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Creativity is part of human nature and is commonly understood as a phenomenon
whereby something original and worthwhile is formed. Owing to this ability, humans
can produce innovative information that often facilitates growth in our society. Creativity
also contributes to esthetic and artistic productions, such as music and art. However,
the mechanism by which creativity emerges in the brain remains debatable. Recently, a
growing body of evidence has suggested that statistical learning contributes to creativity.
Statistical learning is an innate and implicit function of the human brain and is considered
essential for brain development. Through statistical learning, humans can produce and
comprehend structured information, such as music. It is thought that creativity is linked
to acquired knowledge, but so-called “eureka” moments often occur unexpectedly
under subconscious conditions, without the intention to use the acquired knowledge.
Given that a creative moment is intrinsically implicit, we postulate that some types of
creativity can be linked to implicit statistical knowledge in the brain. This article reviews
neural and computational studies on how creativity emerges within the framework of
statistical learning in the brain (i.e., statistical creativity). Here, we propose a hierarchical
model of statistical learning: statistically chunking into a unit (hereafter and shallow
statistical learning) and combining several units (hereafter and deep statistical learning).
We suggest that deep statistical learning contributes dominantly to statistical creativity
in music. Furthermore, the temporal dynamics of perceptual uncertainty can be another
potential causal factor in statistical creativity. Considering that statistical learning is
fundamental to brain development, we also discuss how typical versus atypical brain
development modulates hierarchical statistical learning and statistical creativity. We
believe that this review will shed light on the key roles of statistical learning in musical
creativity and facilitate further investigation of how creativity emerges in the brain.

Keywords: statistical learning, prediction, creativity, development, hierarchy, abstraction, integration, autism
spectrum disorder

INTRODUCTION

Creativity is a process of producing something that is both original and worthwhile (Lubart and
Mouchiroud, 2003; Kozbelt et al., 2010; Robert, 2011). It also contributes to the perception and
production of information in new ways (Dailey et al., 1997; Furlong, 2009; Hargreaves, 2012).
Creativity sometimes triggers innovation in science, technology, and arts, creating historical shifts
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in human society. Over a long period, many people have been
fascinated by the question of how creativity emerges in the
brain. There is no doubt that creativity is intricately linked
to acquired knowledge; however, the underlying mechanisms
remain unclear. In particular, there is little understanding of
how novel and uncertain information emerges from acquired
knowledge and why such uncertain information can be accepted
as creative. Recently, a growing body of literature has suggested
that statistical learning and the knowledge that results therefrom
may underlie creativity (Wiggins, 2012, 2020; Daikoku, 2019a,b;
Zioga et al., 2019).

Statistical learning is an implicit and innate function of the
human brain and is essential for brain development (Saffran
et al., 1996). The statistical learning system allows us to “predict”
an upcoming phenomenon to minimize prediction error and
resolve “perceptual uncertainty” (Friston, 2010; Clark, 2013;
Hasson, 2017). More specifically, statistical learning involves
a mechanism by which the brain calculates the transitional
probability (i.e., local statistics) and uncertainty of its probability
distribution (i.e., global statistics). Statistical learning ultimately
allows the brain to optimize prior predictions and suppress
uncertainty. Through statistical learning, humans acquire the
ability to produce and comprehend structured sequences, such
as music and language.

Evidence suggests that statistical learning also contributes
to creative behaviors, such as music composition (Zioga
et al., 2019). Creativity is often unpredictable and uncertain
because of its novelty. Thus, creativity stemming from statistical
learning (hereafter, statistical creativity) seems to conflict with
the fundamental role of statistical learning: optimizing prior
prediction and suppressing uncertainty (Clark, 2013; Hasson,
2017). One possible hypothesis is that a decrease in uncertainty
could act as a reward (Van de Cruys and Wagemans, 2011).
However, humans cannot pursue additional potential rewards
from significantly less uncertain information (Berlyne, 1970).
That is, humans are curious about uncertain information for
the pursuit of potential rewards (Kagan, 1972). This novelty-
seeking behavior encourages the perception and production of
statistically uncertain and new information, resulting in a certain
degree of increase in uncertainty. People expect potential rewards
from novel information with a certain degree of uncertainty and
may approve of creativity. In the end, human behavior may
display “fluctuation” (temporal dynamics) of uncertainty under
the competition between uncertainty resolution and the further
pursuit of rewards.

This article reviews neural and computational studies
on the emergence of statistical creativity in the brain. In
particular, we propose a hierarchical model of statistical
learning: statistically chunking into a unit (hereafter, “shallow”
statistical learning) and combining several units (hereafter,
“deep” statistical learning). We propose a hypothesis that
deep statistical learning and the fluctuation of perceptual
uncertainty dominantly contribute to statistical creativity.
Considering that statistical learning is fundamental to brain
development, we also discuss how typical versus atypical
brain development modulates hierarchical statistical learning
and statistical creativity. Finally, we explore musical statistical

creativity and how it interacts with general creativity (e.g.,
thinking and idea generation).

