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Abstract

Influenza A virus usurps host signaling factors to regulate its replication. One example is

mTOR, a cellular regulator of protein synthesis, growth and motility. While the role of

mTORC1 in viral infection has been studied, the mechanisms that induce mTORC1 activa-

tion and the substrates regulated by mTORC1 during influenza virus infection have not

been established. In addition, the role of mTORC2 during influenza virus infection remains

unknown. Here we show that mTORC2 and PDPK1 differentially phosphorylate AKT upon

influenza virus infection. PDPK1-mediated phoshorylation of AKT at a distinct site is re-

quired for mTORC1 activation by influenza virus. On the other hand, the viral NS1 protein

promotes phosphorylation of AKT at a different site via mTORC2, which is an activity dis-

pensable for mTORC1 stimulation but known to regulate apoptosis. Influenza virus HA

protein and down-regulation of the mTORC1 inhibitor REDD1 by the virus M2 protein pro-

mote mTORC1 activity. Systematic phosphoproteomics analysis performed in cells lacking

the mTORC2 component Rictor in the absence or presence of Torin, an inhibitor of both

mTORC1 and mTORC2, revealed mTORC1-dependent substrates regulated during infec-

tion. Members of pathways that regulate mTORC1 or are regulated by mTORC1 were iden-

tified, including constituents of the translation machinery that once activated can promote

translation. mTORC1 activation supports viral protein expression and replication. As

mTORC1 activation is optimal midway through the virus life cycle, the observed effects on

viral protein expression likely support the late stages of influenza virus replication when

infected cells undergo significant stress.
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Author summary

Drug-resistant influenza viruses commonly arise due to frequent genetic changes and cur-

rent antiviral drugs are not highly efficient. These underscore the need for new antiviral

therapies effective against influenza viruses. Understanding how influenza virus uses cel-

lular proteins for infection can potentially identify novel targets for pharmacological inter-

vention. Influenza virus modulates cellular pathways to promote its replication and avoid

immune restriction. Here we reveal the interplay between the cellular protein mTOR,

which functions in two distinct protein complexes, and influenza virus infection. mTOR

complex 1 (mTORC1) is activated during influenza virus infection through a cascade of

specific modifications, or phosphorylation events, and by reducing the levels of another

cellular protein termed REDD1, which is an mTORC1 inhibitor. Activation of mTORC1

results in additional phosphorylation events that together promote viral protein expres-

sion and replication. On the other hand, mTOR complex 2 (mTORC2) phosphorylates

AKT at a specific site during infection, which is a process mediated by the viral NS1 pro-

tein that is known to regulate viral-mediated cell death. Since these effects occur midway

through the virus life cycle in the infected cell, mTORC1 and mTORC2 activation are

likely important to regulate the cellular environment in order to facilitate the late stages of

viral infection.

Introduction

Influenza virus is a major human pathogen for which there are few treatment options. To

search for novel potential therapeutic targets while systematically investigating viral-host inter-

actions, comprehensive proteomics screens [1,2] and various genome-wide screens were per-

formed in influenza virus infected cells [3]. In two screens, the host kinase mechanistic target

of rapamycin (mTOR) was identified as a protein that promotes influenza virus infection [4,5].

Indeed, we and others found that H1N1 influenza viruses activate mTORC1 [5,6], and influ-

enza virus replication is reduced when mTOR is inhibited [4]. Additionally, we showed that

mTORC1 inhibition by chemical induction of REDD1, a known mTORC1 inhibitor, reduced

influenza virus replication [5]. Collectively, these data highlight the importance of mTORC1

for efficient influenza virus replication.

mTOR is a highly conserved serine/threonine kinase that resides in two functionally dis-

tinct multi-protein complexes termed mTOR complex 1 and 2 (mTORC1 and mTORC2),

which are defined by association with the proteins Raptor or Rictor, respectively. mTORC1

regulates cellular protein synthesis, growth and proliferation in response to nutrients, such as

amino acids and growth factors. Amino acid stimulation promotes mTORC1 recruitment to

lysosomes, which results in mTORC1 activation [7]. This process requires amino acid-sensing

by the lysosomal vacuolar H+-adenosine triphosphatase ATPase (v-ATPase) and its interaction

with the Ragulator complex of scaffold proteins [8]. The Ragulator then recruits the Rag

GTPases, which brings mTORC1 in close proximity to its small GTPase activator Rheb (Ras

homolog enriched in brain) [7]. Growth factors activate mTORC1 through a signaling axis

involving phosphoinositide 3-kinase (PI3K) and AKT (Fig 1A). Once activated by phosphory-

lation, AKT inhibits Tuberous Sclerosis Complex 1/2 (TSC1/2), which is a GTPase-activating

protein (GAP) that acts on Rheb, thereby stimulating mTORC1. REDD1 inhibits mTORC1

activation in a TSC1/2-dependent manner [9]. Activated mTORC1 phosphorylates down-

stream substrates to elicit cellular responses. p70 S6 kinase 1 (S6K) and 4E-BP1 are key
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Fig 1. PDPK1 phosphorylates AKT to promote mTORC1 activation during influenza virus infection. (A) Schematic representation of the PI3K/

AKT pathway and mTORC1 activation. Filled red lines represent regulation of the signaling pathway by influenza virus. Dotted lines depict gaps of

knowledge in these pathways, and boxes with question marks indicate unknown regulatory factors. (B) HCT116 Akt1/2+/+ and Akt1/2-/- were infected with

WSN at MOI of 2 PFU/cell for 6h. Cell lysates were subjected to immunoblot analysis with antibodies against the depicted proteins. (C) Rictor+/+ and

Rictor-/- MEFs were processed as in B except that infection was performed for 10h. (D) Tbk1+/+ and Tbk1-/- MEFs +/- 1 μM BX795 were processed as in

B. (E) HCT116 Pdpk1+/+ and Pdpk1-/- were processed as in B. Data are representative of three independent experiments. Dotted line in C indicates

omission of unnecessary lanes from the same immunoblot membrane. M2, M1 and NS1: viral proteins; host proteins: β-actin, Rictor, TBK1, PPDPK1,

total and phosphorylated S6K, AKT and 4E-BP1. Total S6K, β-actin and total AKT serve as loading controls.

https://doi.org/10.1371/journal.ppat.1006635.g001
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mTORC1 substrates that regulate protein translation. S6K phosphorylation stimulates transla-

tion initiation and elongation through its substrate ribosomal protein S6. Phosphorylation of

4E-BP1 results in loss of eIF4E binding so that eIF4E can help facilitate cap-dependent transla-

tion initiation [7].

The proteins Rictor and SIN1 distinguish mTORC2 from Raptor-containing mTORC1.

mTORC2 regulates the cytoskeleton, cell survival and has a more recently identified role in

translation [10–13]. The activation and functions of mTORC2 are not as well characterized as

mTORC1. Recent studies indicate that phosphatidylinositol-3,4,5-triphosphate (PIP3) activates

mTORC2 in response to growth factors or insulin [14,15]. mTORC2 substrates include AGC

kinases AKT, PKC-α and SGK1. Notably, mTORC2 phosphorylates AKT at serine 473 (S473),

a growth stimuli responsive site that promotes cell survival [13]. mTORC1 and mTORC2 sig-

naling are often enhanced during oncogenic transformation, and both are being considered as

targets for cancer therapeutics [7].

The influenza virus non-structural protein 1 (NS1) has been shown to interact with the p85β
subunit of PI3K, which results in activation of AKT S473 [16,17] (Fig 1A). AKT activation by

influenza virus is thought to suppress apoptosis as PI3K/AKT signaling is well known to pro-

mote cell survival, and NS1 has anti-apoptotic functions [18–21]. However, NS1 proteins, espe-

cially from avian strains, were shown to have pro-apoptotic functions [22–25]. Despite the

binding of NS1 to PI3K, it is not entirely clear whether this interaction contributes to apoptotic

regulation [26]. It has also been hypothesized that the anti-apoptotic function of NS1 would

contribute to the early stages of the virus life cycle whereas the pro-apoptotic role would be

important at late stages of the infection cycle [27]. PI3K activation stimulates 3-phosphoinosi-

tide dependent protein kinase-1 (PDPK1, also known as PDK1)-mediated phosphorylation of

AKT at threonine 308 (T308) [28], whereas mTORC2 and other kinases are responsible for

AKT phosphorylation at S473 [29]. Notably, TANK binding kinase 1 (TBK1) phosphorylates

both the T308 and S473 sites on AKT [30,31]. However, the relationship between AKT and

mTOR activation during influenza virus infection has not been established. Here we sought

to understand the players and mechanisms involved in mTORC1 activation during influenza

virus infection and identify the mTORC1-dependent substrates and pathways activated during

infection.

Results

PDPK1 activates AKT to promote mTORC1 activation during influenza

virus infection

Influenza virus infection promotes AKT phosphorylation at amino acid S473 [16–18,32], but

the kinase involved has not been identified, and phosphorylation at the T308 site has not been

examined. To first determine whether AKT is required for mTORC1 activation, wild-type cells

and cells lacking two of the three AKT isoforms AKT1 and AKT2 were infected. Influenza A

virus strain A/WSN/1933 (WSN) induced AKT phosphorylation at S473 and T308 sites as well

as mTORC1 activation in wild-type cells, as evidenced by phosphorylation of its substrate S6K

on threonine 389 (p-S6K) and the multiple forms of the 4E-BP1 protein. However, mTORC1

activity was strikingly reduced in the absence of AKT1/2 (Figs 1B and S1A–S1D). Thus, we

show that functional AKT is critical for proper induction of mTORC1 by influenza virus.

