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Abstract

Female birds develop asymmetric gonads: a functional ovary develops on the left, whereas the right gonad regresses. In
males, however, testes develop on both sides. We examined the distribution of germ cells using Vasa/Cvh as a marker.
Expression is asymmetric in both sexes: at stage 35 the left gonad contains significantly more germ cells than the right. A
similar expression pattern is seen for expression of ERNI (Ens1), a gene expressed in chick embryonic stem cells while they
self-renew, but downregulated upon differentiation. Other pluripotency-associated markers (PouV/Oct3/4, Nanog and Sox2)
also show asymmetric expression (more expressing cells on the left) in both sexes, but this asymmetry is at least partly due
to expression in stromal cells of the developing gonad, and the pattern is different for all the genes. Therefore germ cell and
pluripotency-associated genes show both sex-dependent and independent left-right asymmetry and a complex pattern of
expression.
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Introduction

Unlike mammals, which have apparently symmetric gonads,

most female bird species develop asymmetrically, generating a

functional ovary only on the left side, whereas males develop

bilateral testes [1]. Before sexual differentiation (the ‘‘indifferent

stage’’), there is no detectable morphological asymmetry between

left and right embryonic gonads in either sex. Morphological

differences in embryonic gonads appear after sexual differentia-

tion; male embryos (which are the homogametic sex, ZZ) develop

bilateral testes, while female embryos (heterogametic, ZW) develop

a functional left ovary and the right ovary regresses [2].

The gonads of both sexes contain two layers, cortex and

medulla [2,3]. These change and become sexually dimorphic

during gonadal differentiation. Embryonic testes exhibit greater

medullary development by the appearance of testicular cords

containing the male germ cells, supporting Sertoli cells inside and

hormone-producing Leydig cells outside the cords. On the other

hand, the ovary exhibits greater cortical development, and female

germ cells locate in this layer [4]. Early differences between male

and female embryos are thought to include a greater number and

size of female germ cells at an earlier stage than in males [5], based

on the localization of glycogen granules in germ cells by PAS

staining [6,7].

Several genes underlie sexual differentiation and lie near the top

of a genetic hierarchy governing sex specific differences. Among

the genes that differ between male and female embryos at an early

stage, DMRT1 [8,9] and Sox9 [10,11] are expressed in male (ZZ)

embryos, whereas HINTW [12,13], FET1 [14] and FOXL2 [15]

are expressed in female (ZW) embryos. Aromatase, a key enzyme

for converting testosterone into oestrogen, is expressed only in

female gonads [16,17].

In addition to differential expression of molecular components

related to sexual differentiation and function, a few genes have been

described to display left-right differences in expression. Not

surprisingly, given its role as a highly conserved determinant of

left-sidedness in many organ systems [18,19,20,21,22,23,24,25,26],

PITX2 is expressed in the left female gonad, where its functions

include stimulation of gonadal cell proliferation and morphogenesis

[27,28,29]. Bmp7 is also expressed asymmetrically, showing different

patterns on the left and right gonadal primordia at the beginning of

genital ridge formation (sex indifferent stage), but in a sex-specific

way after sexual differentiation, in ovarian mesenchyme [30]. BMPs

have been shown to play a role in left-right asymmetry in earlier

development, and it is conceivable that this asymmetric expression

relates to a similar function in gonadal development. Finally,

estrogen receptor alpha (ERa) is expressed in the left but not the

right cortex of both sexes [17,31]; the significance of this asymmetry

(especially in the male) is unknown.

Cell lines derived from pre-primitive streak stage embryos

(‘‘chick ES cells’’) can contribute to all somatic lineages but not to

the germ line [32,33,34] whereas PGCs obtained either from the

circulation or from the gonads are truly pluripotent [35,36]. The

present study arose from an attempt to identify the latter cells in

the gonad, in vivo, to aid the development of more efficient

methods for their isolation and to begin to characterise them

molecularly. We used the expression of the chick homologue of the

germ cell marker Vasa (Cvh) to identify primordial germ cells and

gonocytes, since this gene is expressed only in germ cells at all
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stages of development and also appears to be both necessary and

