology of
CNC-ZnO nanohybrids varied from nanosheets to flower-like structures depending on the concentration
of Zn2+ ions. The insertion of CNC-ZnO into the PHBV matrix provided it a UV-blocking ability for
both UVA (99.72%) and UVB (99.95%) and excellent antimicrobial activity against Escherichia coli and
Staphylococcus aureus [88].
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3.6. Cellulose Nanofibers/Metal Oxides Hybrids

Cellulose nanofibers were also modified with metal oxide nanoparticles to obtain hybrid materials
with improved characteristics. For example, copper and copper oxide coated cellulose nanofibers
(CNFs) presented promising antimicrobial properties and biocompatibility [89]. Cellulose nanofibrils
were obtained from Colocasia esculenta stems by successive bleaching, alkaline treatment, glacial acetic
acid hydrolysis and abundant washing. Afterwards, the CNFs were dispersed in ethanol and mixed with
copper acetate at room temperature for 2 h. A green reductive technique using an alcoholic extract of
Terminalia chebula fruit instead of toxic NaBH4 was proposed for the reduction of copper salts, assuming
that the polyphenol compounds from the fruit extract may form complexes with Cu2+ ions, thus reducing
Cu(CH3COO)2. The copper-coated CNFs were freeze-dried before characterization. UV–Vis absorption
bands indicated a mixture of Cu and CuO in the hybrids, aspect also highlighted by FT-IR and XRD.
The hybrids exhibited strong antimicrobial effects when tested against Escherichia coli, Staphylococcus
aureus and Candida albicans. At low concentrations of Cu and CuO (3 or 5%), the nanohybrids induced
no degradation of the structural integrity of bovine serum and showed good biocompatibility with
peripheral blood mononuclear cells, however, cell death was observed at a higher amount of metal
oxide [89,90].

4. Nanocellulose Hybrids with Magnetic Nanoparticles

Hybrids consisting of cellulose and magnetic particles have attracted great interest in the
biomedical field due to their advantages such as biocompatibility and biodegradability [91]. Iron oxides
and, in particular, magnetite (Fe3O4) show superparamagnetic properties, high stability, low cost,
good biocompatibility and low toxicity which recommend them for magnetic biocomposites.
Magnetic Fe3O4 nanoparticles (Fe3O4 NPs) have a demonstrated efficiency in magnetic resonance
imaging, drug delivery, bio-separation, catalysis and wastewater cleaning. Their efficiency as well
as physical and chemical properties are influenced by their morphology, size and structure [92].
Currently applied techniques to synthesize MONP include thermal decomposition, co-precipitation
and hydrothermal methods. Co-precipitation is usually preferred due to its simplicity, low temperature,
time-saving, low cost and high quality of resulted iron oxide NPs [93].

In addition, paramagnetic behavior, nanocellulose hybrids with magnetic nanoparticles are
attractive due to their improved optical, antibacterial, conductive and mechanical properties. However,
some of these properties are obtained for high concentration of MONPs, which raises the problem
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of nanoparticle aggregation [94]. The agglomeration of MONPs may compromise the magnetic,
optical and mechanical functions of nanocomposites, therefore, the preparation and processing of these
nanomaterials are challenging tasks.

4.1. Bacterial Cellulose/Iron Oxides Hybrids

Cerebral aneurysms are the most critical events in cerebral trauma and surgical conventional
treatments have low success rate [95]. Pavon et al. developed an alternative technique for
neuro-endovascular reconstruction [95–97]. They used a co-precipitation-based method to functionalize
bacterial cellulose hydrogel with Fe3O4 NPs. The materials were designed as coatings for the surface of
metallic stents used for the reconstruction of tunica media tissue after a cerebral aneurysm. This novel
process consists of arterial media reconstruction by using a stent covered with magnetic BC. Magnetic
stimulation is used to orient magnetized endothelial cells, derived from the arterial wall or provided
externally via a catheter, to the regions along the outer side of the BC/Fe3O4-covered stent. This method
allows the growth of a new tissue over the device which closes the aneurysmal neck defect (Figure 7) [95].
Cellulose functionalization was performed by impregnating BC membranes with FeCl3·6H2O and
FeCl2·4H2O solutions at 80 ◦C, under nitrogen flow and vigorous stirring accompanied by ammonium
hydroxide (NH4OH) addition to form Fe3O4 NPs inside the BC [96]. The surface of magnetic NPs used
to develop magnetic materials for tissue regeneration should be modified for increased biocompatibility
because plain magnetic NPs could cause genotoxicity and cells necrosis [97]. Different solutions were
tested for improving biocompatibility. In one attempt, oleic acid was added into the ferrofluid used
for BC impregnation during the heating stage [97]. SEM images indicated that the magnetic NPs had
an aggregation tendency, most likely due to the polar nature of fatty acid functional groups on their
surface. In other attempts, polyethylene glycol (PEG), polyethyleneimine or citric acid were used to
coat magnetic materials [95]. The nano-mechanical properties of neat BC and BC/Fe3O4 were evaluated
using in situ nano-indentation measurements in hydrated state. The stiffness range of the BC/Fe3O4