The influenza virus NS1 protein binds PI3K to induce AKT S473 phosphorylation by an

uncharacterized kinase [26] (Fig 1A). AKT is fully activated when both T308 and S473 residues

are phosphorylated [33]. PI3K activation results in T308 phosphorylation of AKT by PDPK1

[28]. Alternatively, AKT is phosphorylated at T308 and S473 by TBK1 [31] independently of

PI3K and PDPK1 [30]. mTORC2 is one of several kinases that phosphorylates AKT at S473
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[13]. To assess whether mTORC2 is required for influenza virus to activate AKT, we examined

AKT activity in the absence of mTORC2 using mouse embryonic fibroblasts (MEF) expressing

or lacking Rictor, a component required for mTORC2 complex formation and function [7]. In

addition, we have knocked down Rictor in A549 cells. In both conditions, infection of Rictor

expressing cells with WSN stimulated AKT phosphorylation at both T308 and S473 sites (Fig

1C, S1E–S1G Fig). In contrast, AKT phosphorylation at S473 was absent or severely reduced

in WSN infected Rictor-/- MEFs and in A549 cells where Rictor was knockdown, respectively

(Fig 1C, S1E and S1G Fig). These results indicate that influenza virus promotes mTORC2-me-

diated phosphorylation of AKT at S473.

Stimulation of AKT T308 phosphorylation still occurred in Rictor-/- MEFs to a similar

degree as in Rictor+/+ cells when normalized to total AKT levels (Fig 1C and S1F Fig). We

noticed higher basal levels of p-AKT (T308) in Rictor-/- MEF as compared to Rictor+/+ cells

(Fig 1C) but this was not the case in A549 cells with transient knockdown of Rictor versus con-

trol cells (S1G Fig). Nevertheless, influenza virus infection stimulated mTORC1 to a similar

extent in both Rictor-/- MEF and A549 cells depleted of Rictor compared to their respective

controls, as evidenced by increased p-S6K levels (Fig 1C and S1G–S1J Fig). S6K phosphoryla-

tion at T389 was normalized to total S6K levels and showed that Rictor-/- MEF has slightly

lower levels of total S6K than Rictor+/+ cells but the degree of activation is similar to wild-type

cells as mentioned above (Fig 1C, S1H–S1I Fig). In sum, mTORC1 was activated despite the

absence or severe reduction of p-AKT(S473), indicating that full AKT activation is not requi-

red for influenza virus to trigger mTORC1. Since Rictor, as a member of the mTORC2 com-

plex, is known to phosphorylate p-AKT (S473) in uninfected cells and we observed a lack or

striking decrease of AKT phosphorylation at this site in Rictor-/- infected MEFs (Fig 1C, S1E

and S1G Fig), these findings indicate that influenza virus usurps mTORC2 to promote phos-

phorylation of AKT at S473. This phosphorylation event presumably occurs through NS1-me-

diated PI3K activation, which is a process that is known to regulate apoptosis [26]. Altogether,

mTORC1 stimulation by influenza virus can occur independently of mTORC2-mediated acti-

vation of AKT through phosphorylation of the S473 site.

To ascertain the kinase responsible for phosphorylation on residue T308 of AKT during

infection and its potential relationship with mTORC1 activation, we first infected wild-type

and Tbk1-/- cells with WSN in the absence or presence of BX795, an inhibitor of PDPK1 [34],

TBK1 and IKKε [35]. mTORC1 activation by influenza virus still occurred in Tbk1-/- cells and

was down-regulated in the presence of BX795 (Fig 1D). These results indicated that TBK1 was

not involved in influenza virus-mediated induction of mTORC1 activity and that another

kinase inhibited by BX795 played a role in stimulating mTORC1. As expected, viral protein

levels were higher in Tbk1-/- cells than in Tbk1+/+ cells, as Tbk1 knockout cells are more per-

missive to infection. mTORC1 activation was also higher in Tbk1-/- cells than in Tbk1+/+ cells,

suggesting that virus replication may activate mTORC1, a point that will be addressed below.

Next, we tested cells that lack PDPK1 to assess if it had a role in mTORC1 activation by influ-

enza virus. We observed that p-AKT(T308) phosphorylation was largely reduced in Pdpk1-/-

cells whereas p-AKT(S473) was slightly decreased after normalization to total AKT (Figs 1E,

S1K and S1L). mTORC1 activation was inhibited in the absence of PDPK1 during infection

(Fig 1E and S1M Fig). Taken together these findings and the results from Rictor knockout cells

that activate mTORC1 to the same extent as Rictor wild-type cells in the presence of p-AKT

(308) but in the absence of p-AKT(S473), these findings point to the AKT T308 phosphoryla-

tion site as important to stimulate mTORC1 activity during infection (Fig 1B–1E). It is possi-

ble that in Pdpk1-/- cells phosphorylation of both T308 and S473 sites are required for full AKT

activation, as has been shown with growth factor stimuli [33]; therefore, these AKT phosphor-

ylation sites may influence the phosphorylation status of each other in certain conditions.
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Altogether, mTORC2 and PDPK1 are the kinases responsible for AKT S473 and T308

phosphorylation, respectively, during infection. AKT is required for influenza virus to activate

mTORC1 and AKT phosphorylation at T308 appears to be the key to trigger mTORC1 during

infection, indicating that site-specific phosphorylation of AKT directs its downstream

functions.

mTORC1 activation by influenza virus is independent of the viral NS1

protein

We demonstrated that influenza virus stimulates mTORC1 signaling through activation of

AKT via the T308 site (Fig 1B–1E). Therefore, we sought to elucidate how AKT activation by

influenza virus results in mTORC1 activity. We first examined the role of the viral NS1 pro-

tein, which is a multifunctional virulence factor that is synthesized during replication and

usurps several host signaling pathways. NS1 promotes AKT S473 phosphorylation through its

interaction with PI3K [26]. To determine whether NS1 is necessary for mTORC1 activation,

we tested viruses lacking NS1 (WSNΔNS1 and PR8ΔNS1). NS1-deficient viruses have replica-

tion defects in cells with functional type I interferon (IFN) signaling; therefore, Vero cells were

used which lack type I IFN genes [36–38], and thus allow comparable replication of wild-type

and ΔNS1 viruses. mTORC1 was similarly activated by both wild-type and ΔNS1 viruses, dem-

onstrating that influenza virus does not require NS1 to activate mTORC1 (Fig 2A and 2B).

The results suggested that low levels of AKT T308 phosphorylation induced by WSNΔNS1 was

sufficient to activate mTORC1 (Fig 2A, 2B and S2A Fig), whereas AKT S473 phosphorylation

was severely reduced and likely not required (Fig 2A, 2B and S2B Fig). These findings are cor-

roborated by infection of Akt1/2+/+ and Akt1/2-/- cells with WSN or WSNΔNS1, which show

that AKT is required for WSNΔNS1 induction of mTORC1 activity (Fig 2C) and that, as in

Vero cells, WSNΔNS1 infected Akt1/2+/+ cells promoted mTORC1 activity with low levels of

p-AKT(T308) and in the absence or barely detectable levels of p-AKT(S473) (Fig 2D). There-

fore, mTORC1 activation by influenza virus appears to be independent of AKT S473 phos-

phorylation and NS1.

Diverse influenza virus strains activate mTORC1

To clarify our understanding of viral factors involved in mTORC1 activation, we first set out

to better characterize mTORC1 signal induction during influenza virus infection. To under-

stand the kinetics of mTORC1 activation during infection, S6K phosphorylation was examined

at multiple times post-infection. mTORC1 activation was evident at 4 hours post-infection

and increased over time (S3A Fig). To ensure that influenza virus activates mTORC1 in non-

transformed cells, mTORC1 activation was assessed in primary MEFs and human bronchial

epithelial cells (HBECs). Indeed, influenza virus activated mTORC1 in primary MEFs (S3B

Fig) and HBECs (S3C Fig).

We and others have previously shown that mTORC1 is activated by WSN [5,6] and A/TX/

36/1991 H1N1 influenza viruses [5]. To determine whether a more distantly-related strain of

influenza virus could stimulate mTORC1, cells were infected with the recently emerged H7N9

strain A/Shanghai/1/2013 (Sh/1). Sh/1 activated mTORC1 (S3D Fig). We also tested a recombi-

nant strain that contains HA and NA segments from A/PR/8/1934 (PR8) and the other 6 seg-

ments from A/Shanghai/1/2013 (rSh/1) [39]. rSh/1 activated mTORC1 (S3E Fig). Moreover, to

understand whether mTORC1 activation was a general effect of viral gene expression, we exam-

ined whether another negative-sense RNA virus vesicular stomatitis virus (VSV) was capable of

activating mTORC1. VSV did not activate mTORC1 at 6 hours post-infection despite high lev-

els of M protein expression (S3F Fig). It was previously observed that mTORC1 was activated
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during VSV infection in MEFs at 16 hours post-infection [40], so it appears that the kinetics of

mTORC1 activation by VSV differ and might be cell type-dependent. Altogether, these results

show that different strains of influenza A viruses stimulate mTORC1 signaling and that

Fig 2. Viral replication is required for influenza virus to activate mTORC1 independently of NS1. (A, B) Vero cells were infected with (A) WSN or (B)

PR8 wild-type or mutant viruses lacking NS1 at MOI of 2 PFU/cell for 6 h. (C,D) HCT116 Akt1/2+/+ and Akt1/2-/- were infected with WSNΔNS1 or WSN at

MOI of 5 PFU/cell for 10h. (E) A549 cells were infected with WSN or UV-inactivated WSN at MOI of 2 PFU/cell for 6h. (F) Mavs+/+ and Mavs-/- or (G) Ifitm3+/+

and Ifitm3-/- MEFs were infected with WSN at an MOI of 2 PFU/cell for 6 h. Immunoblot analyses were performed for detection of viral proteins (NS1, HA,

NP and M1) and host proteins (β-actin, MAVS, IFITM3 as well as total and phosphorylated S6K, AKT and 4E-BP1). β-actin and total S6K serve as loading

controls. The upper band in the S6K/p-S6K blots is p85 S6K whereas the lower band is p70 S6K. Data are representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1006635.g002

Influenza virus differentially activates mTORC1 and mTORC2

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006635 September 27, 2017 7 / 31

https://doi.org/10.1371/journal.ppat.1006635.g002
https://doi.org/10.1371/journal.ppat.1006635


mTORC1 can be activated by influenza virus in several cell lines, highlighting the importance of

mTORC1 during influenza virus infection.