sufficient to confer germ line competence to cells, including chick

ES cells [37]. We also examined the expression of the pluripo-

tency-associated genes Nanog, PouV (Oct3/4) and Sox2 [38,39,40]

and of ERNI, a gene originally identified as an early response to

neural induction [41] and also found to be expressed in chick ES

cells while in the self-renewing, undifferentiated state but

downregulated upon differentiation [42,43]. Consistent with a

previous report [29], Cvh-positive PGCs are located preferentially

in the left gonad of both sexes. More surprisingly, however,

asymmetry of expression is seen for all genes, but the patterns are

not identical. Some of the asymmetries can be related to the

presence of germ cell precursors but some are clearly independent,

revealing a greater degree of complexity of left-right asymmetric

molecular components in the gonads of both sexes than hitherto

suspected.

Results

Asymmetric Distribution of Germ Cells in the Gonads of
both Sexes

As early as 1935, Witschi suggested that the left embryonic

ovary contains more germ cells than the right, consistent with the

obvious difference in development of these female organs (the right

ovary does not develop to adulthood) [44]. To visualise germ cells

in the gonads we performed in situ hybridisation in whole mounts

and sections of gonads of female and male embryos at stage HH

35 (9 days’ incubation; [45]) for the germ cell marker, Cvh (Fig. 1A,

2A). As expected, sections through left and right ovaries revealed

significant differences in Cvh-positive cell numbers: 61630 per

transverse section on the left and 264 on the right; p,0.001,

n = 64 sections through 3 embryos; Fig. 3; see also Table 1).

However, left-right differences were also found in the male: the

average number of germ cells expressing Cvh in left and right male

gonads was 21616 and 11611 respectively (p,0.001, n = 78

sections in 3 embryos, Fig. 3).

Almost all the female germ cells are located in the ovarian

cortex (Fig. 1A’): 54634 on the left and 363 on the right cortex;

p = 0.002, n = 9 sections in 3 embryos; Fig. 4), and 9614 on the

left and 1268 on the right medulla (no significant left/right

difference; p = 0.64; Fig. 4, Table 1). In male, cells expressing Cvh

are located in both the cortex and the medulla (Fig. 2A’): an

average of 562 and 564 cells were found in the cortices of left and

right gonadal sections (Fig. 5, Table 1), while 1669 and 16617

were found in the left and right medulla respectively (n = 9

sections, 3 embryos; no significant left/right difference in either

cortex or medulla; p.0.9 Fig. 5, Table 1).

These results reveal left-right differences in germ cell distribu-

tion in the gonads of embryos of both sexes: the left gonad contains

a greater number of Cvh-positive cells than the right, confirming a

previous report [29]. However the asymmetry is more pronounced

in females than in males.

Asymmetric Expression of Pluripotency-related Genes
PouV, Nanog and Sox2 in the Gonads of Both Sexes

Next, we examined embryonic ovaries and testes for expression

of three pluripotency-associated genes: PouV ( = Oct3/4; Fig. 1B,

2B), Nanog (Fig. 1C, 2C) and Sox2 (Fig. 1D, 2D).

The average number of cells expressing PouV in the left female

gonad was significantly higher than in the right (respectively

104647 and 32630; p,0.001, n = 34 sections through 3 embryos;

Fig. 3). In the ovarian cortex there were 70633 and 32629 for left

and right respectively (p = 0.017, n = 9 sections, 3 embryos; Fig. 4,

Table 1) whereas in the medulla 38629 and 867, p = 0.015 were

counted on the left and right respectively; Fig. 4, Table 1). Given

that females have very few germ cells in the medulla at this stage

(see above), the majority of these PouV expressing ovarian

medullary cells (Fig. 1B’) are likely to be stromal cells.

The average number of cells expressing PouV in left and right

male gonads was 65627 and 22612 per section, respectively

(p,0.001, n = 66 sections, 3 embryos); Fig. 3, Table 1). Very few

PouV expressing cells were found in the testicular cortex, slightly

more on the left than the right: 865 and 463 per section

Figure 1. Left-right asymmetric gene expression in female embryonic gonads: Cvh (A), cPouV (B), cNanog (C), cSox2 (D) and ERNI (E)
positive cells are expressed in both left and right testes. Testicular sections exhibit germ cells, Cvh (A’) and cPouV (B’), cNanog (C’), cSox2 (D’)
and ERNI (E’) positive cells. Abbreviations: RT = Right testes, LT = Left testes. (Scale bar = 50 mm).
doi:10.1371/journal.pone.0069893.g001
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respectively, (p = 0.023; n = 9 sections, 3 embryos; Fig. 5, Table 1).