hybrids (0.0025–0.04 GPa) was close to the values measured for both large arteries and veins of human
cerebral vessels. A residual elastic straining effect similar to the one characteristic to biological tissues
(e.g., tendons, blood vessels, ligaments) was also observed [97].
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Flexible magnetic BC nanohybrids were also obtained by in situ synthesis of Fe3O4 NPs using
ultrasonic irradiation and PEG as a coating polymer [98]. The results showed that ultrasonication and
PEG ensured the homogeneous dispersion of Fe3O4 NPs in the BC network. Moreover, the magnetic
BC membranes obtained by this method showed a saturation magnetization of 40.58 emu/g and good
mechanical properties.

4.2. Cellulose Nanocrystals/Iron Oxides Hybrids

Similarly to other metal oxides nanostructures [12], Fe3O4 NPs can easily aggregate and oxidize
in aqueous or oxygen environments, which limit their applications. To overcome these disadvantages,
the surface of magnetic NPs can be modified with functional materials (e.g., mesoporous silica) to
obtain core–shell structures with improved stability [99]. Another technique consists of the synthesis
of Fe3O4-grafted cellulose nanocrystals. The negative charges, introduced in cellulose nanocrystals
structure during acid hydrolysis preparation process, generate an electrostatic repulsion among
CNC-Fe3O4 particles, hence giving them the ability to effectively disperse in aqueous media [100].

MRI is a non-invasive clinical diagnostic technique used for anatomical imaging of soft body tissues.
Contrast agents (CAs) are used to improve the image quality by shortening the relaxation time of water
protons, thus increasing the MRI sensitivity [101]. Positive (T1) contrast agents reduce longitudinal
relaxation time and produce brighter images, while negative (T2) ones shorten transverse relaxation
time, resulting in darker images. The sensitivity of a contrast agent is defined by its relaxivity parameters
(longitudinal—r1 and transverse—r2). The development of high-relaxivity CAs is desirable because
they provide contrast enhancement at lower doses compared to low-relaxivity compounds, therefore
the potential toxic effects are reduced [101–103]. Nanocellulose in the form of cellulose nanocrystals
was used in combination with ultra-small superparamagnetic iron oxide nanoparticles (USPIONs) to
develop a novel T1-T2 contrast agent [104]. Cellulose nanocrystals (CNC) were isolated from cotton
linters using the acid-hydrolysis method, and incorporated in poly(citric acid) (PCA) to produce a
biocompatible, dispersible and stable substrate. USPIONs magnetic nanoparticles were synthesized by
thermal decomposition of iron (III) acetylacetonate precursor and loaded on the hydrophilic CNC-PCA
substrate. To obtain the CNC-PCA/Fe3O4 nanohybrids, predetermined quantities of USPIONs and
CNC-PCA were separately dispersed in distilled water and ultrasonicated, then mixed for 24 h and
dried in a vacuum oven [104]. FE-SEM images showed that the spherical Fe3O4 NPs were well
dispersed on the CNC-PCA surface and no aggregations were observed (Figure 8). The particle size
distribution analyzed by dynamic light scattering showed that the average hydrodynamic size of
Fe3O4 NPs and CNC-PCA/Fe3O4 was 13.2 and 12.0 nm, with a polydispersity index of 0.12 and 0.34.