Viral replication is required for mTORC1 activation by influenza virus

To further elucidate the mechanism behind influenza virus-mediated mTORC1 activation, we

set out to identify viral and cellular factors that might contribute to mTORC1 signaling. We

first tested the M2 protein for a role in mTORC1 activation as it is implicated in regulating

macroautophagy (referred to herein as autophagy) [41]. Influenza virus M2 protein induces

autophagy early in infection but then inhibits autophagosome-lysosome fusion, which is nec-

essary to degrade contents [41]. Autophagy inhibition can lead to mTORC1 activation as they

are antagonistic processes [7]. To decipher whether M2 restriction of autolysosomal degrada-

tion can induce mTORC1 activity, we infected cells with a viral mutant strain that is deficient

in M2 expression (PR8:WSNDeficientM2) and the wild-type strain (PR8:WSN). The mutant

virus is propagated in an M2 expressing cell line and therefore contains M2 in virions, which

is necessary for entry, but is unable to synthesize new M2 protein [41]. Both wild-type and

mutant virus strains activated mTORC1 similarly, despite the lack of autophagy in PR8:

WSNDeficientM2 infected cells as determined by LC3-I to LC3-II conversion (S4A Fig).

Therefore, mTORC1 stimulation by influenza virus is independent of M2 effects on autopha-

gic processing. We further evaluated a possible role of autophagy in mTORC1 induction as

mTORC1 can be reactivated in cells that are serum starved for 6 or more hours, which requires

initial autophagy induction that is eventually reduced due to autolysosome degradation [42].

Autophagy is induced early during influenza virus infection [43], but discontinuation of

autophagy could promote mTORC1 activation. To establish whether autophagy is required for

mTORC1 activation during influenza virus infection, we infected cells depleted of or lacking

major proteins involved in autophagosome formation, Atg5 and Atg7. Depletion of Atg5 or

Atg7 did not alter mTORC1 activation by influenza virus (S4B Fig). Furthermore, mTORC1

was still activated by influenza virus in Atg5-/- cells (S4C Fig). Thus, induction and termination

of autophagy does not contribute to mTORC1 activation during influenza virus infection.

Overall, we demonstrated that NS1 and autophagy are dispensable for influenza virus to stimu-

late mTORC1 signaling.

To investigate other factors and processes necessary for mTORC1 activation by influenza

virus, we determined what stages of the virus replication cycle were critical for mTORC1 stim-

ulation. We first assessed whether influenza virus replication was a requirement. WSN was

UV-inactivated, which was confirmed by plaque assay (S4D Fig). UV-inactivated influenza

virus was unable to activate mTORC1 (Fig 2E), illustrating that influenza virus replication is

likely required to stimulate mTORC1. Thus, we conclude that stimulation of mTORC1 by

influenza virus is not mediated by virus-induced processes prior to viral fusion, such as bind-

ing to cellular receptors and endocytosis, and likely requires active viral replication. To further

evaluate the effect of viral replication on mTORC1 activation, we tested whether mTORC1

activity was increased in cells deficient in immune signaling or effector molecules that allow

enhanced virus replication compared to wild-type cells. Additionally, we sought to determine

whether key innate immune proteins involved in type I IFN induction contribute to mTORC1

activation since IFN can stimulate mTORC1 [44]. To this end, MEFs deficient in MAVS and

IFITM3 were utilized. MAVS is the key adaptor molecule of the RIG-I-like receptor signaling

pathway, which responds to viral RNA detection and induces IFN expression in virally-

infected cells [45]. Deletion of MAVS reduces innate immune responses to viral infection,

which results in increased virus replication. IFITM3 is an IFN-stimulated gene that restricts

influenza virus replication [46] by preventing virus escape from endosomes during entry [47].
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Influenza virus protein levels and mTORC1 activation were increased in bothMavs-/- and

Ifitm3-/- MEFs compared to their wild-type counterparts (Fig 2F and 2G), suggesting that virus

replication amplifies mTORC1 signaling. Moreover, these data provide additional evidence

that mTORC1 activation by influenza virus is not a result of the type I IFN response to viral

infection, in agreement with our results showing mTORC1 activation by influenza virus in

Vero cells, which lack type I IFN genes (Fig 2A and 2B). In addition, no mTORC1 activation

was detected upon stimulation of cells with poly(I:C), which led to interferon expression

(S4E–S4G Fig).

To investigate the potential role of additional viral proteins on mTORC1 activation, an

RNA interference (RNAi) approach was taken. Small-interfering RNAs (siRNAs) against indi-

vidual viral mRNAs were employed to reduce specific viral protein levels followed by assess-

ment of mTORC1 activation. Viral siRNAs were specific to their targets with the exception of

M2, which reduced both M1 and M2 (Fig 3A) since they are generated from the same RNA.

Depletion of either M1 or M2 did not impact mTORC1 activity at 6h post-infection, although

high levels of M2, which occur late in infection, can activate mTORC1 as addressed below. As

expected, significant reductions in viral protein expression were observed when the viral poly-

merase complex was depleted using siRNAs against NP, PA, PB1 or PB2 (Fig 3A). Depleting the

viral polymerase complex prevented mTORC1 activation likely by reducing viral replication.

Indeed, when an influenza virus replication simulation system was applied to test mTORC1

activation in the presence of only NP, the polymerase complex and a mini-genome encoding

negative-sense luciferase inserted in the NP cRNA promoter [48], mTORC1 was not activated

(Fig 3B), suggesting that additional viral components are necessary to stimulate mTORC1.

However, we did observe that knock down of HA or NA during infection reduced mTORC1

activation, although expression of other viral proteins was detectable at 6 hours post-infection

(Fig 3A). Knock down of HA decreased mTORC1 activity more effectively than NA knock

down. These data were corroborated by expression of HA alone, which induced AKT T308

phosphorylation and mTORC1 activation, while expression of NA alone did not promote

mTORC1 activation to a significant degree (Fig 3C). Taken together, the viral protein HA pro-

motes mTORC1 activation during infection.

Influenza virus down-regulates REDD1 when mTORC1 activity is

enhanced

We then investigated how the AKT-TSC1/2-Rheb axis might be regulated during infection to

prompt mTORC1 signaling by assessing REDD1, which converges on and inhibits the path-

way. Under stress conditions, TSC2 activity is induced by REDD1, and therefore, REDD1 is

inhibitory to mTORC1 [7]. REDD1 was originally described to promote TSC2 stability and

activity by sequestering the TSC1/2 inhibitory protein 14-3-3 [49]. However, a recent study

revealed that REDD1 promotes AKT T308 dephosphorylation to prevent mTORC1 signaling

[50]. We previously identified REDD1 as an antiviral factor and showed that REDD1 protein

levels decrease as viral infection progresses [5]. Thus, we analyzed how REDD1 influences

AKT-mTORC1 signaling during influenza virus infection. We assessed AKT and mTORC1

activation simultaneously with REDD1 protein levels during viral infection and found that

mTORC1 activity was strongest (as compared to the mock counterpart for each time point

normalized to total S6K levels) when REDD1 levels were greatly diminished and AKT T308

phosphorylation was strongest by 7h post-infection (Fig 4A and S5 Fig). AKT S473 activation

increased up to 5h post-infection but decreased at later time points (Fig 4A and S5 Fig). Influ-

enza virus infection reduced REDD1 mRNA levels at and beyond 5 hours post-infection (Fig

4B), which likely contributed to the decrease in protein levels (Fig 4A and S5 Fig). REDD1
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protein levels were also reduced in mock infected cells at later times post-infection, though not

as great as in infected cells, which was likely a result of REDD1 having a short half-life (~5 min-

utes) [51,52] and the experiments being performed in serum-free media (Fig 4A and S5 Fig).

mTORC1 activation was also assessed by p-4E-BP1, which shows the expected phosphoryla-

tion pattern of activation peaking at 6h post-infection (Fig 4A and S5 Fig). AKT T308 phos-

phorylation preceded REDD1 down-regulation by influenza virus suggesting that AKT

activation is the initial stimulus for mTORC1 and that influenza virus-induced reduction of

REDD1 amplifies and/or maintains mTORC1 signaling throughout infection.

To investigate what triggers down-regulation of REDD1 at the mRNA and protein levels

during infection, we knocked down influenza virus proteins and assessed REDD1 protein lev-

els. As expected, REDD1 protein levels decreased upon infection but dramatically increased

upon knockdown of the viral NP protein, which prevents virus replication and viral protein

expression, as NP functions with the virus polymerase (Fig 4C). These results suggest that

REDD1 levels are up-regulated upon viral entry and/or during primary transcription and are

down-regulated after these early processes. This is consistent with our previous results [5] and

with Fig 4A in which REDD1 levels increase early in infection and are down-regulated at later

stages of infection. Depletion of HA, NA, M1 and PA did not alter REDD1 protein levels.

