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/e ribophorin family (RPN) is an essential regulatory subunit of the proteasome. By influencing the ubiquitin-proteasome
system activity, ribophorins (RPNs) are responsible for almost all physiology and pathology processes of mammalian cells.
Nevertheless, little is known about the role of RPNs in HCC. In this work, we first evaluated the transcriptional levels and the
prognostic and diagnostic value of RPNs based on the public database. Firstly, we found all RPNs were surprisingly consistently
upregulated in HCC tissues. Moreover, the RPNs’ expression pattern is correlated with HCC tumor grade. /e TCGA HCC
platforms’ data indicated that RPN2, RPN3, RPN6, RPN9, RPN10, RPN11, and RPN12 have robust diagnosis values. /en,
survival analysis revealed that the high expression of RPN1, RPN2, RPN4, RPN5, RPN6, RPN9, and RPN11 was correlated with
unfavourable HCC overall survival. /en, genetic alteration, immune infiltration feature, gene-genes network, and functional
enrichment for RPNs indicated that RPNs have many potential biosynthesis activities expert for UPS functions. Moreover,
western blot and qRT-PCR results confirmed these results. /e silencing of RPN6 and RPN9 significantly reduced HCC cells’
proliferation, migration, and invasion ability in vitro. An in vivo tumor model further validated the oncogene effect of RPN6 on
HCC cell growth. Moreover, RPN6 and RPN9 could promote cell migratory and invasive potential by affecting the epithelial-
mesenchymal transition (EMT) process. In summary, this study suggests that the RPN family has the potential to be potential
biomarkers and targets for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) ranks as the fifth most
common cancer and the second cause of cancer-related
death worldwide [1, 2]. In the last two decades, the

incidence of HCC has been increasing globally while even
doubling in the United States [3]. Although surgery has
become a standard treatment for HCC, most patients have
reached the late stage when being diagnosed and are not
surgical candidates [4, 5]. /e five-year survival rate for
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patients with HCC is only 7%. /erefore, it is urged to find
new biomarkers for the detection, diagnosis, and prognosis
and new targets for molecule therapy [6].

/e ubiquitin-proteasome system (UPS) is highly con-
served in eukaryotic cells [7]. UPS is responsible for almost
all cellular progress, functioning as degrading cellular
proteins. Incorrect protein degradation may give rise to
many diseases, including cancers, in versatile ways, reported
in proliferation, autophagy, and drug resistance [8–10]. /e
Ribophorin family have 14 members: RPN1, RPN2, RPN3/
PSMD3, RPN4/PSMD9, RPN5/PSMD12, RPN6/PSMD11,
RPN7/PSMD6, RPN8/PSMD7, RPN9/PSMD13, RPN10/
PSMD4, RPN11/PSMD14, RPN12/PSMD8, RPN13/
ADRM1, and RPN14/PAAF1. /ey construct the 19 s
(regulatory particles) of the 26 s proteasome. Some subunits
(RPN1, RPN10, and RPN13), their specificity structure, and
location even determine whether proteasomes work or not
and which protein should be degraded [11]./erefore, many
RPNs have been deregulated and have robust oncogene
functions in cancers [12–15]. Moreover, some studies re-
ported that RPNs’ expression increased after virus infection
[16]. As we all know, most HCC patients are initiated by
chronic liver hepatitis virus B or C infections. /erefore,
RPNs may do something special in HCC pathology [17].
Many cancer targets and new biomarkers have been iden-
tified and verified [18, 19]. /is study extended the
knowledge on RPNs and HCC to appraise distinct prog-
nostic values, predict potential functions and putative tar-
gets, and then evaluate by experiments.

2. Materials and Methods

2.1. Specimens and Cell Lines. Between January 2016 and
January 2018, 54 HCC specimens and corresponding non-
cancerous tissues were harvested from patients at the Second
Affiliated Hospital of HarbinMedical University./ese fresh
specimens were preserved in liquid nitrogen. None of the
patients received radiotherapy or chemotherapy before
surgery. /is study was authorized by the Ethics Committee
of the Second Affiliated Hospital of Harbin Medical Uni-
versity. Hcclm3, Huh7, andWrl-68 cells were obtained from
the Cell Bank of the Chinese Academy of Sciences (Shanghai,
China). Hcclm3 and Huh7 were maintained in DMEM
(Gibco, Grand Island, NY, USA) containing 10% fetal bovine
serum (Invitrogen Life Technologies, Carlsbad, CA, USA),
while Wrl-68 cells in RPMI-1640 (Gibco, Grand Island, NY,
USA). /ey were all cultured in an atmosphere of 37°C with
5% CO2.