The XRD pattern of CNC-PCA/Fe3O4 showed all the diffraction peaks corresponding to the
crystal planes of Fe3O4 and two new broad peaks at 2θ = 14.9◦ and 22.1◦ associated to (110) and
(002) planes in the structure of cellulose. The high saturation magnetization value (52.2 emu·g−1)
and good relaxivity parameters r1 (13.8 mM−1

·s−1), r2 (96.2 mM−1
·s−1), obtained at 3.0 T magnetic

field strength, demonstrated that the hybrids could be used successfully as dual MRI contrast agents
(Figure 9). In addition, a higher iron concentration was associated with an enhanced signal intensity of
T1-weighted images (brighter images) and a reduced signal intensity on T2-weighted images (darker
images), the contrast being improved in both cases. In vitro cellular uptake was performed using
inductively coupled plasma optical emission spectroscopy and in vitro cytotoxicity to HeLa cell lines
was also investigated. The results revealed an appropriate cellular uptake, excellent biocompatibility
and low toxicity, characteristics which make the CNC-PCA/Fe3O4 nanohybrids promising for the
intended biomedical application [104].
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Versatile magnetic materials based on cellulose nanocrystals and cobalt ferrite (CoFe2O4) were
obtained by in situ synthesis of the inorganic nanoparticles on CNC support [105]. CNCs with
length of approximately 150 nm were obtained from dry cotton by acid-hydrolysis. The magnetic
nanomaterials were synthesized by treating CNC aqueous dispersions with precursor salts-ferrous
(II) sulfate heptahydrate (FeSO4·7H2O) and cobalt chloride (CoCl2), followed by heat treatment.
After the addition of the precipitating agents, NaOH and KNO3, the dispersion changed its color
to brown, this being an indicator of CoFe2O4 particles growth. CNC-CoFe2O4 nanohybrids were
further tested either as magneto-responsive dispersions or as precursors for self-standing films or
composites nanofibers. The films could find applications in packaging and magnetic shielding and the
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composite nanofiber mats could be considered for magnetic separation procedures [105]. The amount
of inorganic nanoparticles in CNC-CoFe2O4 nanohybrids was verified by the residue at 800 ◦C in
TGA measurements. FE-SEM-EDX analysis of CNC-CoFe2O4 dispersion showed that the inorganic
NPs were mainly spherical with diameter of approximately 10–40 nm. The hybrid dispersion was
stable, CNCs being able to function as a nucleation site for the inorganic particle growth and also as
a stabilizing network. Preliminary studies regarding the utilization of the aqueous CNC-CoFe2O4

dispersion in magnetic hyperthermia were conducted and an increase with 8 ◦C of the temperature
(from 24 to 32 ◦C) was achieved in 40 min. This effect may be improved by using a higher magnetic
NPs loading [105].

5. Influence of Metal Oxide NPs on the Properties of Cellulose Nanohybrids

A summary of the nanocellulose-metal oxide nanocomposites studied for biomedical applications is
presented in Table 1. The antibacterial or magnetic properties of nanocellulose-metal oxide nanohybrids
were presented in the previous chapters along with the methods of obtaining these nanohybrids.
However, MONPs have also an important influence on their thermal and mechanical properties.
The thermal behavior of nanocellulose composite with MONPs is important for the biomedical
applications of these nanohybrids. BC shows a major degradation step between 250 and 375 ◦C, with a
maximum degradation rate temperature around 320 ◦C [30,53,59]. This is due to the dehydration,
depolymerization and decomposition of glucose units.

The MONPs are highly thermostable inorganic nanomaterials and their incorporation in
nanocellulose might increase the thermal stability. However, different effects of MONPs on the
thermal stability of nanocellulose depending on their concentration in the nanohybrids and the
composites preparation method were reported. Although characterized by a high thermal stability,
metal oxides are sensitive to oxygen in the air, so that thermogravimetric analysis was in general
carried out in nitrogen flow.