FROM STATISTICAL LEARNING TO
STATISTICAL CREATIVITY

Prediction and Statistical Learning
The brain is a learning machine that continually adapts
to varying and uncertain environments worldwide. Through
learning, the developing brain gradually becomes able to
comprehend and produce structured information, such as music.
Predictive coding, currently a predominant theory on sensory
perception (Friston, 2010; Heilbron and Chait, 2018), provides a
neurophysiological architecture of predictive learning processes
in the human brain. Neural representations in the higher
levels of cortical hierarchies can be used to predict plausible
representations in the lower levels in a top-down manner and are
then compared between the hierarchies to assess the prediction
error (i.e., a mismatch between a prior prediction and the actual
sensory input) (Mumford, 1992; Rao and Ballard, 1999; Kiebel
et al., 2008). The resulting mismatched signal is passed back up
the hierarchy to update higher representations and yield better
predictions. Over the long term, this recursive exchange of signals
reduces the prediction error and uncertainty in the environment.
In this framework, the reliability of the prior prediction is also
controlled by the precision (confidence) of prediction at higher
levels of a hierarchical model (Friston, 2008). This precision can
be estimated by the variance of any possible sensory input, which
is sometimes referred to as perceptual uncertainty (information
entropy, Shannon, 1948). In other words, the brain perceives
and suppresses the uncertainty. The expected reduction of
uncertainty has generally been referred to as salience, evaluated
from the gap between the prior and posterior distributions (i.e.,
Kullback–Leibler divergence or relative entropy).

Statistical learning mechanisms in the brain appear to agree
with this predictive process (Harrison et al., 2006). Statistical
learning is an automatic computing system by which the human
brain extracts statistical regularities from the world and predicts
a future state to minimize sensory reactions and uncertainty
over the environment. Specifically, the brain calculates the
transitional probability and precisely perceives the uncertainty
of its probability distribution. This internalized probabilistic
model allows us to generate prior predictions of future states
and continually update the internal model (prior distribution)
for better prediction and precision (Daikoku et al., 2017) by
integrating sensory input with prior distribution. Evidence has
also suggested that human pitch prediction of novel melodies
is closely linked to statistical models of transitional probability
sampled from a large corpus of music (Pearce and Wiggins, 2006,
2012; Pearce et al., 2010). This may imply that human brains
acquire a statistically universal model of music through musical
statistical learning.

Some researchers have suggested two interdependent
processes as hallmarks of statistical learning (Rogers and
McClelland, 2004; Altmann, 2017; Daikoku, 2019a,b): the
chunking of statistically coherent events and the sequential
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combination of the chunked units. They indicated that an
individual’s experience is abstracted on a statistical basis
to generate a chunk that captures the statistical common
and shareable denominator across individually experienced
information (Sloutsky, 2010). This suggests that statistical
learning underlying chunk formation and word acquisition
consists of statistical accumulation across multiple episodes.
However, an opposing statistical learning process appears
to occur simultaneously: chunked units can be integrated
to generate novel information through statistical learning
(Altmann, 2017). Thus, language/music learning requires a route
from the individual experience of statistical abstraction as a
shareable knowledge unit (e.g., word), while comprehension and
creation (e.g., grammar and sentences) require the integration
of several units. Therefore, these two interdependent processes
are necessary for a complete account of statistical learning and
production that results therefrom (Thiessen et al., 2013; Wiggins
and Sanjekdar, 2019; Wiggins, 2020).

Statistical Creativity
Recent studies claim that statistical learning contributes to
creative behaviors and learning, such as music composition
(Daikoku, 2019b; Zioga et al., 2019); however, the underlying
mechanisms remain unclear. In this study, we refer as creativity
stemming from statistical learning as statistical creativity and
propose two potential keys to statistical creativity. The first
is the interplay between the chunking of statistically coherent
events into a unit and the integration of several units. This
process forms a hierarchical structure in statistical learning
(hierarchical statistical learning). The second is the fluctuation
of the perceptual uncertainty. The brain appears to seek a
suboptimal solution of uncertainty for creativity based on
prior predictions, which results in fluctuations in uncertainty.
Furthermore, it is assumed that these two key factors interact
with each other.

Deep Statistical Learning
Statistical learning underlying chunk formation consists of
statistical accumulation across multiple episodes, contributing
to generalization and abstraction (shallow statistical learning).
Alternatively, an opposing statistical learning process is as
follows: the integration of the chunked units could allow
not only for learning of relationships between units but also
the “creation” of novel information (deep statistical learning).
Through statistical integration, humans can create and perceive a
novel episodic representation (Altmann, 2017). We hypothesize
that this deep statistical learning has a potential link to
statistical creativity.

This hypothesis has been investigated in neural (Daikoku
et al., 2016, 2017) and computational studies (Daikoku, 2018b,
2019b,c,d; Daikoku and Yumoto, 2020). One useful model of
creativity comes from musical improvisation, in which musicians
spontaneously create novel melodies and rhythms. For example,
based on a computational model of the brain’s statistical
learning, a study examined the statistical characteristics of jazz
improvisation played by Bill Evans, Herbie Hancock, and McCoy
Tyner, who are world-famous jazz pianists (Daikoku, 2018a,b).