Fig 3. The viral protein HA promotes mTORC1 activation. (A) A549 cells were transfected with siRNAs (pool of three each) targeting viral mRNAs and

then infected for 6 h at MOI of 2 PFU/cell. Immunoblot analysis was performed against the depicted proteins. (B) The activity of reconstituted polymerase

complexes was measured by transfecting cells with a control plasmid or plasmids encoding NP, the polymerase subunits (PA, PB1 and PB2) and luciferase

reporter genes to measure influenza virus promoter activity (mini-genome assay). Luciferase assay and immunoblot analysis were performed with antibodies

against the depicted proteins. (C) MDCK cells were transfected with control plasmids or with plasmids encoding HA or NA. MDCK cells were also mock

infected or infected with WSN at MOI of 2 PFU/cell for 6h. Immunoblot analysis were performed with antibodies against the depicted proteins. Data are

representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1006635.g003
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However, depletion of M2 increased REDD1 protein levels (Fig 4C). Since both NP and M2

knockdown up-regulated REDD1 protein levels, we analyzed REDD1 mRNA levels upon

expression of NP alone or in combination with the viral polymerase as well as upon M2

expression alone. We found that neither NP nor components of the viral polymerase complex

altered REDD1 mRNA levels (Fig 4D). However, M2 expression alone decreased REDD1

mRNA levels and induced mTORC1 activation as noted by increased levels of p-S6K and

change in mobility of p-4E-BP1 (Fig 4E and 4F). Together, these findings suggest that the

REDD1 down-regulation during infection is likely mediated by the viral M2 protein and that

the observed NP effect on REDD1 protein levels is due to inhibition of virus replication that

prevented expression of M2 protein. We have not noticed an impact of M2 on mTORC1 acti-

vation before or at 6h post-infection (Fig 3A), which is mediated by the HA protein. This is

consistent with an effect of M2 at late stages of infection when REDD1 down-regulation is

prominent, after 7h, and high levels of M2 protein would be present to activate mTORC1 and

to further support virus replication.

To determine whether increased levels of REDD1 can reduce AKT T308 phosphorylation

during infection as was previously observed under certain basal conditions [50], we employed

a tetracycline-inducible REDD1 cell line, U2OS-REDD1. High levels of REDD1 did not reduce

AKT T308 phosphorylation in infected cells (Fig 4G). Therefore, REDD1 does not act on AKT

to implement its mTORC1 inhibitory effects during influenza virus infection. We also deter-

mined whether high levels of REDD1 could prevent influenza virus from activating mTORC1.

Indeed, REDD1 over-expression inhibited mTORC1 signaling in infected cells (Fig 4G), indi-

cating that mTORC1 is stimulated when REDD1 is down-regulated by influenza virus. Overall,

we reveal that influenza virus reverses REDD1 inhibition of mTORC1 downstream of AKT to

enhance mTORC1 signaling.

mTORC1 is required for optimal influenza virus protein expression

mTORC1 and mTORC2 signaling are enhanced during influenza virus infection (Fig 1), and

both can influence translation [53]. mTORC1 promotes translation of 7-methylguanosine

capped mRNAs [7], which would likely affect influenza virus protein translation as its mRNAs

possess 7-methylguanosine caps acquired from host mRNAs. mTORC2 co-translationally sta-

bilizes proteins via phosphorylation by associating with ribosomes, but few substrates have

been identified thus far [53]. Therefore, we evaluated whether mTORC1 and mTORC2 can

both impact influenza virus protein expression and replication. To investigate the role of

mTOR on influenza virus protein expression, infected A549 cells were treated with non-toxic

Fig 4. Influenza virus down-regulates REDD1 to promote mTORC1 activity. (A-C) A549 cells were infected with WSN at MOI of 2 PFU/cell for

the indicated times. Cell extracts were subjected to (A) western blot analysis to detect the depicted proteins and quantified as shown in S5 Fig or (B)

RNA was purified for qRT-PCR to determine REDD1 mRNA levels. Mean and standard deviation are shown for qRT-PCR, n = 4 independent

experiments done in triplicates. **p<0.000004, Student’s t-test. (C) A549 cells were transfected with siRNAs (pool of three each) targeting viral

mRNAs and then infected for 7 h at MOI of 2 PFU/cell. Immunoblot analysis was performed to detect the depicted proteins, n = 3. (D) A549 cells were

transfected with plasmids encoding the indicated virus proteins. At 48 h post-transfection, total RNA was purified and REDD1 mRNA levels were

determined by qRT-PCR as in B. The bottom panel in D shows viral polymerase activity upon tranfection of the depicted viral proteins and/or

minigenome as control. Minigenome mRNA was measured by qRT-PCR. In cells transfected with the complete set of plasmids that encode the viral

polymerase we detect the minigenome RNA transcribed by pol I directly from the plasmid in addition to the minigenme RNA amplified by the influenza

proteins, indicating protein activity. In cells transfected with the same plasmids except for PA, we only detect the minigenome RNA transcribed by pol

I directly from the plasmid, and the average values was set to 1. The minigenome RNA level is higher when all plasmids were transfected (n = 3). (E,

F) MDCK cells were transfected with control plasmid of plasmid enconding the M2 protein. In E, RNA was purified for qRT-PCR to determine REDD1

mRNA levels as in B, n = 3, ***p<0.001. In F, cell extracts were subjected to western blot analysis to detect the depicted proteins (n = 3). (G)

U2OS-REDD1 cells were treated with vehicle or 1μg/ml tetracycline for 2 h prior to and during infection to induce REDD1 expression. Cells were

infected at MOI of 2 PFU/cell for 6 h. Immunoblot analyses were performed to detect the depicted proteins. Total S6K serves as the loading control.

The upper band in the S6K/p-S6K blots is p85 S6K, whereas the lower band is p70 S6K (n = 3).

https://doi.org/10.1371/journal.ppat.1006635.g004
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concentrations of the potent mTOR inhibitor Torin1 (S6A Fig), which targets both mTORC1

and mTORC2 [54]. Viral protein levels were reduced and viral mRNA levels decreased to a

lesser extent in the presence of Torin1 at 10 hours post-infection (Fig 5A and S6B Fig), indicat-

ing that mTOR activity is important for optimal influenza virus mRNA and protein produc-

tion. Therefore, we assessed the effect of Torin1 on the replication of WSN (Fig 5B) and rSh/1

(S6C Fig). As predicted, replication of both strains was reduced when mTOR was inhibited

with Torin1. In addition, inhibition of mTORC1 by rapamycin also impaired virus replication

(Fig 5C).

Torin1 does not distinguish between mTOR associated with mTORC1 or mTORC2 [54],

and the inhibitor rapamycin inhibits mTORC1 but does not completely abrogate mTORC1

activity [54,55], and can inhibit mTORC2 with prolonged treatment [56]. Since mTORC1 and

mTORC2 can both regulate translation [53] and are both inhibited by Torin1 [54], we tested

whether Torin1-mediated reduction of viral proteins involved inhibition of both complexes by

using MEFs lacking Rictor to disrupt mTORC2. If Torin1 inhibition of viral protein expres-

sion was dependent on mTORC2, then Torin1 treatment in Rictor-/- MEFs would not reduce

viral protein production as compared to Rictor+/+ MEFs. However, we observed reduced viral

protein levels in both Rictor+/+ and Rictor-/- MEFs treated with Torin1 (Fig 5D). Thus, influ-

enza virus mainly relies on mTORC1, not mTORC2, for viral protein expression. However,

mTORC2 may influence viral protein expression at different times post-infection than what

was assessed here. Therefore, we assessed viral replication in Rictor-/- cells compared to Ric-
tor+/+ cells and we found no striking difference in virus replication (Fig 5E). Similarly, knock

down of Rictor in A549 cells did not substantially affect virus replication as compared to con-

trol cells (S6D Fig). These findings together with the results above indicate PDPK1-mediated

AKT phosphorylation at T308 leads to mTORC1 activation to regulate viral protein expression

and replication.

Phosphoproteomic analysis reveals mTORC1–dependent regulation of

influenza virus infection

To identify what host processes are affected by influenza virus-induced mTORC1 signaling,

we identified the landscape of mTORC1-dependent substrates during infection using an unbi-

ased systematic phosphoproteomics approach in cells lacking functional mTORC2 treated

with or without the mTOR inhibitor Torin1 to distinguish mTORC1 from mTORC2 sub-

strates. Rictor-/- MEFs were infected with WSN in the absence or presence of Torin1 treatment,

lysed 7 h post-infection and subjected to phosphopeptide enrichment followed by mass spec-

trometric analyses.

We set out to identify mTORC1 substrates by comparing WSN infected Rictor-/- MEFs

treated with DMSO or Torin1. Rictor-/- MEFs lack functional mTORC2, and therefore, Torin1

treatment will only inhibit mTORC1 signaling in these cells. We identified 90 phosphorylation

sites that were altered +/- 1.5-fold or greater in the presence and absence of mTORC1 signaling

(Fig 6A). Torin1 efficiently inhibited mTORC1 in Rictor-/- MEFs (Fig 6B). Although we did

not identify p-S6K(T389) or p-4E-BP1(T37/46) sites due to low peptide abundance, the S6K

substrate eIF4B(S422) [57] and another previously identified mTORC1 substrate, eIF4G1

(S1189), were found (Fig 6A and 6C). Both eIF4G1 (S1189) and eIF4B(S422) have been identified

in an mTORC1 substrate screen [58] and we now show that these translation factors are mTORC1

substrates regulated during influenza virus infection. When comparing uninfected DMSO- and

Torin-treated Rictor-/- cells, nearly 16% of phosphorylation sites that we identified are previously

defined mTORC1-dependent sites (Fig 6A and S1 Table). In addition to eIF4G1(S1189) and eIF4B
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(S422) phosphorylation changes in infected cells, LARP1(S743) phosphorylation was also altered.

LARP1 was previously shown to interact with mTORC1 [59,60] and stabilizes its mRNA [61].

Next, to examine whether any of the mTORC1-dependent substrates were previously iden-

tified as important host proteins in multiple genome-wide genetic screens from influenza virus

infected cells, we assessed overlap between our phosphoproteomics hits and previous screen

hits [4,46,62–66]. We found that 13 out of 72 (18%) of the proteins we identified as mTORC1

substrates during infection overlapped with proteins that alter influenza virus infection [3].

Since many proteins from the multiple influenza virus siRNA screens were IFN regulated, we

also examined whether any of the mTORC1 substrates that we identified were IFN regulated

proteins. Our phosphoproteomics analysis show that 10 mTORC1-dependent phosphoryla-

tion sites are present in proteins that are regulated by IFN. Since Torin inhibits virus replica-

tion, some of the regulation shown here could be due to diminished replication. However, the

mTORC1-mediated changes in phosphorylation during infection in mTORC1 substrates iden-

tified in the absence of infection likely reflect the true role of mTORC1 as regulator of

infection.