2.2. Cell Transfection andRNA Isolation. Small-hairpin RNA
directed against RPN6 and RPN9 were designed and syn-
thesized (Gene Chem, Shanghai, China)./eir sequences are
listed in Table S1. An empty Sh-NC vector was used as
a control. /e procedure of lentiviral infection was con-
ducted by the instructions of themanufacturer./e selection
of qualified cells was performed using puromycin for 3-4
weeks. TRIzol (Sigma, MO, USA) was used for total RNA
isolation in HCC tissue specimens and cultured cells. /en,

we checked the many features such as nucleic acid con-
centration, OD230, OD260, and OD280 of RNAs.

2.3. QRT-PCR and Western Blotting. RNAs were applied to
synthesize the complementary DNA (cDNA) with a First
Strand cDNA Synthesis Kit (Roche, Germany). RT-qPCR
was carried out using the FastStart Universal SYBR Green
Master Kit (Roche, Germany). /e primer sequences are
listed in Table S1. GAPDH was used for the internal control
of RNA expression. Sequences of all of the gene primers are
listed in Table S1. /e mRNA fold change data were nor-
malized and calculated using equation (2) −△△CT. Western
blot was carried out following standard protocols as pre-
viously described [20].

2.4. Tumor Xenograft Study. Hcclm3 cells were transfected
with sh-RPN6 or the sh-NC control. After collecting these
cells, 3×106 cells were injected subcutaneously into either
side of female BALB/c nudemice (6–8 weeks of age, n� 3 per
group). Tumor growth was measured, and tumor volumes
were calculated every three days. /e mice were euthanized
18 days after injection, and the tumors weights were
measured.

2.5. CCK-8 andWound Scratch Assay. CCK-8 (Cell counting
kit-8) (Dojindo, Japan) was employed to determine cell via-
bility. A density of 4×104 cells per well was seeded in 96-well
plates. Ten μl of reagent was added to each well and main-
tained for two h at 37°C. At 0, 24, 48, 72, and 96 h, the cells
were measured by the reader (Tecan, Switzerland) at
a wavelength of 450 nm. Cell motility wasmeasured by wound
scratch experiments. Using a 200 μL pipette tube, we created
an acellular area. /en, cells were placed in a serum-free
DMEM medium. /e area was measured at 0, 24, and 36 h.

2.6. Migration and Invasion Assays. Coated with Matrigel
(for invasion) or not (for migration), transwell chambers
(Corning, New York, USA) were applied to further access
cellular motility. 5×104 cells were resuspended in 200 μL of
FBS-free DMEM in the higher chambers while lower
chambers were placed with 600 μL 10% FBS DMEM. After
incubating for 48 h at 37°C, cells on the upper surface of the
chambers were eliminated. /en, cells passed through the
membranes were fixed and stained. /e numbers of invasive
or migrated cells were counted using a microscope.

2.7. ONCOMINE Analysis. To analyze the relative expres-
sion of RPNs in a variety of tumors, ONCOMINE, a free
open-accessin-depth bioinformatic database (https://
ONCOMINE.org), was used, including 715 datasets and
86,733 samples. /e mRNA expression profiles of RPNs in
HCC were confirmed by this database, using a students’ t-
test to generate a p-value.

2.8. UALCAN Database. UALCAN (https://ualcan.path.
uab.edu) is an easy-to-use online tool to analyze online
microarray data from the TCGA databases. Besides, they
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also provide some clinical features and survival prognosis
data based on gene expression differences in 31 cancer types.
In our study, we analyzed the expression pattern of RPNs in
HCC and the relationships between RPNs’ mRNA expres-
sion pattern and patients’ tumor grades. Moreover, we used
Bonferroni correction to test the p-value significance.

2.9. UCSC Xena. UCSC Xena (https://xena.ucsc.edu/) is
a free and open-access online tool for getting homogenized
data from multiple databases, including TCGA, ICGC,
TARGET, GTEx, and CCLE [21]. /e database provides
information on copy number, methylation, somatic muta-
tion, gene expression, protein expression, and clinical data.