The results showed that small-scale statistical units have general
characteristics shared among the three improvisers, whereas
larger-scale statistical units provide individualities unique to
each improviser (Figure 1B). This may suggest that small-
scale (shallow) statistical learning (Figure 1A) fundamentally
provides general and common knowledge, while large-scale
(deep) statistical learning contributes to individual knowledge
as well as common knowledge in musical creativity (Daikoku,
2019a,b). Given these findings, deep statistical learning may
contribute mainly to individual phrasing or melody, while small-
scale statistical learning may underlie the production of several
tone transitions and consistent rhythm properties.

For example, jazz music has general regularities in chord
sequences such as the so-called “two-five-one (II–V–I)
progression.” This is a common cadential chord sequence
used in a wide variety of music genres, including jazz harmony.
It is a succession of chords whose roots descend in fifths from the
supertonic (II) to dominant (V), and finally to the tonic (I). Such
syntactic progression frequently occurs in a jazz improvisation,
and therefore, the statistics of the sequential information have
high transitional probability and low uncertainty. Thus, once
a person has learned the statistical characteristics, it can be
chunked as a commonly used unit among improvisers. In
contrast, the ways of combining the chunked units are different
between improvisers and therefore represent the individuality of
musical creativity (see Figure 1).

In this phrase of Figure 1A, the chord “IV” (E[maj7) in
the fourth measure corresponds to the chord “I” (E[maj7) in
the second measure occurring several chords earlier, creating
a non-adjacent hierarchical dependency between “I” and “IV”
in a recursive fashion. The local dependency between the first
and second chords (E[maj7 – B[m7) is less likely according
to traditional music theory, but this second chord lays the
groundwork for the non-local dependency between “I” and “IV”
by generating a II–V–I progression (i.e., B[m7 – E[7 – A[maj7).
Another type of interaction can be seen in the latter half of the
phrase (i.e., adjacent: II – V – VI – IV, non-adjacent: IV –I).
Near the end of the piece, the higher hierarchy of the harmony
structure “I – IV (– IV) – I” nests the lower hierarchy of
the structures “II–V–I” and “II–V–VI–IV.” Hofstadter (1979)
also indicated that a key change embedded in a superordinate
key forms hierarchical non-adjacent structures in a recursive
fashion. Thus, composers generally design hierarchical non-
adjacent structures in a recursive fashion, potentially using this
technique to organize the entire movement of a symphony or
sonata (Schenker and Jonas, 1956).

To summarize, hierarchical statistical learning is as
follows: The interplay between the chunking of statistically
coherent events and the integration of several units could
form hierarchically structured information, such as music.
Hierarchical statistical learning is a window of these deeper
processes that underpin creativity (Altmann, 2017). It is assumed
that deep and large-scale statistical learning may contribute
significantly to statistical creativity (Table 1). However, it is
noteworthy that the individuality of musical representations
does not necessarily contribute to musical creativity. Creativity
is the process of producing new and worthwhile information.
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FIGURE 1 | Statistical creativity in musical improvisation. Misty by Errol Garner, composed in 1954. (A) The arrangement, chord names, and symbols are simplified
(just major/minor, flat, and 7th note) to account for the two-five-one (II–V(7)–I) progression. The statistical characteristics of jazz improvisation played by Bill Evans,
Herbie Hancock, and McCoy Tyner. (B) Adapted from a figure of a previous article (Daikoku, 2018b). The component loading of principal component analyses
showed that statistically coherent units have general characteristics shared among the three improvisors, whereas large-scale statistical units provide individualities
unique to each improvisor. This suggests that abstraction (i.e., statistical learning within words) may fundamentally provide general knowledge, while integration (i.e.,
deep statistical learning between words) contributes to musical creativity and individuality, as well as common knowledge.

In this concept, a fixed representation of individual knowledge
can also be interpreted as less creative and less uncertain. The
flexibility of the presentation is crucial for producing novel and
uncertain information. To discuss how the representation of
individual knowledge that emerges from deep statistical learning
interacts with their musical creativity, the next section proposes
the second key to statistical learning: temporal dynamics of
perceptual uncertainty.

Temporal Dynamics of Perceptual Uncertainty
Another key insight into statistical creativity is the fluctuation
(temporal dynamics) of perceptual uncertainty. Perceptual

uncertainty can generally be estimated by the variance of
any possible sensory input (i.e., prior distribution; see section
“Prediction and Statistical Learning”). The brain is motivated to
optimize prior predictions and minimize uncertainty by learning
(Friston, 2010). The decrease in uncertainty generally delivers
pleasure, acting as a reward (Van de Cruys and Wagemans, 2011).
In other words, humans are curious about uncertain information
about potential rewards (Kagan, 1972). We hypothesize that
such novelty-seeking behavior motivates the perception and
production of novel and uncertain information. People are
expected to receive potential rewards from novel and uncertain
information and may approve such information as creativity.
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TABLE 1 | Summary of our two proposed levels of statistical learning and
statistical creativity.