To determine the cellular processes altered by these mTORC1-dependent phosphorylation

events, we assessed the hits by Gene Set Enrichment Analysis to find commonly altered path-

ways. We identified pathways that regulate mTORC1 signaling and/or are regulated by

mTORC1 such as the insulin receptor pathway and the PI3K cascade, which revealed signifi-

cantly altered protein phosphorylation during infection (Fig 6D). mTORC1 mediated signal-

ing was also identified, which included members of the translation machinery. mRNA

processing was also affected; in fact, mTORC1 was previously shown to modulate mRNA

splicing through activated S6K interactions with the exon junction complex protein SKAR,

which enhances spliced mRNA translation [67]. Notably, proteins aligning with the FAS sig-

naling pathway had altered phosphorylation during influenza virus infection suggesting that

mTORC1 has a role in regulating Fas-mediated apoptotic cell death during influenza virus

infection. Indeed, Fas and FasL are upregulated during influenza virus infection [68–70], and

the resulting apoptosis can promote viral replication [68,71]. Overall, our findings implicate

mTORC1 as a central player in the regulation of influenza virus infection by altering the phos-

phorylation state of members of key signaling pathways.

Discussion

The regulation of mTOR by influenza virus has not been previously characterized, although

mTOR promotes influenza virus replication [4,5]. mTOR is central to protein production and

cell survival, and therefore, it is understandable that influenza virus would exploit mTOR to

regulate cellular processes for its advantage. The data presented herein have revealed several

Fig 5. mTORC1 activation promotes viral infection. (A) A549 cells were infected with WSN at MOI of 2 PFU/cell for

1 h and then treated with 250 nM Torin1 or DMSO for an additional 9 h followed by immunoblot analysis. (B) A549 cells

were infected at MOI of 0.01 PFU/cell with WSN for 16 h in the presence of the depicted concentrations of Torin1 or

DMSO. Viral titers were measured by plaque assay to yield plaque-forming units per mL (PFU/ml, plotted as % infection

relative to DMSO control). Cell survival was also assessed at the depicted concentrations using the MTT assay. The

following parameters were calculated: CC50>500 nM; IC50 = 0.46nM; and SI>1087. (C) Experiment was performed as in

B except that cells were treated with 13.7 μM rapamycin or DMSO as control. Mean and standard error of the mean

(SEM) are shown. n = 3, **p<0.01. (D) Rictor+/+ or Rictor-/- MEFs were infected with WSN at MOI of 2 PFU/cell for 6 h

and treated with 250 nM Torin1 or DMSO at 1 h post-infection. Immunoblot analyses were performed to detect viral

proteins (HA, NP, PA, PB1, PB2, NS1, M1, M2 and NA) and host proteins (β-actin, Rictor, total and phosphorylated S6K

and 4E-BP1). β-actin and S6K serve as loading controls. The upper band in the S6K/p-S6K blots is p85 S6K whereas

the lower band is p70 S6K. (E) Rictor+/+ or Rictor-/- MEFs were infected with WSN at MOI of 0.01 for 24 h and 48 h. Viral

titers were measured by plaque assay to yield plaque-forming units per ml (PFU/ml). Mean and standard deviation (SD)

are shown, n = 3, **p<0.01, *p<0.05.

https://doi.org/10.1371/journal.ppat.1006635.g005
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Fig 6. mTORC1-dependent phosphorylation identified during influenza virus infection. (A) Rictor-/- MEFs were infected with WSN for 7 h at MOI

of 2 PFU/cell and treated with Torin1 or DMSO. Cells were subjected to phosphopeptide enrichment and mass spectrometry. Data shown are results

from WSN-infected Rictor-/- MEFs treated with Torin1 compared to WSN-infected Rictor-/- MEFs treated with DMSO. The table indicates protein names
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new findings regarding manipulation of mTOR signaling by influenza virus, which are sum-

marized in Fig 7. We discovered that mTORC2 and PDPK1 are required during influenza

virus infection to phosphorylate AKT, while AKT is required for influenza virus to induce

mTORC1 signaling. PDPK1-mediated phosphorylation of AKT T308 is necessary for influ-

enza virus to activate mTORC1, whereas mTORC2-mediated phosphorylation of AKT S473 is

not required for mTORC1 activation. mTORC2 may contribute to the regulation of apoptosis

by the viral NS1 protein during infection since previous reports have linked AKT S473 phos-

phorylation to NS1 and apoptosis [26]. Therefore, AKT is differentially phosphorylated by

influenza virus to yield different outcomes related to viral protein expression and cell death.

We observed that mTORC1 activation by influenza virus required virus replication and

promoted infection. The viral glycoprotein HA promotes mTORC1 activation while NS1 is

dispensable. To this end, it has been shown that membrane accumulation of HA activates ERK

signaling through protein kinase Cα to promote nuclear export of the viral genome [72]. In

addition, HA expression can activate NF-κB via oxidative radicals and induction of IκB activ-

ity [73,74], which likely contributes to the regulation of immunity and inflammation during

infection. Whether mTORC1 activation by HA contributes to these process remains to be

determined and it would be an interesting topic for future investigation. Furthermore, we

showed that influenza virus M2 protein down-regulates the mTORC1 inhibitor REDD1, a pro-

cess that impacts the lates stages of infection. Since the viral M2 protein is a proton channel,

M2-mediated mTORC1 activation might be analogous to the cellular v-ATPase proton chan-

nel that induces mTORC1 activation upon amino acid sensing and recruitment of scaffold

proteins and regulators of mTORC1 [8].

REDD1 protein levels increase during viral entry and/or primary viral transcription and are

then down-regulated at late stages of infection. The transient early increase in REDD1 levels

likely represents an antiviral response, as REDD1 is a host defense factor [5]. REDD1 pre-

vented induction of mTORC1 signaling by influenza virus. Inhibition of mTORC1 signaling

by REDD1 during influenza virus infection was independent of AKT T308 dephosphorylation.

Therefore, REDD1 acts downstream of AKT to exert its negative effects on mTORC1 signaling

during influenza virus infection. It is likely that REDD1 targets the TSC1/2 complex possibly

through promoting TSC2 activity, as previously described [49]. REDD1 has also been shown

to induce dephosphorylation of AKT T308 to repress mTORC1 signaling in the absence of

infection [50]. Perhaps REDD1 has the ability to down-regulate the mTOR pathway at several

nodes, which would vary depending on the cellular environment or stimuli.

The impact of mTORC1 on influenza virus infected cells was also demonstrated with the

identification of mTORC1-dependent substrates that were regulated during infection using a

systematic phosphoproteomics approach. In addition to known mTORC1 substrates, we have

also identified multiple mTORC1 substrates that were not previously revealed in an mTORC1

substrate screen using insulin stimulus [58], which could indicate that influenza virus modu-

lates mTORC1 differently than insulin signaling. However, the differences could also be a

result of the technical differences between the experiments. For example, the prior screen used

and IDs, position(s) of amino acid (aa) phosphorylation, and the ratio of phosphopeptide reads (> and < 1.5 fold or more) in Torin1-treated vs. DMSO-

treated infected cells. Underlining + bold hits depicts mTORC1-dependent phosphorylation on proteins identified in mock-infected Rictor-/- MEFs

-/+ Torin1 (S1 Table). The protein hits that overlapped with known protein hits from other studies are depicted at the bottom of the table. (B) Cell lysates

from Rictor-/- MEFs were subjected to immunoblot analyses to confirm that Torin1 inhibited mTORC1, as shown by reduction of p-S6K, and influenza

virus protein expression assessed by NS1 protein levels. (C) Cell lysates from Rictor-/- MEFs were subjected to immunoblot analyses to show one of

the hits in A, p-eIF4B (S422), which is down-regulated by Torin 1 and is a mTORC1 substrate in uninfected and infected cells. (D) Gene set enrichment

analysis (GSEA) was performed for all the proteins listed in Fig 6A. The top five pathways are shown with the percentage overlap between total genes

(K) in the pathway versus overlapping genes (k) identified in the our phosphoproteomics screen. p-values for statistical significance and q-values for

false discovery rates (FDR) are shown.

https://doi.org/10.1371/journal.ppat.1006635.g006
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TSC2+/+ and -/- MEFs in which they inhibited mTORC1 using rapamycin and Ku-0063794,

they performed Stable Isotope Labeling with Amino acids in Cell culture (SILAC) to distin-

guish peptides from the differing conditions and their method of phosphopeptide enrichment

was different than the one we used [58]. Rps6ka3, known as RSK2, is a known regulator of

mTORC1 signaling [75], which is downstream in the MEK/ERK pathway that can stimulate

mTORC1 [76]. Here, it appears that RSK2 is an mTORC1 substrate during influenza virus

infection, which suggests that mTORC1 may regulate MEK/ERK signaling. This may be

advantageous for influenza virus as MEK/ERK signaling is critical for viral replication [77].