The testicular medulla showed more marked left-right differences:

49624 for the left and 12612, for the right, p = 0.0014; Fig. 5,

Table 1).

Nanog (Fig. 1C’) has a pattern of localization similar to that of

PouV. Expressing cells were detected in both cortex and medulla in

the left and the right female gonads (Fig. 1B’) with significant left-

right differences: 89633 per section on the left and 32616 per

section on the right (p,0.001, n = 62 sections, 3 embryos; Fig. 3,

Table 1). The average number of cells expressing Nanog in left and

right male gonads was 69626 and 21611 per section (p,0.001,

n = 73 sections, 3 embryos; Fig. 3, Table 1).

In ovarian cortex, there were 45621 cNanog-expressing cells on

the left and 1369 on the right (p = 0.0017, n = 9 sections, 3

embryos; Fig. 4, Table 1). In the medulla, 43615 were counted on

the left and 21613 on the right (p = 0.004, (n = 3); Fig. 4, Table 1).

Figure 2. Left-right asymmetric gene expression in male embryonic gonads: Cvh (A), cPouV (B), cNanog (C), cSox2 (D) and ERNI (E)
positive cells are expressed in both left and right ovaries. Ovarian sections exhibit germ cells, Cvh (A’) and cPouV (B’), cNanog (C’), cSox2 (D’)
and ERNI (E’) positive cells. Abbreviations: RO = Right ovary, LO = Left ovary. (Scale bar = 50 mm).
doi:10.1371/journal.pone.0069893.g002

Figure 3. Quantification of cells expressing various genes in male and female embryonic gonads.
doi:10.1371/journal.pone.0069893.g003
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In testicular cortex 1668 were observed on the left and 562 on

the right (p = 0.0027, n = 9 sections, 3 embryos, Fig. 5, Table 1),

whereas the medulla contained 50623 on the left and 1769 on

the right (p = 0.002, Fig. 5, Table 1).

Therefore again the majority of the medullary ovarian cells

expressing Nanog is unlikely to correspond to germ cells. Moreover,

there appear to be more Nanog expressing cells in both cortex and

medulla of both male and female gonads than Cvh-expressing cells,

suggesting that the left-right differences in expression of these

genes at least includes a contribution from stromal cells.

In female, the average number of cells expressing Sox2 in the left

and the right gonads was 37616 and 1968 respectively (p,0.001,

n = 53 sections, 3 embryos; Fig. 3, Table 1). The ovarian cortex

contained 11622 on the left and 162 on the right per gonadal

section (n = 9 sections, 3 embryos; Fig. 4, Table 1) whereas the left

and right ovarian medulla contained 2266 and 1364 respectively

(p = 0.002, n = 9 sections, 3 embryos; Fig. 4, Table 1). In the male,

the average number of cells expressing Sox2 in the left gonad was

significantly higher than that on the right (34613 and 23612

respectively; p,0.001, n = 101 sections, 4 embryos; Fig. 3,

Table 1). The testicular cortex contained 766 and 664 per

gonadal sections on the left and right respectively (n = 12 sections,

4 embryos; Fig. 5, Table 1), whereas the medulla contained 35613

on the left and 28612 on the right (Fig. 5, Table 1). Thus, very few

Sox2 expressing cells were observed in the cortex in testicular

sections (Fig. 2D’) while Sox2 expression was detected in both

cortex and medulla in ovarian sections (Fig. 1D’).

These results reveal that there is little or no correlation between

Sox2 expression and the distribution of Cvh-positive germ cells.

Moreover the morphology of Sox2 expressing cells is more akin to

tubular cells than germ cells especially in the ovarian medulla (eg.

see Fig. 1D’). However, significant left-right differences are

observed for Sox2 expression in both sexes, although this is less

marked than for the other genes studied here (eg. See Fig. 3,

Table 1).