Deep Flat (shallow)

Learning Syntactic and
integration of chunked
units

Lexical, chunking, and
abstraction

Memory Large-scale and
individual

Small-scale and
shareable

Production Creativity Generality and
commonality

Development Typical 6= atypical Typical ' atypical

Through this competition between uncertainty resolution and
the pursuit of rewards, human behavior may display fluctuations
in uncertainty. Furthermore, perceptual uncertainty is based on
sensory input, but it can also be an internal input. That is, the
internal mental imagination of a new idea may also occur without
sensory input, relying only on the uncertainty of the internalized
statistical model.

Recent theories (Huron, 2006) and studies (Egermann et al.,
2013; Koelsch, 2014; Gingras et al., 2016) suggest that the
temporal dynamics of uncertainty may contribute to the
esthetic appreciation of art and music and that this fluctuation
may encourage humans to create and learn new regularities
(Schmidhuber, 2006). For example, computational evidence
shows that the uncertainty of music (conditional entropy of
music sequence) fluctuates over a composer’s lifetime (Daikoku,
2018d, 2019b). In these studies, across Beethoven’s lifetime,
the frequency of predictable patterns that are ubiquitous in
his piano sonatas (familiar phrases) was found to decrease,
whereas the entropy of statistical distribution gradually increased
(Figure 2). Furthermore, these findings were more prominent
in large-scale and deep statistical learning (see section “Deep
Statistical Learning” and Table 1). This suggests that deep
statistical learning is sensitive to the emergence of creativity
as well as individuality. These findings may be explained from
the viewpoint of the Wundt curve, as described by Berlyne
(1970). This suggests that the hedonic value of complex stimuli
tends to rise as they become less novel, while the opposite
holds true for simple stimuli. This means that if familiarization
of stimuli had proceeded further, the interestingness of the
simple patterns would have continued to decline, whereas
those of the complex patterns would have climbed to the
peak of a Wundt curve. To summarize, creative behavior
does not necessarily generate information—theoretically optimal,
efficient, and certain information; instead, it sometimes gives rise
to uncertain and unpredictable information.

What Is Musical Creativity?
We emphasize that statistical learning plays a key role in musical
creativity. In particular, we propose two important roles for
statistical learning in musical creativity. The first is a hierarchy
of shallow and deep statistical learning. As discussed, small-scale
(shallow) statistical learning (Figure 1A) may fundamentally
provide general and common knowledge, while large-scale (deep)
statistical learning contributes to individual knowledge of music

(Daikoku, 2019a,b). In general, deep statistical learning is a
mechanism for the integration of chunked units acquired by
shallow statistical learning. That is, deep statistical learning of
music could occur after persons have robust shallow statistical
models of chunks. From the information theoretical perspective,
as the order of transitional probability in the Markov chain
becomes higher (i.e., the scale is larger), transition patterns can
also be subdivided (for more detail, see Figure 3B of Daikoku,
2018c). That is, there are more sequential patterns in the deeper
model. This leads to a diversity of patterns and individuality
in music and possibly leads to musical creativity. Thus, deep
statistical learning (integration of chunked units) may allow for
the creation of a novel melody and rhythm even in the absence of
any prior knowledge.

The second is a fluctuation in uncertainty. In general,
creativity is defined as a process of producing something that
is both original and worthwhile (Lubart and Mouchiroud, 2003;
Kozbelt et al., 2010; Robert, 2011). Due to its novelty, creative
information is often unpredictable and uncertain. It has been
suggested that novel and uncertain musical information emerges
through hierarchical statistical learning. However, there is still
little understanding as to why such uncertain information
can be accepted as creative. In other words, highly uncertain
information is not necessarily creative. For example, a random
tone sequence is highly uncertain, but in general, we do not
approve of a random time sequence as creative music. Hence, it is
assumed that appreciation of musical creativity may be associated
with certain forms of suboptimality between uncertainty and
certainty (Figure 3). We hypothesize that such competitive
pursuits of uncertainty and certainty may induce fluctuations in
uncertainty and that fluctuations in uncertainty may contribute
to musical creativity.

Evidence has revealed that musicians are good statistical
learners (Francois and Schön, 2011; Paraskevopoulos et al., 2012;
Elmer and Lutz, 2018; Daikoku and Yumoto, 2020), allowing the
brain to precisely grasp the temporal dynamics of uncertainty
in music perception and production (Hansen and Pearce, 2014;
Daikoku, 2019b; Zioga et al., 2019). We hypothesize that such
proficiency in precision in perceptual uncertainty may also
allow musicians to control the uncertainties in music finely
by manipulating several musical components such as rhythm,
melody, and harmony. Musical tensions can be created by
establishing a predictable pattern in rhythm and melody and
subsequently denying the prediction from it (Meyer, 2008). We
can derive pleasure from deviant and uncertain musical patterns
once a predictive pattern is established. Evidence suggests that so-
called “music chills” are correlated with violations of expectation
(Sloboda, 1991) and underpin musical appreciation (Huron,
2006). A neural study revealed that music chills increase brain
activity in reward areas (ventral striatum) and decrease activity
in the amygdala and ventromedial prefrontal cortex (Blood
and Zatorre, 2001). This suggests that we derive rewards from
violations of expectations, as well as from confirmed predictions.
It is suggested that such esthetic appreciation can be reflected in
the temporal dynamics of uncertainty.