We also observed that three members of the Fas signaling pathway had altered phosphoryla-

tion during influenza virus infection indicating that mTORC1 may influence Fas-mediated

apoptosis during infection. FasL expression and apoptosis enhance influenza virus replication

[68,71] and promote influenza virus pathogenicity in mice [78]. In addition, we identified key

translation factors, eIF4B(S422) and eIF4G1(S1189), whose phosphorylation are regulated

during infection in a mTORC1-dependent manner. Phosphorylation of eIF4B at S422 activates

translation initiation upon amino acid refeeding via mTORC1 [79]. The mTORC1-mediated

regulation of key constituents of the translation machinery during infection shown here is in

agreement with its activity in promoting viral protein expression and viral replication. Taken

together, these results indicate that mTORC1 signaling supports viral replication through reg-

ulation of translation and /or through Fas-mediated signaling and apoptotic responses to

infection.

mTORC1 regulates protein translation and other cellular processes, such as autophagy and

lipid biosynthesis [7]. Since these processes can influence influenza virus replication, traffick-

ing of viral RNA/proteins and/or virion biogenesis, they may be useful for developing

Fig 7. Schematic representation of the model for mTOR activation by influenza virus midway through the

virus life cycle. The viral protein HA and virus replication promote mTORC1 activation through PDPK1-mediated

phosphorylation of AKT at T308. In addition, down-regulation of REDD1 by the viral M2 protein amplifies or support

mTORC1 activation downstream of AKT. NS1 promotes AKT phosphorylation at S473 via mTORC2 and this process

is known to regulate apoptosis. Differential AKT phosphorylation dictates downstream effects.

https://doi.org/10.1371/journal.ppat.1006635.g007
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therapeutics and vaccines. Targeting host proteins required for viral replication is an alterna-

tive therapeutic strategy to avoid the rapid development of drug resistant viruses. Furthermore,

promoting mTORC1 activation to enhance virus replication could have commercial implica-

tions for processes requiring robust virus replication, such as vaccine production. In sum, the

activation of the mTORC1 pathway by influenza viruses midway through the virus replication

cycle likely promotes mechanisms that antagonize cellular stress responses, such as transla-

tional shutoff and/or proper regulation of apoptosis to ensure an optimal environment for

viral gene expression and progeny virion generation at later stages of the virus replication

cycle.

Materials and methods

Cell culture

Human lung adenocarcinoma epithelial cells (A549, ATCC), Madin-Darby canine kidney cells

(MDCK, ATCC), African green monkey kidney epithelial cells (Vero, ATCC), mouse embry-

onic fibroblasts (MEFs, already-existing collection from our laboratory [5]), human bone oste-

osarcoma cells with inducible expression of REDD1 (U2OS-REDD1, obtained from James

Brugarolas, UT Southwestern) [80], human colon carcinoma cells (HCT116 Pdpk+/+ and -/-

and Akt+/+ and -/-, obtained from Bert Vogelstein, Johns Hopkins University) [81], and MDCK

cells stably expressing influenza virus HA or M2 protein were cultured in DMEM containing

10% FBS (Atlas Biologicals or Sigma) and penicillin-streptomycin (Gibco). In the case of M2

expressing MDCK cells, 5 μM amantadine was added in the culture medium but removed 2 h

prior to harvesting the cells. The human bronchiolar epithelial cells (HBEC30KT, a kind gift

from Michael White, UT Southwestern) were grown in Keratinocyte-SFM supplemented with

human recombinant epidermal growth factor (Invitrogen), bovine pituitary extract (Invitro-

gen) and penicillin-streptomycin. Primary wild-type MEFs were isolated from 129P2/OlaHsd

mouse embryos (day 14) by mincing and trypsinization (after removal of the head), and cells

were plated and used for experiments prior to senescence (approximately 8–10 passages). Ric-
tor+/+ and -/- were kindly provided by Mark Magnuson [82]. HCT116 Pdpk1+/+ and -/- and

Akt+/+ and -/- were graciously shared by Bert Vogelstein [81]. Tbk1+/+ and -/- MEFs were kindly

provided by Tak Mak [83].Mavs+/+ and -/- MEFs were generated as previously described [84].

Immortalized Ifitm3+/+ and -/- MEFs were generated from day 15 embryos according to pub-

lished protocols [85]. Atg5+/+ and -/- MEFs were kindly provided by Beth Levine (UT South-

western Medical Center, TX). Cells were maintained at 37˚C with 5% CO2. Cells tested

negative for mycoplasma. For tetracycline induction of REDD1 in U2OS-REDD1 cells, cells

were pre-treated for 2 h with 1 μg/mL of tetracycline and throughout the infection.

Reagents

Chemical reagents include: Torin1 (Tocris, in DMSO), HEPES (Gibco), urea (Sigma), PhoS-

TOP phosphatase inhibitor cocktail tablets (Roche), Complete EDTA-free protease inhibitor

tablets (Roche), Trichloroacetic acid solution (Sigma), DMSO (Sigma), BX795 (gift from

Michael White, UT Southwestern) and Tetracycline (USB Corporation). Antibodies used in

western blots to detect viral proteins were generated against Influenza A virions (Meridian

Life Science B65141G) (recognize HA, NP, M1, low level NA), HA (Genetex GTX127357), NP

(Abcam ab20343), NA (GeneTex GTX125974), PA (GeneTex GTX 118991), PB1 (Santa Cruz

sc-17601), PB2 (Santa Cruz sc-17603), M2 (clone 14C2, Thermo MA1-082), NS1 (generated

by Garcı́a-Sastre laboratory) and VSV M protein generated by our laboratory in collaboration

with Cocalico Biologicals against full-length VSV M. Antibodies from Cell Signaling Technol-

ogies for western blot analysis were against phospho-S6K(T389) (#9234), S6K (#9202),
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phospho-4E-BP1(T37/46) (#2855), 4E-BP1 (#9644), phospho-Akt (S473, T308) (#4060,

#9275), Akt1 (#2967), TBK1 (#3504), PDK1 (#5662) and p-eIF4B(S422) (#3591). Additional

antibodies used for western blot analysis were against Rictor (Millipore 05–1471), IFITM3

(R&D Systems AF3377), MAVS (generated by Z. Chen laboratory), β-actin (Sigma A5441),

REDD1 (Novus Biologicals NBP1-22966), ATG5 (Novus Biologicals NB110-53818), ATG7

(Sigma A2856), and LC3 (Novus Biologicals NB100-2220). Horseradish peroxidase (Hrp)-conju-

gated secondary antibodies used were donkey anti-rabbit and sheep anti-mouse (GE Healthcare

NA934V and NA931V, respectively), as well as donkey anti-goat (Jackson Immunoresearch

705–035003). NA was expressed from a pCAGGS-NA plasmid.

Viruses and infections

All virus work was performed in strict accordance with CDC guidelines for biosafety level 2

and 3 agents: BSL2 (A/WSN/1933, A/PR/8/1934 and rSh/1) and BSL3 (A/Shanghai/1/2013).

All Sh/1 (A/Shanghai/1/2013, H7N9) virus work was performed in the BSL3 laboratory of the

Icahn School of Medicine at Mount Sinai, NY.

Virus strains used in these studies were VSV-GFP and the following influenza viruses A/

WSN/1933 (WSN), A/PR/8/1934 (PR8), A/Shanghai/1/2013 (Sh/1), recombinant A/Shanghai/

1/2013 (rSh/1, "rSh/1 (6+2)": recombinant virus containing A/Shanghai/1/2013 segments 1, 2,

3, 5, 7 and 8 and A/PR/8/1934 segments 4 and 6) [39], PR8:WSN and PR8:WSNDeficientM2

[41]. Influenza viruses were propagated in chicken embryonated eggs or MDCK cells. A/

WSN/1933 and A/PR/8/1934 viruses lacking NS1 were propagated as previously described

[86,87]. To amplify stocks in MDCKs, cells were infected at an MOI of 0.01–0.001 in infection

media: EMEM (ATCC, 30–2003), 10 mM HEPES (Gibco), 0.125% BSA (Gibco), 0.5 ug/mL

TPCK trypsin (Worthington Biomedical Corporation). After 1 hour at 37˚C, cells were washed

and overlaid with infection media. Once cytopathic effect was evident around 48–72 hours

post-infection, supernatants were harvested, centrifuged at 1,000 x g for 10 minutes, aliquoted

and stored at -80˚C.

For high MOI infection experiments (MOI of 2), adherent cells were serum starved overnight

in infection media. EMEM infection media (see above) was used for A549, HBEC, U2OS-REDD1,

Vero cells and primary, Atg5+/+/-/- and Ifitm3+/+/-/- MEFs. DMEM infection media (DMEM substi-

tuted for EMEM in standard infection media) was used for Rictor+/+/-/-,Mavs+/+/-/- as well as

Tbk1+/+/-/- MEFs and HCT116 Pdpk+/+/-/- andAkt+/+/-/- to maintain cell viability. Rictor-/- MEFs

were plated at a density of 25% more than Rictor+/+MEFs for each experiment to standardize the

number of cells so that the same amount were being infected, as determined by cell counting prior

to the infection. Nearly confluent cells in 12- or 24-well plates were mock infected with media only

or infected with 150–200 μL virus in infection media for 1 hour at 37˚C. After 1 hour, 350–

800 μL of infection media was added and cells were incubated at 37˚C prior to harvest. For

Torin1 treated cells at a high MOI, cells were infected for 1 h at 37˚C, after which the infection

media was removed and media containing 250 nM Torin1 or 0.1% DMSO was added for the

additional time indicated in the legend. Viral titer analyses by plaque assays were performed

as described previously [88] and as indicated in the figure legends.

For western blot analysis, cells were washed with PBS and harvested in 2X sample buffer

(125mM Tris HCl pH 6.8, 20% glycerol, 4% SDS), boiled 10 minutes and subjected to western

blot analysis. Sample loading was standardized by Bradford assay (Biorad DC Protein Assay

Kit). Western blot quantification was performed using ImageJ64. Images were converted to

grayscale, rectangles were drawn around the lane of bands of interest and a profile plot was

generated for each lane of bands. Each band was separated using the line tool, and the density

of each band was determined by the area under the peak using the wand tool. Phosphorylated
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protein bands were compared to the total non-phosphorylated protein bands. Values were

normalized to uninfected controls as indicated.

Cell viability assays (CellTiter-Glo, Promega) were performed to assess cell health. In Fig

5B, the MTT assay [Cell Proliferation Kit I (MTT), Roche) was used to determine cell survival,

following the manufacturer’s protocol. For statistical analyses from three independent experi-

ments, an unpaired, two-tailed t-test was performed. A normal distribution can be assumed

for all populations (p>0.05).

To UV inactivate WSN, virus was exposed 10 cm from the UV lamp in the laminar flow

hood for 7 minutes. The amount of virus inactivated was the same amount as non-inactivated

virus used in each experiment for an MOI of 2 PFU/cell. Inactivation was confirmed by plaque

assay, and a hemagglutination (HA) assay was performed following the VIRAPUR HA Assay

Protocol to ensure UV-inactivated virus was present and still able to fuse with turkey red

blood cells (LAMPIRE Biological Products).