2.10. Kaplan–Meier Plotter Database. /e Kaplan–Meier
Plotter (https://kmplot.com/analysis/) is an online tool
established by TCGA patient survival information and is
used to evaluate the prognostic value of RPNs in HCC [22].
/e prognostic value was evaluated by four indexes, OS

(overall survival), PFS (progression-free survival), RFS
(recurrence-free survival), and DSS (disease-specific
survival).

2.11. Cbioportal Analysis. /e Cbioportal database (https://
www.cbioportal.org/) is an open-access platform which
provides interactive exploration of multidimensional Cancer
Genomics data [23]. We analyzed the genetic alterations of
the RPN family genes in HCC based on the 8 studies
containing 1308 samples. Genomic profiles, mutations,
survival data, and mRNA expressions were mentioned for
analyzing the 14 RPN family genes.

2.12. GeneMANIA and Functional Enrichment Analysis.
GeneMANIA (https://www.genemania.org) is an online
platform for deriving hypothetical genes interaction net-
works based on those locations or functions. By querying
a list of genes, GeneMANIA can generate multiply genes
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Figure 2: RPNs are differentially expressed between HCC and normal tissues (UALCAN). ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001.
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Figure 1: /e transcription levels of RPNs in pan-cancers (ONCOMINE).
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Table 1: Significant changes of RPNs’ expression in the transcriptional level between cancer and normal tissues (oncomine database).

Gene ID
Types of

HCC versus
normal

Fold Change p Value t Test References

RPN1 Hepatocellular Carcinoma versus Normal 1.249 1.09E−14 7.904 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.019 0.024 2.009 TCGA

RPN2

Hepatocellular Carcinoma versus Normal 1.713 1.54E−74 22.605 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.468 3.44E−7 5.927 Roessler [27]
Hepatocellular Carcinoma versus Normal 1.022 3.27E−4 3.790 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.074 1.41E−8 6.045 TCGA
Hepatocellular Carcinoma versus Normal 1.033 2.13E−5 4.248 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.465 0.012 2.546 Wurmbach [27]

RPN3

Hepatocellular Carcinoma versus Normal 1.231 0.001 3.074 Chen [29]
Hepatocellular Carcinoma versus Normal 1.286 7.37E−17 8.617 Roessler [27]
Hepatocellular Carcinoma versus Normal 1.046 0.001 3.165 TCGA
Hepatocellular Carcinoma versus Normal 1.020 0.009 2.414 Guichard [28]

RPN4
Hepatocellular Carcinoma versus Normal 1.112 0.010 2.337 Chen [29]
Hepatocellular Carcinoma versus Normal 1.239 7.50E−11 6.573 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.256 0.023 2.058 Roessler [26]

RPN5

Hepatocellular Carcinoma versus Normal 1.692 5.83E−37 13.892 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.110 2.46E−9 6.430 TCGA
Hepatocellular Carcinoma versus Normal 1.042 9.93E−7 4.986 Guichard [28]]
Hepatocellular Carcinoma versus Normal 1.034 0.005 2.778 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.153 0.020 2.062 Chen [29]

RPN6

Hepatocellular Carcinoma versus Normal 1.414 1.00E−8 5.881 Chen [29]
Hepatocellular Carcinoma versus Normal 1.654 3.73E−36 13.732 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.407 0.011 2.571 Wurmbach [27]]
Hepatocellular Carcinoma versus Normal 1.041 0.006 2.590 TCGA
Hepatocellular Carcinoma versus Normal 1.011 0.024 1.997 Guichard [28]

RPN7 Hepatocellular Carcinoma versus Normal 1.465 1.02E−23 10.595 Roessler [26]

RPN8 Hepatocellular Carcinoma versus Normal 1.162 9.26E−6 4.329 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.373 0.014 2.375 Wurmbach [27]

RPN9 Hepatocellular Carcinoma versus Normal 1.458 4.73E−29 12.000 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.400 0.016 2.422 Wurmbach [27]

RPN10

Hepatocellular Carcinoma versus Normal 2.265 2.10E−85 25.343 Roessler [26]
Hepatocellular Carcinoma versus Normal 2.533 1.20E−11 9.023 Wurmbach [27]
Hepatocellular Carcinoma versus Normal 2.078 1.66E−11 9.550 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.097 9.63E−7 6.126 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.098 9.44E−18 10.186 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.318 2.06E−18 10.720 TCGA
Hepatocellular Carcinoma versus Normal 1.340 8.84E−5 4.036 [30]