Alternatively, musicians who have trained for a long
period may have robust internal statistical models of music
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FIGURE 2 | Statistical creativity in the uncertainty fluctuation of musical composition. Figure adapted from a previous article (Daikoku, 2019b). From the early to the
late periods of Beethoven’s lifetime, the predictable patterns that ubiquitously appear in all of his piano sonatas (familiar sequence) were decreased, whereas the
uncertainties were gradually increased. Further, these findings were more prominent in higher- (deeper), rather than lower-order statistical learning models (right). This
may suggest that higher-order statistical learning reflects novelty-seeking (creative) behavior over a composer’s lifetime.

(Hansen and Pearce, 2014). Furthermore, a study has suggested
that the characteristics of internal models respond to one’s
own musical culture, such as Japanese and Western classical
music (Daikoku et al., 2020). This may lead to cultural
fixation of statistical knowledge and even bolster productivity
instead of creativity. Statistical learning has been shown to be
ubiquitously performed regardless of the intention (Perruchet
and Pacton, 2006; Tsogli et al., 2019). This suggests that
statistical knowledge is influenced by surrounding environmental
information. Nevertheless, such musicians aptly exhibit pathways
of high creativity (Kleinmintz, 2017; Przysinda et al., 2017; Zioga
et al., 2019). One possible reason is that the knowledge and
behavior that results from statistical learning involve implicit
mechanisms with less intention (Perruchet and Pacton, 2006;
Paraskevopoulos et al., 2012; Koelsch et al., 2016; Christiansen,
2019) but can transform into explicit knowledge through long-
term training and experience (Batterink et al., 2015; Moser
et al., 2020). Statistical learning of behavior is also considered as

procedural learning that takes place without explicit knowledge
(Kóbor et al., 2018). Therefore, we hypothesize that musical
creativity resulting from statistical learning is mainly involved
in intuitive performance, such as musical improvisation, in
which musicians intuitively play new melodies and rhythms
(Daikoku, 2018b).

Musical creativity is likely to be correlated with general
creativity. A previous study examined how jazz improvisers,
non-improvising musicians, and non-musicians perform the
domain-general task of divergent thinking as well as the musical
task of preference ratings for chord progressions that vary
in expectation (Przysinda et al., 2017). The results showed
that jazz musicians preferred unexpected (unpredicted) chord
progressions. Further, the unexpected stimuli elicited larger
music expectancy-related neural responses (early right-anterior
negativity: ERAN) and another event-related potential (ERP) of
P3b, followed by smaller long-latency responses (late positivity
potential) in jazz musicians. This implies that people who can
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FIGURE 3 | A hypothesis of statistical creativity. Statistical creativity may, at
least, be achieved via two potential mechanisms in a hierarchical statistical
learning. The first is the interplay between the chunking of statistically
coherent events into a unit and integration of the several units. This process
forms a hierarchical structure in statistical learning (i.e., hierarchical statistical
learning). The second is a perceptual uncertainty as shown in each of the
bell-shaped distribution in the figure. The brain appears to seek a suboptimal
solution of uncertainty for creativity based on prior distribution in the internal
predictive model. It is assumed that a perceptual uncertainty at not very small-
and large-scale statistical learning may induce statistical creativity.

predict precisely a musical event prefer an unpredictable one,
possibly because they can correctly discriminate between familiar
and novel musical events (i.e., creative). Notably, these neural
effects were significantly correlated with fluency and originality
in the divergent thinking task. This suggests that the precision of
(prior) prediction is crucial for general and musical creativity.

NEURAL PERSPECTIVES OF
STATISTICAL CREATIVITY

Recently, an increasing number of studies have suggested
neural mechanisms of creativity. In particular, they showed
that prefrontal function and some types of neural networks are
associated with human creativity. In this section, by reviewing a
number of neural studies, we discuss how the frontal functions
and the three types of neuronal networks contribute to statistical
learning and statistical creativity.

A Role of Frontal Cortex in Prior
Prediction and Creativity
Frontal lobe functions are considered to be one of the most
important keys to understanding creativity in the brain (Flaherty,
2005) and is generally involved in the top-down control of
executive functions and decision-making (Gold and Shadlen,
2007; Dosenbach et al., 2008; Heekeren et al., 2008; Dalley et al.,
2011). Recent studies have suggested that the prefrontal lobe
(e.g., the inferior frontal gyrus, IFG) and dorsal connectivity
between the prefrontal and sensory areas are associated with

the formation of internal Bayesian models and prior predictions
(Friston et al., 2016; Cope et al., 2017; Park et al., 2018). According
to their studies, Bayesian models (i.e., prior prediction) could
be generated in IFG and/or frontal motor speech regions
and conveyed to auditory sensory regions through synaptic
connections to instantiate plausible representations.