Mini-genome assay

U2OS or A549 cells were forward transfected in duplicates in 12 well plates with 450 ng

pcDNA3-NP, 283.3 ng pcDNA3-PA, 283.3 ng pcDNA3-PB1 and 283.3 ng pcDNA3-PB2 +/-

200 ng spLuc using 3.2 μL/well Mirus TransIT-X2 transfection reagent (MIR6004) following

manufacturer’s protocol. For the experiment in Fig 3B, cells were serum starved overnight the

following day. On day two post-transfection, the cells receiving FBS were stimulated with 10%

FBS for 2 hours. The cells were harvested at 48 hours post-transfection in 2X sample buffer for

western blot analysis or 1X Reporter Lysis Buffer (RLB, Promega, #E3971) to proceed with

luciferase analysis. The Promega Luciferase Assay System (#E4030) was used to measure lucif-

erase in each sample. Cells were suspended in 100 μL RLB, and 20 μL were mixed with 100 μL

Luciferase Assay Reagent (Promega) following manufacturer’s protocol. Luciferase was read

on a BMG Labtech PHERAstar, and data were graphed after normalizing the reads to the

pcDNA3-NP, -PA, -PB1 and -PB2 ΔspLuc wells to 1.

RNA interference

For influenza virus mRNA-specific siRNAs, A549 cells were reverse transfected using RNAi-

MAX (Lipofectamine, Life Technologies) with 50 nM of a pool of 3 mRNA-specific siRNAs

for approximately 36 h, during which cells were serum starved overnight prior to infection the

next day as outlined above. Cell viability analysis (CellTiter-Glo, Promega) was performed to

ensure that the siRNA concentrations were not toxic. Influenza virus mRNA-specific siRNAs

were generated by Thermo Scientific to target mRNAs from the WSN strain (siGENOME

modifications). siRNA sequences are as follows:

siRNA Universal Negative Control #1 and #2 (Sigma SIC001 and SIC002, proprietary

sequences)

siGENOME Non-Targeting (pooled for use in experiments):

#2 5’-UAAGGCUAUGAAGAGAUACdTdT-3’ (Dharmacon D-001210-02)

#3 5’-AUGUAUUGGCCUGUAUUAGdTdT-3’ (Dharmacon D-001210-03)

Influenza virus (WSN)-specific (Table 1):

Quantitative RT-PCR

Cells were washed with PBS, harvested in TRIZOL (Invitrogen) and subjected to RNA extrac-

tion using Direct-zol RNA Miniprep Kit (Zymo Research). For each sample, 500 ng of RNA
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were used to generate cDNA by reverse transcription using the iScript cDNA Synthesis Kit

(Bio-Rad) following manufacturer’s protocol. cDNA was diluted 1:3, mixed with primers (300

nM total per reaction) and Roche 480 SYBR Green I Master real-time PCR reagents following

manufacturer’s protocol and subjected to quantitative real-time PCR using the Roche LightCy-

cler 480. Real-time PCR was performed at 95˚C for 5 min, 40 cycles of 95˚C for 15 sec, 60˚C

for 15 sec and 72˚C for 18 sec. A melting curve cycle was performed from 65˚C to 95˚C for

quality assurance. Primers (Eurofins) used were REDD1 (forward: 5’- GACAGCAGCAACA

GTGGCTTCG -3’, reverse: 5’- GCTGCATCAGGTTGGCACAC -3’); 18S rRNA (forward:

5’- GTAACCCGTTGAACCCCATT -3’, reverse: 5’- CCATCCAATCGGTAGTAGCG -3’);

Minigenome RNA (firefly luciferase RNA) (forward: 5’-gaggttccatctgcaggta-3’, reverse: 5’-

ccggtatccagatccacaac-3’). Primers to quantify viral mRNAs were previously described [88]. For

statistical analyses, an unpaired, two-tailed t-test was performed. A normal distribution can be

assumed for all populations (p>0.05).

Phosphoproteomics screen

Infection and harvest. Rictor-/- MEFs were plated in 15 cm plates (6 per condition),

serum starved overnight in DMEM infection media and, at near confluency, were mock- or

WSN-infected the following day. Cells were infected at an MOI of 2 PFU/cell for 1 h at 37˚C.

Infection media was removed after 1 h, and media containing 250 nM Torin1 or 0.1% DMSO

was added for an additional 6 h. After 7 hpi, cells were washed twice with cold PBS and lysed

in 1.5 mL/plate fresh urea lysis buffer (20 mM Hepes pH 8.0, 9M urea, 1X phosphatase

Table 1.

siRNA Gene ID Sequence (5’-3’) References (where applicable)

NP-1496 DQ508890 GGAUCUUAUUUCUUCGGAGdTdT Ge Q et al., 2003 (DOI:10.1073); Sui HY et al., 2009 (DOI:10.1371)

NP-204 DQ508890 GCUUAACAAUAGAGAGAAUdTdT

NP-694 DQ508890 CAACAUUCUCAAAGGGAAAdTdT

PA-2087 CY034137 GCAAUUGAGGAGUGCCUGAdTdT Ge Q et., 2003 (DOI:10.1073)

PA-381 CY034137 GGAGAGAAGUUCACAUAUAdTdT

PA-1275 CY034137 GGAUAGAGCUCGAUGAGAUdTdT

PB1-2257 CY034138 GAUCUGUUCCACCAUUGAAdTdT Ge Q et., 2003 (DOI:10.1073)

PB1-143 CY034138 ACACAUCAGUACUCAGAAAdTdT

PB1-1067 CY034138 GGUACAUGUUUGAGAGCAAdTdT

PB2-2239 CY034139 ACGGAACUCUAGCAUACUUdTdT

PB2-220 CY034139 GGACAAACUUUAUGGAGUAdTdT

PB2-146 CY034139 GGAUGAUGGCAAUGAAAUAdTdT

M1-598 L25828.1 UGGCUGGAUCGAGUGAGCAdTdT Ge Q et., 2003 (DOI:10.1073)

M1-158 L25828.1 UGGCUAAAGACAAGACCAAdTdT

M1-512 L25828.1 AGGCAAAUGGUGACAACAAdTdT

M2-20 L25828.1 UCGAAACGCCUAUCAGAAAdTdT

M2-219 L25828.1 GGAAGAAUAUCGAAAGGAAdTdT

M2-237 L25828.1 ACAGCAGAAUGCUGUGGAUdTdT Sui HY et al., 2009 (DOI:10.1371)

HA-563 DQ508905 GAAAGAAGUCCUUGUACUAdTdT

HA-889 DQ508905 CGUCAAUGCAUGAGUGUAAdTdT

HA-1065 DQ508905 GGGAUGGACUGGAAUGAUAdTdT

NA-554 CY034134 GAGCAGUGGCUGUAUUAAAdTdT

NA-1011 CY034134 UGGUAAUGGUGUUUGGAUAdTdT

NA-1170 CY034134 CGUUCAACAUCCUGAGCUAdTdT

https://doi.org/10.1371/journal.ppat.1006635.t001
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inhibitor cocktail and 1X protease inhibitor cocktail). Cell lysates were sonicated 12 times for

10 second pulses with 30 second cooling periods between each pulse. Lysates were then placed

on ice for 30 min with vortexing every 10 min. Cell debris was removed by centrifugation at

4˚C for 10 minutes at 13,000 x g. Supernatants were collected and subjected to TCA precipita-

tion. One volume of TCA solution (Sigma) was added to four volumes of cell extract and incu-

bated on ice for 10 minutes. Proteins were collected by centrifugation at 14,000 rpm for 5

minutes at 4˚C. Supernatants were removed, and the protein pellet was washed twice with

500 μL of cold acetone. Pellets were vacuum-dried using a Labconco CentriVap Concentrator

for 20 minutes and stored at -20˚C. Samples were prepped, labeled, phosphopeptide enriched

and analyzed by LC-MS/MS by PTM Biolabs (Chicago, IL) using the methods below.

Sample preparation, labeling and phosphopeptide enrichment. Proteins were dissolved

in buffer (8 M urea, 100 mM TEAB, pH 8.0) and the protein concentration was determined

with 2-D Quant kit (GE Healthcare) according to the manufacturer’s instructions. For diges-

tion, the protein solution was reduced with 10 mM DTT (Sigma) for 1 h at 37˚C and alkylated

with 20 mM IAA (iodoacetamide, Sigma) for 45 min at room temperature in darkness. For

trypsin digestion, the protein sample was diluted by adding 100 mM TEAB to urea concentra-

tion less than 2 M. Finally, trypsin (Sequencing Grade Modified Trypsin, Promega) was added

at 1:50 trypsin-to-protein mass ratio for the first digestion overnight and 1:100 trypsin-to-pro-

tein mass ratio for a second 4 h digestion.

After trypsin digestion, peptides were desalted by Strata X C18 SPE column (Phenomenex)

and vacuum-dried. Peptides were reconstituted in 0.5 M TEAB and processed according to the

manufacturer’s protocol for 8-plex iTRAQ kit (AB Science). Briefly, one unit of iTRAQ

reagent (defined as the amount of reagent required to label 100 μg of protein) were thawed

and reconstituted in ACN (acetonitrile, Fisher Chemical). The peptide mixtures were then

incubated for 2 h at room temperature, pooled, desalted and dried by vacuum centrifugation.

The sample was then fractionated by high pH reverse-phase HPLC using Agilent 300Extend

C18 column (5 μm particles, 4.6 mm ID, 250 mm length). Briefly, peptides were first separated

with a gradient of 2% to 60% acetonitrile in 10 mM ammonium bicarbonate pH 10 over 80

minutes into 80 fractions. Then, the peptides were combined into 7 fractions and dried by vac-

uum centrifugation.

Peptide mixtures were first incubated with IMAC microspheres suspension with vibration.