A decrease of the thermal stability of BC with more than 25 ◦C was noticed for BC/ZnO
nanocomposite films prepared by in situ wet chemical synthesis of NPs [59], however, this decrease
was not influenced by the concentration of ZnO NPs in the nanocomposites (between 5 and 34%).
Wahid et al. considered that the faster degradation of the BC/ZnO nanohybrids compared to original
BC was due to the catalytic activity of ZnO NPs which assisted the cross-linking breakdown in the
cellulose network [59]. A similar decrease was observed for BC/ZnO nanohybrids prepared by SPP
assisted synthesis and deposition of ZnO NPs into BC pellicles [63]. The influence of the in situ vs.
ex situ synthesis of MgO NPs on the thermal stability of BC nanocomposites was highlighted by
Mirtalebi et al. [84]. They showed that a higher decrease of the thermal stability was noticed when
MgO NPs were obtained by in situ methods. This was explained by the stronger interactions of NPs
with the BC membrane which led to disruption of BC crystalline structure [84].

A slight increase of thermal stability with 5 and 10 ◦C was reported in the case of BC/ZnO
(1 and 2% NPs) nanocomposites compared to neat BC [47]. The nanocomposites were obtained by
ultrasound assisted mixing of BC-NMMO solution with ZnO NPs. The authors consider that ZnO NPs
behave as a barrier in the nanohybrids by absorbing the heat and slowing down the degradation of
BC [53]. A significant increase of thermal stability, with more than 50 ◦C, was noticed in the case of
BC/Fe3O4 nanocomposites with a high proportion of magnetic nanoparticles [98]. The composition and
preparation conditions influenced the thermal behavior. Thus, the method involving ultrasonication
led to a smaller increase of the thermal stability than the one without ultrasound irradiation due to the
disruption of the BC network that decreased its crystallinity [98].
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Table 1. Various types of metal oxides incorporated in nanocellulose to obtain functional hybrids for
biomedical applications.

Nr. Nano-Cellulose Metal
Oxide NPs Nanocomposite Preparation Method Application Ref.

1. BC ZnO Ex situ synthesis of NPs, immersion of BC
membrane and mixing

Wound dressing systems in burns
complication [47]

2. BC ZnO MAPLE Wound dressing materials [51]

3. BC ZnO Ex situ synthesis of NPs and mixing with BC
dissolved in NMMO

Biomedical applications and
bioelectroanalysis [53]

4. BC ZnO Ultrasonic-assisted in situ synthesis of NPs
inside the BC template

Active antibacterial
wound dressing [55]

5. BC ZnO Single-pot method: BC impregnation in
NPs precursor Wound healing [59]

6. BC ZnO SPP synthesis and deposition of NPs into
BC pellicles

Antibacterial material in
wound dressing [63]

7. BC ZnO BC modified with maleic anhydride template
for in situ synthesis of NPs

Antibacterial wound dressing and
tissue regeneration [40]

8. BC TiO2 Ex situ sol-gel method Antibacterial and
photocatalytic applications [77]

9. BC TiO2
Ex situ synthesis of NPs and mixing with BC

dissolved in NMMO
Wound healing and
tissue regeneration [78]

10. BC CuO GO-CuO nanohybrids blended with
homogenized BC Biomedical applications [13]

11. BC MgO
Nanohybrids obtained by in situ

co-precipitation method and ex situ
incorporation of MgO-NPs in the BC

Clinical wound healing [84]

12. CNC ZnO Sheet-like CNC-ZnO nanohybrids by
one-step hydrothermal method Wound dressing [88]

13. CNF Cu/CuO In situ generation of Cu/CuO NPs using
green reductive technique and coating CNF Surgical bandage material [89]

14. BC Fe3O4
In situ generation of Fe3O4 NPs inside the BC
network in the presence of oleic acid or PEG

Tissue reconstruction at the
cerebral aneurysmal neck defect [95,97]

15. CNC Fe3O4
Ex situ generation of Fe3O4 and mixing with

CNC-poly(citric acid) by ultrasonication
Dual contrast agent for MRI in

biomedical applications [104]

16. CNC CoFe2O4
In situ synthesis of CoFe2O4 NPs starting

from precursor salts in the presence of CNC

Magnetic fluid hyperthermia,
magnetically assisted

drug delivery
[105]