This hypothesis may also be explained by the developmental
processes. A recent study indicated that this prefrontal-auditory
connectivity is better developed in human adults than in
newborns and macaques (Friederici et al., 2017). They also
showed that in newborns, only the dorsal stream terminates
in the premotor cortex (PMC). This partially supports the
computational hypothesis that infants may have a prior
prediction. That is, the development of the brain allows us to
switch from a strong reliance on sensory input and weak reliance
on prior predictions (hypo-prior) at an early learning stage to
proper integration of sensory information with prior prediction
(internal model) at later learning stages, becoming robust
against disturbances in the uncertain phenomena (Philippsen
and Nagai, 2019). Infants may have hypo-prior prediction due
to the prematurity of dorsal prefrontal-sensory connectivity,
which is essential for generating prior prediction and integrating
prior prediction with sensory input. Together, many pieces of
evidence suggest that prefrontal function may contribute to
strong dependence on top-down prior prediction in perceiving
and producing information. Such predictions can be generated
by the acquired knowledge and experience. Hence, the strong
dependence on prior prediction is partially interpreted as a strong
reliance on certain acquired knowledge. Neural evidence has
shown that both large- (deep) and small-scale (shallow) statistical
learning involve top-down prior prediction (Daikoku et al.,
2017). The magnetoencephalographic (MEG) study suggested
that both mechanisms combine statistically chunks into a unit
(small-scale statistical learning) and several units (large-scale
statistical learning) that are reflected in mismatch responses.

However, prior predictions may sometimes inhibit
creativity. Creativity is a phenomenon whereby something
new and uncertain is formed, even if creativity is intricately
linked to acquired knowledge. Therefore, the inhibition
of prefrontal function may partially induce creative and
uncertain information production (Chrysikou, 2018), possibly
because of less dependence on prior prediction and certain
knowledge. The neural evidence seems to agree with this
hypothesis. Electroencephalography (EEG) (Fink et al., 2006,
2009; Lustenberger et al., 2015) and functional magnetic
resonance imaging (fMRI) studies (Bengtsson et al., 2007;
Berkowitz and Ansari, 2008; Limb and Braun, 2008; de
Manzano and Ullén, 2012a,b) have examined brain activity
during exposure to fixed melodies (less creative) or free-
improvised melodies (more creative). The results indicate
that more creative conditions lead to stronger alpha power
(Fink et al., 2006; Lustenberger et al., 2015; Lopata et al.,
2017) in the right frontal and parietal regions (Fink et al.,
2009). The increased oscillatory activity in the alpha band
is considered to reflect inhibition of the top-down process
(Klimesch, 2012). However, other studies have suggested that
alpha power reflects internally oriented attention, in which
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external bottom-up stimulation is also suppressed (Fink and
Benedek, 2014). One study that investigated both the neural
and genetic correlates of creativity suggested that a system
of interaction between strong top-down and weak bottom-
up processes underpins creativity, which is modulated by
competition between the glutamate and GABA neurotransmitter
systems (Liu et al., 2018). Furthermore, a computational model
(Collins and Koechlin, 2012) inspired the hypothesis that
the frontal lobes create an expanding repertoire of flexible
behavioral strategies for driving action in uncertain, changing,
and open-ended environments and suggested that frontal lobe
function, including executive control and decision-making,
somewhat supports the integration of reasoning, learning, and
creativity through uncertainty monitoring. Green et al. (2017)
also suggested that neural activity in the frontopolar cortex
facilitates creative intelligence.

The contradiction between these two opposing findings
on inhibition and enhancement of top-down control may be
explained by the different tasks set in the different studies
(Adhikari et al., 2016). In fMRI studies (Pinho et al., 2015),
improvisation using a defined pitch set resulted in activation of
the dorsolateral prefrontal cortex (dlPFC) because participants
had to maintain available note choices in their working memory.
In contrast, free improvisation leads to deactivation of the
dlPFC because participants are able to take advantage of their
implicit learning systems to create improvisations in which
top-down control from the dlPFC would be disadvantageous
(Dhakal et al., 2019). Using fMRI, Liu et al. (2015) examined
brain mechanisms during poetry composition and the assessment
(revision) process. The results indicated that dlPFC activity was
attenuated during composition and reengaged during revision,
whereas the medial prefrontal cortex (MPFC), which is associated
with multiple cognitive functions such as motivation (Kouneiher
et al., 2009) and unconscious decision-making (Soon et al.,
2008), was active during both phases. Furthermore, expert poets
showed significantly stronger deactivation of the dlPFC during
composition, but there was no significant difference in the activity
of the MPFC. Thus, expert poets may more effectively suspend
top-down control while maintaining their motivation. Together,
these findings show that open-ended creative and uncertain
behaviors may suppress top-down controls, as expressed through
the dlPFC activity level, while maintaining motivation, as
expressed through MPFC activity level, whereas fixed behaviors
enhance top-down control.

A Role of Neural Network in Temporal
Dynamics of Perceptual Uncertainty and
Creativity
Evidence suggests that the temporal dynamics of creativity
processes are reflected in three types of neuronal networks
(Beaty et al., 2018). First, the default mode network (DMN),
which consists of the cortical midline and posterior inferior
parietal regions, underpins spontaneous idea generation, episodic
future thinking, and mind-wandering, among others (Mason
et al., 2007; Zabelina and Andrews-Hanna, 2016). Second, the
executive control network (ECN), which involves the lateral

prefrontal and anterior inferior parietal regions, contributes to
idea evaluation and executive function (Beaty et al., 2016). Third,
the salience network (SN), which consists of the bilateral insula
and anterior cingulate cortex, plays a role in conveying candidate
ideas originating from the DMN to the ECN for idea evaluation
(Beaty et al., 2016, 2018).