ERNI is Asymmetrically Expressed in the Gonads of Both
Sexes

Embryonic ovaries and testes also express ERNI [41], a gene

whose expression relates to the self-renewing, proliferating state in

chick ES cells ( = Ens1; [42,43]); see Fig. 1E, 2E). In female, the

average number of cells expressing ERNI in the left and right

gonads was 25614 and 1068 respectively (p,0.001, n = 63

sections, 3 embryos; Fig. 3, Table 1). In male, the average number

of cells expressing ERNI in the left was also significantly higher

than that in the right gonads (36621 and 1468; p,0.001, n = 50

sections, 3 embryos; Fig. 3, Table 1).

ERNI was detected in cortex and a few cells in the medulla in

ovarian sections (Fig. 1E’), while in testicular sections, ERNI

expressing cells are found in both cortex and medulla (Fig. 2E’). In

ovarian cortex, 2869 were counted on the left and 965 on the

right (p,0.001, n = 9 sections, 3 embryos; Fig. 4, Table 1) whereas

the medulla contained 964 on the left and 866 on the right

(Fig. 4, Table 1). In the left and right testicular cortex 864 and

363 cells were counted respectively (Fig. 5, Table 1) whereas the

testicular medulla contained 34618 on the left and 1569 on the

right (p = 0.0147, n = 9 sections, 3 embryos; Fig. 5, Table 1). Thus,

although ERNI also seems to be expressed in stromal cells in

addition to germ cells, its expression reflects the distribution of Cvh-

expressing cells in embryos of both sexes more closely than do the

other pluripotency-associated genes.
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Figure 4. Quantification of cells expressing various genes in female cortex and medulla.
doi:10.1371/journal.pone.0069893.g004

Figure 5. Quantification of cells expressing various genes in male cortex and medulla.
doi:10.1371/journal.pone.0069893.g005
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Discussion

A distinctive feature of gonadal development in the chick is that

female embryos develop gonads asymmetrically: only the left side

forms a functional ovary while the right side regresses [2]. The

molecular mechanisms underlying asymmetric development of

female embryonic chick gonads are still unclear, apart from the

involvement of the transcription factor Pitx2 [27,28,29], whose

asymmetric expression seems to underlie the asymmetric devel-

opment of many, if not all organ systems [18,19,26].

Left-right patterning plays important roles for internal organ

formation, positioning and embryonic turning

[18,19,20,21,22,23,24,26,46]. The process is regulated by genes

encoding transcription factors and secreted growth factors, but

there are important differences among different vertebrates in

terms of which specific genes are involved [19,21]. To date only

two main players have been found to be conserved in all

vertebrates: Pitx2 and Nodal [18,19,20,26]. The latter is a

secreted protein of the TGFb superfamily. PITX2 is a homeo-

box-containing transcription factor with a bicoid-type homeodo-

main. Both are involved in establishing L-R asymmetry through

their expression in the left lateral plate mesoderm and later in a

number of organs such as the heart and head [18,47,48]. Pitx2-

knockout mice have abnormalities of internal organ asymmetry

[49,50], showing that this gene plays an essential role in

controlling laterality in mice. Consistent with this, PITX2 was

reported to play a role in ovarian asymmetric development in

female embryos; it is preferentially expressed in the left gonad,

where it may regulate gonadal cell proliferation and morphogen-

esis [27,28,29].

Other previous studies also reported asymmetric gonad

development in chick embryos, suggesting that 70% of PGCs

are found on the left side of female gonads [44,51,52,53]. It has

been proposed that the left presumptive gonad secretes chemo-

tactic factors at a higher level than the right, which was proposed

to be involved in attracting migrating PGCs as well as regulating

their mitotic activity [54]. Although one study has reported a

similar asymmetry for male PGCs [29], our study reveals more

complex asymmetry of gene expression in both sexes, not only for

PGC markers but also for pluripotency markers in both PGCs and

stromal cells.

That Cvh expression is higher in the left gonad of both sexes

indicates that asymmetric germ cell distribution is not entirely

related to the later asymmetry of gonadal differentiation, which is

so marked in the female. It would be interesting to investigate this

in mature adults to determine whether the left-right differences in

germ cell numbers persist and eventually translate into asymmetry

in the rate of sperm production in roosters.