RPN11

Hepatocellular Carcinoma versus Normal 2.243 4.71E−74 22.195 Roessler [26]
Hepatocellular Carcinoma versus Normal 2.061 3.84E−7 5.876 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.266 5.88E−5 3.941 Chen [29]
Hepatocellular Carcinoma versus Normal 1.723 0.008 2.864 Wurmbach [27]

RPN12

Hepatocellular Carcinoma versus Normal 1.543 7.28E−31 12.413 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.477 0.003 2.928 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.148 0.007 2.507 Chen [29]
Hepatocellular Carcinoma versus Normal 1.031 0.002 2.981 TCGA
Hepatocellular Carcinoma versus Normal 1.015 0.033 1.854 Guichard [28]

RPN13

Hepatocellular Carcinoma versus Normal 1.044 3.63E−5 4.500 Guichard [28]
Hepatocellular Carcinoma versus Normal 1.091 5.17E−10 6.763 TCGA
Hepatocellular Carcinoma versus Normal 1.288 1.40E−19 9.407 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.371 0.002 3.094 Roessler [26]
Hepatocellular Carcinoma versus Normal 1.174 0.007 2.487 Chen [29]
Hepatocellular Carcinoma versus Normal 1.030 0.001 3.126 Guichard [28]

RPN14 Hepatocellular Carcinoma versus Normal 1.343 0.007 2.657 Wurmbach [27]
Hepatocellular Carcinoma versus Normal 1.131 3.89E−5 3.994 Roessler [26]
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with similar functions and illustrate the relationship between
the queried gene set and the dataset by constructing an
interactive network [24]. /is study used GeneMANIA to
build a gene-gene interaction network for RPNs. We used
the STRING database to perform the functional enrichment
analysis [25].

2.13. Statistical Analysis. We used GraphPad Prism 5.01
software and SPSS 22.0 to analyze the data in this study. /e
diagnosis value of RPNs was measured by ROC curves,

which were plotted using the SPSS software. Quantitative
data were expressed as mean± S.D.

3. Results

3.1. All RPNs’ Transcriptional Levels Are Extremely High in
Cancer Tissues. We first analyzed all of the RPN1-RPN14
mRNA expression levels in multiple human cancers using
the Oncomine database (Figure 1). /e analysis showed that
the transcriptional levels of all RPNs were upregulated in
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Figure 3: Correlation between the levels of 14 RPNs and HCC patient clinicopathological characteristics (UALCAN). ∗p< 0.05, ∗∗p< 0.01,
and ∗∗∗p< 0.001.
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human cancers. Some RPNs, such as RPN10 and RPN11,
were upregulated in HCC patients.

3.2. Relationship between the Transcriptional Levels of RPNs
and the Clinicopathological Parameters of HCC Patients.
/en, we compared the RPNs’ transcriptional levels in HCC
with those in normal samples using the UALCAN database
(Figure 2). All RPNs were surprisingly upregulated in HCC
tissues than normal, with a low p-value. After Bonferroni
correction, the p-value of all RPNs is still lower than the
corrected (p< 0.003571). Moreover, we examined our
findings in the ONCOMINE database (Table 1). In Roessler’s
dataset, RPN1 was upregulated with a fold change of 1.249
(p � 1.09E − 14), RPN2 with a fold change of 1.713
(p � 1.54E − 74), RPN3 with a fold change of 1.286
(p � 7.37E − 17), RPN4 with a fold change of 1.239

(p � 7.50E − 11), RPN5 with a fold change of 1.692
(p � 5.83E − 37), RPN6 with a fold change of 1.654
(p � 3.73E − 36), RPN7 with a fold change of 1.465
(p � 1.02E − 23), RPN8 with a fold change of 1.162
(p � 9.26E − 6), RPN9 with a fold change of 1.458
(p � 4.73E − 29), RPN10 with a fold change of 2.265
(p � 2.10E − 85), RPN11 with a fold change of 2.243
(p � 4.71E − 74), RPN12 with a fold change of 1.543
(p � 7.28E − 31), RPN13 with a fold change of 1.288
(p � 1.40E − 19), and RPN14 with a fold change of 1.131
(p � 3.89E − 5), which is in accordance with our finding
[26]. Next, using the UALCAN database, we analyzed
whether the RPNs’ transcriptional levels were related to
clinicopathological characteristics (Figure 3). As shown in
Figure 3, when tumor grade increases, the RPNs’ expression
pattern also increases. /e mRNA levels of all RPNs were
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Figure 5: Prognostic value of the mRNA expression for distinct RPNs in HCC (Kaplan–Meier Plotter).
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positive for tumor differentiation with p< 0.05. /at means
the measurement of RPNs’ levels may help determine the
patient’s tumor stage.