The IMAC microspheres with enriched phosphopeptides were collected by centrifugation, and

the supernatant was removed. To remove nonspecifically adsorbed peptides, the IMAC micro-

spheres were washed with 50% ACN/6% TFA (trifluoroacetic acid, Sigma) and 30% ACN/

0.1% TFA, sequentially. To elute the enriched phosphopeptides from the IMAC microspheres,

elution buffer containing 10% NH4OH was added and the enriched phosphopeptides were

eluted with vibration. The supernatant containing phosphopeptides was collected and lyophi-

lized for LC-MS/MS analysis.

LC-MS/MS analysis

Peptides were dissolved in solvent A (0.1% FA (formic acid, Fluka) in 2% ACN) and directly

loaded onto a reversed-phase pre-column (Acclaim PepMap 100, Thermo Scientific). Peptide

separation was performed using a reversed-phase analytical column (Acclaim PepMap RSLC,

Thermo Scientific) with a linear gradient of 4–22% solvent B (0.1% FA in 98% ACN) for 50

min, 22–35% solvent B for 12 min, 35–85% solvent B for 4 min and holding at 85% for the last

4 min at a constant flow rate of 300 nl/min on an EASY-nLC 1000 UPLC system. The resulting

peptides were analyzed by Q ExactiveTM Plus Hybrid Quadrupole-Orbitrap Mass Spectrome-

ter (ThermoFisher Scientific). The peptides were subjected to NSI source followed by tandem
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mass spectrometry (MS/MS) in Q ExactiveTM Plus coupled online to the UPLC. Intact pep-

tides were detected in the Orbitrap at a resolution of 70,000. Peptides were selected for MS/MS

using NCE setting as 28; ion fragments were detected in the Orbitrap at a resolution of 17,500.

A data-dependent procedure that alternated between one MS scan followed by 20 MS/MS

scans was applied for the top 20 precursor ions above a threshold ion count of 5.0E3 in the MS

survey scan with 15.0s dynamic exclusion. The electrospray voltage applied was 2.0 kV. Auto-

matic gain control (AGC) was used to prevent overfilling of the ion trap; 5E4 ions were accu-

mulated for generation of MS/MS spectra. For MS scans, the m/z scan range was 350 to 1800.

Fixed first mass was set as 100 m/z.

The resulting MS/MS data was processed using MaxQuant with integrated Andromeda

search engine (v.1.4.1.2). Tandem mass spectra were searched against SwissProt_Mouse data-

base concatenated with reverse decoy database. Trypsin/P was specified as cleavage enzyme

allowing up to 2 missing cleavages, 5 modifications per peptide and 5 charges. Mass error was

set to 10 ppm for precursor ions and 0.02 Da for fragment ions. Carbamidomethylation on

Cys was specified as fixed modification and oxidation on Met, phosphorylation on Ser, Thr,

Tyr and acetylation on protein N-terminal were specified as variable modifications. False dis-

covery rate (FDR) thresholds for protein, peptide and modification site were specified at 1%.

Minimum peptide length was set at 7. For quantification method, iTRAQ-8 plex was selected.

All the other parameters in MaxQuant were set to default values. The site localization probabil-

ity was set as> 0.5. The resulting raw data can be found in S2 Table.

Gene set enrichment analysis (GSEA) of phosphoproteomics data and

selection of interferon regulated proteins

Protein phosphorylation site ratios were generated from the LC-MS/MS values by comparing

WSN-infected + DMSO(control)-treated Rictor-/- MEFs to WSN-infected + Torin1-treated

Rictor-/- MEFs (mTORC1 substrates). The fold-change for each phosphorylation site between

groups was calculated. Protein sites that showed +/- 1.5-fold change or more in phosphoryla-

tion are shown (Fig 6A and S1 Table). The dataset was then subjected to Gene Set Enrichment

Analysis (GSEA) (http://software.broadinstitute.org/gsea/index.jsp) to reveal the top pathways

that showed the best enrichment scores. Interferon regulated genes were selected based on the

database http://www.interferome.org [89].

Ethics statement

The study using embryonated chicken was carried out in strict accordance with recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health. The use of embryonated chicken eggs before hatching is not considered animal use.

Embryonated eggs were purchased from Charles River Laboratories, inoculated with influenza

viruses at day 10, incubated at 37˚C for 2 days, and then incubated at 4˚C overnight before

allantoid fluid harvesting.

Supporting information

S1 Fig. Western blot quantifications for Fig 1 and mTORC1 activation in Rictor knock-

down cells. (A-F) Protein bands from the indicated blots from Fig 1 were quantified by Ima-

geJ64 analysis. (G) A549 cells were transfected for 48 h with control siRNAs or siRNAs to

knock down Rictor. Cells were then infected with WSN at MOI of 2 PFU/cell for 6h, 8h and

10h. Cell lysates were subjected to immunoblot analysis to detect the depicted proteins. (H-M)

Protein bands from the indicated blots from Fig 1 were quantified by ImageJ64 analysis.

(TIF)
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S2 Fig. Western blot quantifications for Fig 2A. Protein bands were quantified by ImageJ64

analysis comparing (A) p-AKT(T308) to total AKT levels and (B) p-AKT(S473) to total AKT

levels after normalizing to the mock-infected controls.

(TIF)

S3 Fig. Diverse influenza virus strains activate mTORC1. (A) A549 cells were infected at

MOI of 2 PFU/cell with WSN for the indicated times. (B) Primary MEFs or (C) HBEC30KT

cells were infected with WSN for 6 h or 8 h, respectively, at MOI of 2 PFU/cell. A549 cells

were infected with (D) Sh/1 (H7N9), (E) rSh/1 (recombinant Sh/1) and WSN (H1N1), (F)

VSV-GFP, WSN (or treated with 5% serum for 7 h) for 6h at MOI of 2 PFU/cell. Immunoblot

analyses were performed for detection of viral proteins (influenza virus M1 or VSV M) or host

proteins (total and phosphorylated S6K and 4E-BP1). Total S6K serves as the loading control.

The upper band in the S6K/p-S6K blots is p85 S6K, whereas the lower band is p70 S6K. Data

are representative of three independent experiments.

(TIF)

S4 Fig. Autophagy, M2, and IFN expression are not required for mTORC1 activation by

influenza virus. (A) A549 cells were infected with wild-type PR8:WSN or PR8:WSNDefi-

cientM2 at MOI of 2 PFU/cell for 6 h. (B) A549 cells were transfected with the indicated siR-

NAs for 48 h followed by infection with WSN at MOI of 2 PFU/cell for 6 h. (C) Atg5+/+ and

Atg5-/- MEFs were infected with WSN at MOI of 2 PFU/cell for 6 h. Immunoblot analyses

were performed with antibodies against the depicted proteins. Total S6K serves as the loading

control. Data are representative of three (A) or two (B,C) independent experiments. (D) UV

inactivation of WSN. WSN was UV-inactivated for 7 minutes under UV light. WSN and UV-

inactivated WSN (UV WSN) were subjected to both plaque assay and HA assay to confirm

UV inactivation prior to infection by assessing infectious virus (PFU/mL) and quantifying viri-

ons (HA unit/50 μl). These assays were carried out each time WSN was UV-inactivated prior

to infection. (E) Poly(I:C) stimulation does not induce mTORC1 activiation. MEFs were non-

treated or treated with rapamycin (250nM) or Torin (250nM) and transfected with high

molecular weight (HMW) poly(I:C) at 1 μg/ml for the indicated time points. Cell lysates were

subjected to immunoblot analysis with the indicated antibodies. Mito70 was used as loading

control. (F) As control for E, MEFs were also mock infected or infected with influenza A virus

at MOI of 2 PFU/cell. Cell extracts were obtained at 8h post-infection and subjected to immu-

noblot analysis with the depicted antibodies. (G) MEFs were mock transfected or transfected

with HMW poly(I:C) at 0.5 μg/ml for 6 and 12h. Total RNA was extracted at the indicated

time points post-transfection and the relative abundance of mouse IFN β was measured by real

time PCR. Data from triplicate experiments were normalized to β-Actin.

(TIF)

S5 Fig. Quantification of Fig 4A. Western blots shown in Fig 4A were quantified and normal-

ized to respective controls, as depicted in this figure, using the ImageJ64 analysis.

(TIF)

S6 Fig. Cell viability at multiple times during Torin1 treatment and viral replication. (A)

A549 cells were treated with 0.1% DMSO or 250 nM Torin1 for the indicated times. Cell viabil-

ity was determined by measuring ATP levels and calculated as a percent of the DMSO control.

(B) A549 cells were infected with WSN at MOI of 2 PFU/cell for 1 h and then treated with 250

nM Torin1 or DMSO for an additional 9 h. QPCR was performed to measure viral mRNA lev-

els. Mean and SD are shown, n = 3, ���p<0.001. (C) A549 cells were infected for 24h with rSh/

1 at MOI of 0.001 in the absence or presence of Torin. Viral titers were measured by plaque
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assay. Error bars are SEM, n = 9, ��p<0.01. (D) A549 cells were transfected for 48 h with con-

trol siRNAs or siRNAs to knock down Rictor as in S1G Fig. Cells were then infected with

WSN at MOI of 0.01 for 24h and 48h. Viral titers were measured by plaque assay. Error bars

represent SD, n = 3, �p<0.05.

(TIF)

S1 Table. mTORC1-dependent phosphorylation on proteins identified in mock-infected

Rictor-/- MEFs in the absence or presence of Torin1. The table indicates protein names and

IDs, position(s) of amino acid (aa) phosphorylation, and the ratio of phosphopeptide reads

(> and< 1.5 fold or more) in Torin1-treated vs. DMSO-treated cells.

(XLSX)

S2 Table. Raw data from the proteomics studies described in the LC-MS/MS analysis sec-

tion in Methods.

(XLSX)

S1 Methods. RNA interference, reagent, and poly(I:C) transfections described in supple-

mentary figures.

(DOCX)
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