The present study also provides novel information about the

expression of genes associated with pluripotency in embryonic

gonads of both sexes and between left and right gonads. For all

four genes studied (cPouV, cNanog, cSox2 and ERNI), the number of

cells expressing are significantly higher on the left than the right

gonads in embryos of both sexes. However the numbers of cells

expressing the markers are not identical to each other – there are

more cells expressing the first two than there are Cvh-expressing

cells and cells expressing the latter two factors. The distribution of

the cells expressing the various genes is also different from the

distribution of PGCs. ERNI correlates best with Cvh expression,

whereas the remaining factors are also expressed in cells that are

unlikely to be PGCs yet show left-right asymmetry of expression.

This suggests that stromal cells express these genes asymmetrically.

The functional significance of this complex expression pattern is

unclear.

At stage HH 35, embryonic gonads are well into their

differentiation into testes and ovaries. Studies in humans have

reported that both fetal testicular and ovarian germ cells express

pluripotency-associated markers including OCT4 and NANOG,

suggesting that both male and female fetal germ cells maintain

expression of these genes during and after sexual differentiation of

the gonads [55,56]. The present study raises the question of what

is the functional significance of this expression, which will require

further investigation. It will also be interesting to study the

expression of these markers in more detail in humans and animals

where there is no known left-right asymmetry in gonadal

development.

Conclusions
The present study confirms asymmetric distribution of Cvh/

Vasa-positive germ cells in the embryonic gonads of both sexes.

These differences are mirrored by the expression of ERNI, a gene

associated with the proliferating, self-renewing state of chick

embryonic stem cells. However we also uncover asymmetry of

other pluripotency-related markers, PouV/Oct3/4, Nanog and Sox2,

and find that they do not correlate as well with the distribution of

Cvh-positive germ cells but also show left-right asymmetry in both

sexes.

Methods

Eggs and Embryos
All animal experiments were conducted according to UK Home

Office guidelines. All embryos were harvested before the 10th day

of incubation and the work is therefore exempt from requirement

for a licence. Fertilized hens’ (Gallus gallus) eggs (Brown Bovan

Gold strain) were obtained from Henry Stewart (UK) and

incubated at 38uC in a humidified atmosphere for 9 days.

Embryos were staged according to Hamburger and Hamilton

(H&H) [45]. Chicken embryonic gonads at stage 35 (H&H), when

the sex of male and female embryos can be distinguished by

morphological appearance of the embryonic gonads, were

dissected and fixed with 4% paraformaldehyde in Calcium- and

Magnesium-free PBS (pH 7.4) containing 2 mM EGTA at 4uC
overnight. A small opening was performed in the part of the

attached mesonephroi and dorsal aorta using a fine needle to

prevent probe trapping. The fixed embryonic testes and ovaries

were then subjected to whole-mount in situ hybridization.

Whole-mount in situ Hybridization and Histology
To generate digoxigenin RNA antisense probes, cPouV [38],

cNanog [38], cSox2 [39,57], ERNI [41] and Cvh [37] plasmids were

linearized with ApaI, ApaI, PstI, KpnI and NcoI, respectively and

transcribed with SP6, SP6, T7, T3 and SP6 RNA polymerase,

respectively. Whole-mount in situ hybridization and antisense

probe preparation were performed as previously described [58].

After in situ hybridization and photography, selected hybridized

and post fixed embryonic testes and ovaries were embedded in

Fibrowax (BDHGUN, UK) for histological sections and then cut on

a Zeiss MICROM (Type HM315) microtome at 10 mm thickness.

Statistical Analysis
To assess the proportion of cells expressing the various genes in

embryonic testes and ovaries, expressing cells were counted

starting from the first section of the first slide containing gonadal

tissue. To avoid counting the same cells more than once, one in

three sections were counted until the last section of the gonad was

reached. The unpaired Student’s t-test with two-tailed distribution

and two-sample unequal variance was used to compare (pairwise)
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the number of expressing cells between left-right sides in male and

female embryonic gonads.
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