3.3.Diagnosis andPrognostic Significance of theRPNs inHCC.
To evaluate the value of RPNs in the diagnosis of HCC, the
computing receiver operating characteristic (ROC) analysis
was used. Using the data obtained from the HCC platform

from the UCSC website, we draw the ROC curves to analyze
the RPNs’ diagnostic significance. As the figure showed
(Figure 4), RPN2 (Area� 0.818 and p< 0.00011), RPN3
(Area� 0.728 and p< 0.0001), RPN6 (Area� 0.704 and
p< 0.0001), RPN9 (Area� 0.650 and p< 0.0001), RPN10
(Area� 0.880 and p< 0.0001), and RPN11 (Area� 0.815 and
p< 0.0001) were all helpful for HCC diagnosis. Our finding
suggested that RPN2, RPN3, RPN6, RPN9, RPN10, RPN11,
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Figure 6: Genomic alterations of RPN of HCC (cBioPortal). (a) Oncoprint of RPNs’ alteration in HCC. (b). Survival analysis of patients with
or without mutation.
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and RPN12 have the potential to be useful as biomarkers
for HCC.

/en, we evaluated the prognostic role of RPNs in HCC
using the Kaplan–Meier Plotter databases (Figure 5). In the
OS (overall survival) group, lower RPN1, RPN2, RPN5,
RPN6, RPN9, and RPN11 expressions indicated better
survival. In the PFS (progression-free survival) group, re-
duced RPN4, RPN5, and RPN11 were correlated with better
survival. In the RPS (recurrence-free survival) group, RPN4,
RPN5, RPN9, RPN10, and RPN11 downregulation were
connected with better survival. In the DSS (disease-specific
survival) group, the downregulation of RPN2, RPN5, RPN9,
and RPN11 may indicate better survival./ese findings were
consistent with the UALCAN analysis and suggested that
some RPNs such as RPN5, RPN9, and RPN11 have sig-
nificant prognostic value for HCC.

3.4. Genetic Alteration and Immune Infiltration Analyses of
RPNs inHCCPatients. We used the cBioPortal online tool to
analyze the genetic changes of RPNs in HCC. According to
the TCGA dataset, the highest genetic variation rate in RPNs
is RPN10 (5%), the lowest mutation rate is RPN4 (0.1%), and
the others are RPN8 (0.2%), RPN14 (0.3%), RPN1 (0.3%),
RPN3 (0.3%), and RPN7 (0.3%) (Figure 6(a)). Although
changes are little in RPNs, those changes were correlated
with overall patient survival (Figure 6(b)).

/e TIMER database is used to evaluate the relationship
between the transcription level of RPNs and the level of
immune infiltration in HCC. It was found that RPNs are
involved in the inflammatory response and immune cell
infiltration, which may affect the clinical outcome of HCC

patients. /e analysis results are shown in Figure 7. RPN2
expression was positively correlated with the infiltration of
B cells, macrophages, and dendritic cells. RPN4 was nega-
tively associated with the infiltration of CD4+ T cells. RPN5
was negatively correlated with the infiltration of CD4+ Tcells
while positively correlated with neutrophil infiltration.
RPN6 expressions were positively associated with the in-
filtration of macrophages and neutrophils. RPN7 was neg-
atively correlated with the infiltration of CD8+ Tcells, CD4+
T cells, macrophages, neutrophils, and dendritic cells. RPN8
was negatively associated with the infiltration of purity and
CD4+ T cells. RPN9 was negatively correlated with the in-
filtration of CD4+ T cells and neutrophils. RPN10 was
positively correlated with the infiltration of purity cells while
negatively correlated with CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells. RPN11 was
positively associated with the infiltration of neutrophils
while negatively correlated with purity cells. RPN12 was
positively correlated with the infiltration of CD4+ T cells.
RPN13 was negatively correlated with B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells.
RPN14 was positively associated with the infiltration of
purity cells while negatively with the B cells, CD8+ T cells,
CD4+ T cells, macrophages, neutrophils, and dendritic cells.
/ese results indicated that the level of RPNs’ expression is
associated with the level of immune infiltration in HCC.