A previous study demonstrated that creative people show
higher global efficiency within these networks, that is, a smaller
number of paths traverse between brain regions (Beaty et al.,
2015). In other words, the efficiency of the interplay between
idea generation and evaluation is higher in creative people
(Kleinmintz et al., 2019). Importantly, the perceptions of
novelty (and surprise) are involved in both idea generation and
evaluation processes, but not either of them; when generating
a new idea, they need to recognize that it is a novel idea, not
to mention when evaluating. This previous finding may explain
the contradiction between inhibition and enhancement of frontal
activity during creative behavior, as discussed in section A Role
of Frontal Cortex in Prior Prediction and Creativity.” Creative
people have the ability to simultaneously engage these large-scale
brain networks, including the DMN, ECN, and SN (Boccia et al.,
2015; Beaty et al., 2018). It is assumed that creativity is not just
free and uncontrolled activities but rather elaborate collaboration
between uncontrolled/uncertain mind activity (i.e., DMN), which
is less dependent on frontal function, and the top-down executive
control of free thinking, including frontal function (i.e., ECN).

Together, the prefrontal function and three types of neural
networks may have an important role in statistical creativity,
particularly in terms of perceptual uncertainty. We hypothesize
that the inhibition of prefrontal function may induce creative
and uncertain information production, possibly because of
the weakened dependence of prior knowledge. Besides, it is
assumed that sophisticated creativity is not just free-thinking
activities uncontrolled by prior knowledge but rather an elaborate
collaboration between uncontrolled/uncertain mind activity (i.e.,
DMN), which is less dependent on frontal function, and top-
down executive control of free thinking, including frontal
function (i.e., ECN).

STATISTICAL CREATIVITY IN ATYPICAL
DEVELOPMENT

Statistical learning is essential for brain development, as infants
can implicitly perform statistical learning to acquire their native
language (Teinonen et al., 2009). Computational studies allow
modeling of the brain’s developmental processes in predictive
functions. Evidence suggests that the development of the brain
allows us to switch from a strong reliance on the statistics of
sensory input along with weak reliance on prior predictions
(hypo-prior) to a proper integration of sensory statistics with
prior prediction (internal model), thus becoming robust against
disturbances in an uncertain environment (Philippsen and Nagai,
2019).

However, developmental disabilities, such as autism spectrum
disorder (ASD), may develop different neural mechanisms
underlying prior prediction (Nagai, 2019; Lanillos et al., 2020).
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For example, some studies have suggested that individuals with
ASD have hyper-plasticity in short-term statistical learning, such
that they prefer recent sensory statistics rather than global (i.e.,
long term) statistical structures in sequential information (Sinha
et al., 2014; Saffran, 2018). Thus, individuals with ASD are likely
to show a strong reliance on sensory input and weak reliance on
prior prediction (i.e., hypo-prior or hypersensitivity) in statistical
learning. Notably, there is likely a contrastive type of abnormal
development of predictive function: a stronger reliance on prior
predictions (i.e., hyper-prior) (Philippsen and Nagai, 2019) than
hypo-prior predictions (Pellicano and Burr, 2012). That is, the
abnormality of prior prediction in ASD can be characterized
by instability or variability, rather than either enhancement or
decay, of reliance on prior prediction as compared to typical
development (TD).

Such instability of reliance on prior prediction could also
influence the precision of perceptual uncertainty because the
precision is estimated by the variance of any sensory input (i.e.,
prior distribution). Some studies have indicated that ASD is
susceptible to perceptual uncertainty (Boulter et al., 2014; Lawson
et al., 2014; Van de Cruys et al., 2014). Uncertainty intolerance
can be postulated as a key marker of generalized anxiety disorder
(Freeston et al., 1994). The strong anxiety, observed as a common
property of ASD, may also be explained by the intolerance of
uncertainty and influence creativity (Baas et al., 2008). One
study claims that such anxiety in ASD should emerge when
environmental uncertainty is high (Boulter et al., 2014).

Thus, atypical brain development may exhibit specific
characteristics (rather than decay or facilitation) of their
statistical learning abilities. It is assumed that such specificity
of statistical learning abilities could affect statistical creativity as
well as prior prediction and perceptual uncertainty. A number
of studies have reported that people with ASD sometimes
exhibit superiority in some abilities (Boucher et al., 2012),
such as mathematics, visual search skills (O’Riordan et al.,
2001), and music and art skills (Happé and Frith, 2009; James,
2010). Furthermore, the right hemispheric networks are strongly
dominant in ASD (Mason et al., 2008) and musicians (Zatorre
et al., 2002). It has been thought that the right hemisphere
function plays an important role in musical performance.
It is possible that the dominance of the right hemisphere
in individuals with ASD may influence their capacity for
musical creativity.