The mechanical properties of the nanocellulose-MONPs hybrids intended for wound dressings or
other biomedical applications are very important because they must show both flexibility and
mechanical strength to properly protect the wound from damage or collision [40]. In general,
the incorporation of MONPs in nanocellulose networks leads to the increase of the mechanical
properties of hybrids. An increase of the tensile strength at break with about 20% for BC-ZnO with 1
and 2% ZnO and of the Young’s modulus with 37.5 and 62.5% for the same hybrids, compared to plain
BC, was reported by Ul-Islam et al. [53]. This noticeable increase was explained by the covalent/hydrogen
bonding occurring between ZnO and OH groups of cellulose, which increases the toughness and limits
the chains mobility, thus increasing the strength of the hybrids [53]. This rigidity and diminished
mobility of the polymer chains have as result a slight decrease of the tensile strain and a lower
flexibility. Similarly, a two-fold increase of the Young’s modulus and an increase with about 30% of the
tensile strength without a decrease of flexibility were reported for a carboxylated BC-ZnO hybrid [40].
These properties indicate a flexible and strong material, suitable for wound dressings.

Recent work on BC-MgO nanohybrids highlights the influence of the method used to synthesize
the NPs and that to obtain the hybrid (in situ or ex situ, chemical or sonochemical) on the mechanical
properties [84]. The effect of MgO NPs on the mechanical properties of the ex situ synthesized
nanohybrids was not significant; however, a maximum increase of the Young’s modulus with 72%
and of the tensile strength with 30% was noticed for BC-MgO nanohybrids obtained by the in situ
methods compared to BC. The uniform distribution of MgO NPs in the whole BC network and
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increased interactions were considered to cause the improvement of the mechanical properties. On the
contrary, the dispersion of MgO NPs only on the surface of cellulose membrane and agglomerations
do not modify or even decrease the mechanical properties of the nanohybrids [84]. The thermal
and mechanical characterization of the nanocellulose–MONPs nanohybrids has shown that the
simultaneous achievement of an increased flexibility and toughness is still a challenging task for the
design of more specialized and performing wound dressing materials.

6. Conclusions and Future Perspectives

Nanocellulose is a versatile material, providing high mechanical properties, low density,
high crystallinity, biodegradability and biocompatibility at an affordable price. As a reinforcing agent in
polymers or as a support to enhance the effectiveness of organic or inorganic NPs, nanocellulose gives
rise to new materials which cover a huge range of properties and applications. Metal oxides, with their
remarkable optical, electronic and magnetic characteristics were extensively studied to provide new
functionalities to polymers. The combination of nanocellulose and metal oxide nanoparticles in new
nanohybrids with biomedical applications is a promising platform for sustainable progress. In this
review, the preparation methods, properties and applications of nanohybrids from nanocellulose
and different metal oxides nanoparticles were presented. ZnO, TiO2, CuO, MgO or Fe3O4 NPs were
studied to induce new antibacterial and magnetic functions to bacterial cellulose, cellulose nanofibrils
or nanocrystals. In these hybrids, nanocellulose serves as a support material, providing flexibility and
a high surface area for MONPs impregnation.

One of the challenging tasks in the synthesis of nanocellulose-MONPs nanohybrids is to obtain a
nanolevel dispersion and high homogeneity. In the case of a high amount of MONPs, such as
for magnetic nanomaterials, the homogenous dispersion is even more difficult to be obtained.
Functionalization of nanocellulose by carboxylation [40], use of dispersion agents [95] or intensive
mixing by ultrasound irradiation [53,55] are some of the methods attempted to improve the dispersion.
Tailoring interfacial interactions and compatibility in these new organic–inorganic nanohybrids is
of paramount importance. Therefore, new treatments are expected to be studied for improving
dispersion and avoiding self-aggregation or microphase separation. Additionally, more eco-friendly
processes and more efficient synthesis methods, adapted for the nanocellulose medium, are expected
for these nanohybrids. The antibacterial or magnetic functionalities are enhanced with the increase
of MONPs concentration in nanohybrids, however, toxicity also increases in the same direction and
an optimum should be established in each case. In this context, the compatibility and interactions
between NC and MONP should be better understood and used in the design of the new materials.
Moreover, it is important to understand the influence of MONPs size, concentration, morphology and
surface chemistry on the properties of nanohybrids and their toxicity. Specialized in vivo tests and
detailed studies on animals are also necessary to establish the toxicity profile and the efficiency of these
promising nanohybrids.
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