3.5. %e GGI and Functional Enrichment of RPNs.
Identifying more details about RPNs could boost the un-
derstanding of their potential functions in HCC. /erefore,
we constructed a GGI using the GeneMANIA database. In

Figure 7: /e correlation between the differently expressed RPNs and immune cell infiltration in HCC patients (TIMER).
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Figure 8, the 14 central nodes of RPNs are surrounded by 20
genes strongly associated with RPNs in physical interactions,
co-localization, co-expression, prediction, genetic in-
teractions, and pathways. /e top five genes most associated
are PSMC1 (proteasome 26S subunit, ATPase 1), PSMC6
(proteasome 26S subunit, ATPase 6), PSMD10 (proteasome
26S subunit, non-ATPase 10), PSMC4 (proteasome 26S
subunit, ATPase 4), and PSMC3 (proteasome 26S subunit,
ATPase 3). /ey all have genetic interactions and are cor-
related with functions such as proteasome accessory com-
plex, proteasome complex, and regulation of the cellular
amino acid metabolic process.

As shown in Figure 9, besides protein binding, RNA
binding, or ubiquitin-protein ligase activity, RPNs still play
an important role in biosynthesis: extracellular exosome,
translation initiation factor activity, and protein processing
in endoplasmic reticulum activity.

3.6. RPN6 and RPN9 are Upregulated inHCCTissues and Cell
Lines. Some RPNs’ oncogenic roles in HCC were un-
covered by other researchers [31–35]. To confirm our
conclusions, we first conducted (RT-qPCR) to investigate
the mRNA levels of RPN6 and RPN9 in 54 paired human
HCC tissue specimens and their corresponding non-
tumorous tissue samples. /e results showed that RPN6
and RPN9 mRNA expression was markedly elevated in
HCC tissues relative to normal (Figures 10(a) and 10(b)).
An upregulated protein expression levels of RPN6 and
RPN9 were further confirmed in 4 paired specimens by
immunoblotting assays (Figure 10(c)). To further in-
vestigate the oncogene function of RPN6 and RPN9,
a panel of human HCC cell lines was evaluated by RT-
qPCR and western blot. /e PCR results showed that RPN6
and RPN9 were present at higher (Hcclm3 and Huh7)
levels than Wrl-68. WB further confirmed an upregulated

Networks
Predicted
Physical Interactions
Pathway
Co-expression
Shared protein domains
Co-localization
Genetic Interactions

Functions
proteasome accessory complex
proteasome complex

regulation of cellular amino acid metabolic process

DNA damage response, signal transduction by p53 class mediator
resulting in cell cycle arrest

signal transduction involved in mitotic DNA damage checkpoint

signal transduction involved in DNA integrity checkpoint
negative regulation of ubiquitin-protein ligase activity involved in
mitotic cell cycle

Figure 8: Gene-gene interaction network of differently expressed RPNs (GeneMANIA).
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protein expression level of RPN6 and RPN9 in HCC
cell lines.

Knockdown of RPN6 and RPN9 inhibits cell pro-
liferation, migration, and invasion by the EMT process.

As RPN6 and RPN9 are upregulated in HCC tissues and
cell lines, it is necessary to determine whether their sup-
pression could affect the biological activity in HCC cells. We
stably downregulated RPN6 and RPN9 in HCC cell lines,
Hcclm3 and Huh7, using shRNA. As shown in Figure 11(a),
RT-qPCR data indicated a significant loss of mRNA ex-
pression in those two HCC cell lines. /e CCK-8 pro-
liferation curves demonstrated that RPN6 and RPN9
knockdown remarkedly attenuated cell growth in Hcclm3
and Huh7 cells (Figure 11(b)). We further explored the

potential impact of RPN6 and RPN9 knockdown on met-
astatic properties in HCC cells using wound scratch and
transwell assays. As shown in Figure 11(c), the results
showed that the loss function of RPN6 and RPN9 signifi-
cantly suppressed the wound closure potential in Hcclm3
and Huh7 cells. In the transwell assay, attenuated RPN6 and
RPN9 expression remarkably decreased migration and in-
vasion capabilities in Hcclm3 and Huh7 cells. /us, our
results show that RPN6 and RPN9 expressions are essential
for HCC cell proliferation, migration, and invasion. As
epithelial-mesenchymal transition (EMT) markers are
crucial in cell migration and metastasis, we investigated
whether RPN6 and RPN9 affected the EMTprocess in HCC.
As shown in Figure 12(a), western blot analysis documented
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that the silencing of RPN6 and RPN9 decreased the ex-
pression of mesenchymal markers (N-cadherin, Vimentin,
and Snail) in Hcclm3 cells.

3.7. Knockdown of RPN6 Inhibits Tumor Growth in Vivo.
To further validate whether RPN6 could affect tumor growth
in vivo, the Hcclm3 cells with NC group or Sh-RPN6 group
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Figure 11: Continued.
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were inoculated subcutaneously into either side of nude
mice. /e mice were euthanized 18 days after injection. We
found that tumors derived from Sh-RPN6 cells grew more
slowly, and the final tumor weight was markedly lower than
the NC group (Figures 12(c)–12(e)), which was consistent
with the results in vitro.

4. Discussion

Hepatocellular carcinoma, featured by high morbidity and
mortality, remains one of the most health threats to people
worldwide [1]. Although surgical procedures have become
the standard of treatment, most patients are not surgical
candidates [4]. /erefore, to conquer HCC, screaming po-
tential molecular biomarkers is a top priority.

By charging 80–90% of protein degradation, UPS is
a sophisticated controlled system and responsible for many
kinds of cellular procedures and oncogenesis [36, 37]. /e
Ribophorin family is an essential regulatory subunit of 26s
proteasome. Some studies have reported that RPNs’ de-
regulation has robust oncogene functions in multiple can-
cers [11–14]. Although some RPNs’ oncogenic role in HCC
has been proven, distinct roles of the RPN family in HCC
remained ambiguous. /erefore, we performed a compre-
hensive bioinformatics analysis of RPNs in this study.

RPN1 is the largest proteasome subunit and functions as
the recognition part of the ubiquitin-proteasome system
proteins by the proteasome [38]. RPN1 was possessed by two
adjacent regions designated as T1 and T2. T1 is the receptor
site for specific UBL domain proteins, while T2 binds to
USP14, a proteasome-associated deubiquitinating enzyme
[39, 40]. As a crucial part of the UPS system, RPN1 was
upregulated in lung and kidney cancer [41]. Abnormal
RPN1/EVI1 fusion was also popular in myelodysplasia and
acute myeloid leukemia [42] and could be one of the relevant
genes to predict breast cancer prognostic significance [43].
In our study, data from the online datasets showed that
RPN1 was more highly expressed in human HCC tissues
than normal tissues. And RPN1 expression is related to
tumor grade. Further, highly expressed RPN1 RNA was
associated with a worse OS, which was not studied in the
previous report.

Located at 20ql2-13.1, RPN2 is paralogous RPN1 and
a highly conserved protein in the rough endoplasmic re-
ticulum. In 2008, Takahashi et al. reported that overex-
pressed RPN2 is associated with docetaxel resistance by
degenerating GSK3b in breast cancer [11]. Tominaga et al.
found the other drug resistance function of RPN2 in breast
cancer with a different target of CD63 [44]. Next, RPN2’s
oncogene role has been found in esophageal squamous cell
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Figure 11: Knockdown of RPN6 and RPN9 suppresses the proliferation, migration, and invasion of HCC cells in vitro. (a). RT-qPCR
analysis was employed to examine the efficiency of RPN6 and RPN9 knockdown. (b). CCK-8 assays result for RPN6 and RPN9 knockdown
in Hcclm3 and Huh7 cells. (c). Wound-healing assay was performed to measure the migration ability of these cells. (d). Transwell assays
were used to measure the migration ability of these cells.
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carcinoma [12], osteosarcoma [13], gastric cancer [14], and
HCC [32]. /e Zhang et al. study showed that RPN2 might
serve as a biomarker for colorectal cancer. Recently, Huang
et al. identified that RPN2 was upregulated in HCC cell lines
and HCC tissues. Overexpressed RPN2 expression increased
cell proliferation, metastasis, invasion, and epithelial-
mesenchymal transition [32]. RPN2 may precisely interact
with STAT3 and NF-κB pathways. Circ_0046599 also
promoted HCC development by influencing RPN2 [33].
Moreover, RPN2 can be detected in blood exosomes [45]
and urinary exosomes [46], expanding its application in
diagnosis.

RPN6 is another essential subunit in the UPS system.
Studies have proven that its high expression or phosphor-
ylation may promote proteasome activity [47, 48]. RPN6
could protect pancreatic cancer cells from acute apoptosis
[49]. In our work, we indicated that RPN6 was upregulated
in HCC and its expression level is correlated with the pa-
tient’s tumor grade and OS. Moreover, RPN6 is a sensitivity
biomarker for HCC diagnosis. Previous studies thought
RPN9 is an aging-related gene [50, 51]. Our study first
revealed the oncogene role of RPN9 in cancers. Further work
should be done to confirm our results.

Besides being an important subunit of the proteasome,
RPN11 is also a robust proteasome deubiquitinase. Luo et al.
reported that RPN11 plays an essential role in breast cancer
progression [52]. Zhu et al. showed silencing RPN11 re-
duced the metastasis of esophageal squamous cell carcinoma
[53]. Wang et al. indicted that RPN11 dysregulation may
correlate with many cancers besides HCC [35]. On the
expression level, the RPN11 we uncovered here might serve
as an effective diagnostic and prognosis biomarker for HCC.

Our study showed that all members of the RPNs were
significantly overexpressed in HCC, and their expression
patterns were connected with the patient’s tumor grade. /e
ROC curve suggested that RPN2, RPN3, RPN6, RPN9,
RPN10, RPN11, and RPN12 have sensitivity and specificity
in HCC diagnosis. Moreover, the expression of RPN1,
RPN2, RPN5, RPN6, RPN9, and RPN11 was negatively
correlated with patients’ OS. Furthermore, the level of RPNs’
expression is associated with the level of immune infiltration
in HCC. /e GGI and functional enrichment of RPNs were
analyzed to predict their molecular functions and potential
targets. Moreover, we performed western blot and qRT-PCR
of RPN6 and RPN9 to verify these results. /e silencing of
RPN6 and RPN9 significantly influenced HCC cells’
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Figure 12: Knockdown of RPN6 and RPN9 inhibits cell proliferation, migration, and invasion by the EMTprocess. (a). N-cadherin, Snail,
and Vimentin protein levels were detected in RPN6 or RPN9 stable knockdown by western blotting. (b). N-cadherin, Snail, and Vimentin
protein levels were quantified in RPN6 or RPN9 stable knockdown. (c). Xenograft tumors were generated by injecting Hcclm3 cell-
downregulated RPN6 or carrying a negative control vector. (d). /e growth of xenograft tumors was measured by volume. (e). /e tumor
weight was recorded.
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proliferation, migration, and invasion. An in vivo tumor
model further validated the oncogene effect of RPN6 on
HCC cell growth. Moreover, RPN6 and RPN9 could pro-
mote cell migratory and invasive potential by affecting the
epithelial-mesenchymal transition (EMT) process. Our
findings showed that the RPN family has the potential to be
new prognostic and diagnostic markers and also drug targets
for HCC. /ere are still some limitations in our study. Our
findings required a multicenter, randomized, large clinical
controlled trial, and the molecule processes behind RPNs
should be addressed. As RPNs can be detected in blood and
urine, the effect of liquid biopsy may be valued further.
Despite the limitations above, our study first investigated the
diagnostic and prognostic value of RPNs in HCC. /eir
results highlighted many RPNs have the potential to be new
biomarkers and underlying targets for HCC.

Data Availability

/e transcription levels of RPNs and the changes of RPNs’
expression between cancer and normal data were down-
loaded from the Oncomine database (https://www.
oncomine.org) under the accession number (s): n8630,
n8887, n8302, n4313, n8472, and n9158. /e transcription
levels of ITPRs between cancer and normal cells were
downloaded from the UALCAN database (https://ualcan.
path.uab.edu). Cancer patients’ survival analysis data were
downloaded from the Kaplan–Meier Plotter database
(https://gepia.cancer-pku.cn). /e ITPRs’ gene expression
data and clinic information were downloaded from the
UCSC Xena database (https://xena.ucsc.edu/). /e immune
infiltrations data were downloaded from the Timer database
(https://cistrome.shinyapps.io/timer/). /e ITPRs’ gene al-
teration data and clinic information were downloaded from
the CbioPortal database (https://www.cbioportal.org). /e
gene relationships network data were downloaded from the
GeneMANIA database (https://www.genemania.org). /e
methylation status of ITPRs’ gene data was downloaded
from the Wanderer database (https://maplab.imppc.org/
wanderer). /e GO and KEGG enrichment data were
downloaded from the STRING database (https://string-db.
org/).
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