A previous study showed that individuals with ASD can
think of more unusual, uncertain ideas in divergent thinking
tasks, although they produce fewer ideas than TD people (Best
et al., 2015). Neural evidence may partially support this finding:
the brain in ASD has hypoconnectivity between the prefrontal
cortex and other areas (Belmonte et al., 2004; Just et al.,
2004; Courchesne and Pierce, 2005; Green et al., 2020). Prior
prediction mainly originates in frontal regions and is transmitted
to sensory regions through synaptic connections (Cope et al.,
2017; Park et al., 2018). The connectivity between the frontal and
sensory areas is considered to play an essential role in conveying
prior predictions to instantiate a plausible representation of
sensory input. The brains of individuals with ASD may alter
this connection (Belmonte et al., 2004; Just et al., 2004;

Courchesne and Pierce, 2005; Green et al., 2020). This alteration
leads to the modulation of the prior prediction. Nevertheless,
the inhibition of prefrontal function may induce uncertain
information production, possibly due to the modulation or
depletion of prior prediction (hypo-prior).

Another key insight is deep and large-scale statistical
learning (integration of chunked units). Evidence suggests
that people with ASD display abnormalities in episodic
memory representations (Goh and Peterson, 2012). Episodic
representations are generally large-scale compared to semantic
representations, such as words. A neuroimaging study also
showed that the DMN, which is an important network for
creativity, is altered in the brain in ASD; further, this alteration
can lead to atypical integration of information about the self
in relation to others (Padmanabhan et al., 2017). Furthermore,
individuals with ASD may show inconsistent MMN responses
to local (i.e., small-scale) deviants; some studies found weaker
MMN in ASD than TD (Seri et al., 1999; Abdeltawwab and Baz,
2014; Bonnet-Brilhault et al., 2016), while other studies detected
larger MMN in ASD than in TD (Gomot et al., 2002, 2011;
Ferri et al., 2003; Lepistö et al., 2005; Green et al., 2020). Given
these findings, individuals with ASD have either hyposensitivity
or hypersensitivity to local sensory properties. In contrast,
individuals with ASD seem to show consistent findings on global
(i.e., large-scale) predictive processing: a study indicated weak
MMN responses to global deviants (Goris et al., 2018). This may
imply that ASD is hyposensitive to larger-scale statistical learning,
while sensitivity to local events depends on the type of stimuli
(Ide et al., 2017), representing either hypo/hypersensitivity to
small-scale and local statistical learning.

In summary, atypical alterations in prior prediction and
perceptual uncertainty may lead to individual characteristics of
statistical creativity. Further research focused on the individuality
of creativity that may illuminate the potential otherness of
creative ability.

DISCUSSION

In this study, we propose a hierarchical model of statistical
learning: statistically chunking into a unit (shallow statistical
learning) and combining several units (deep statistical learning).
We hypothesized that (Table 1):

(a) Large-scale statistical learning contributing to individual
deep knowledge.

(b) Temporal dynamics of uncertainty, representing a
suboptimal solution for creativity.

can be a potential causal factor in statistical creativity.
Figure 3 presents an overview of the hypotheses in this
study. It is proposed that perceptual uncertainty at not
exceedingly small- and large-scale statistical learning may
induce statistical creativity. Statistical creativity may, at least,
be achieved via two potential mechanisms. The first is the
integration of the chunked units, which could allow not
only for learning of relationships between units but also the
“creation” of novel information (“deep” statistical learning).
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That is, we can generate new information (e.g., sentences) by
integrating common knowledge (e.g., words). This process also
allows for a hierarchical structure in statistical learning. The
second is the temporal dynamics (fluctuation) of perceptual
uncertainty, as shown in each bell-shaped distribution in
Figure 3. The brain appears to seek a suboptimal solution
of uncertainty for creativity based on prior distribution. We
also hypothesize that the first and second mechanisms of
statistical creativity interact with each other. That is, the
fluctuation of uncertainty may arise through the interplay
between shallow and deep statistical learning, resulting in
increased uncertainty.

It is also noteworthy that the two factors of statistical
creativity are potentially correlated with neural bases. The
prefrontal function and three types of neural networks may
play an important role in statistical creativity, particularly in
terms of perceptual uncertainty. The suppression of prefrontal
function may induce creative and uncertain information
production, possibly because of the weakened dependence
on prior knowledge. However, elaborated creativity is not
just free and uncertain thinking with less contribution from
prior knowledge, but rather a collaboration between free
thinking and certain prior knowledge. It is assumed that
such collaboration is partially reflected in the temporal
dynamics of uncertainty in a certain degree of deep statistical
creativity (Figure 3).

Statistical learning is thought to be a domain-general and
species-general learning principle that occurs for visual and
auditory information, including language and music, and in
both primates and non-primates, such as songbirds (Lu and
Vicario, 2014, 2017), monkeys (Saffran et al., 2008), and rats
(Toro et al., 2005). The current statistical learning hypothesis,
however, may not be sufficient to cover all levels of music
processing, including domain-specific mechanisms such as
universal grammar, tonal pitch spaces, and hierarchical tension
(Hauser et al., 2002; Jackendoff and Lerdahl, 2006). Some
studies suggest that there are two steps in the learning process
(Jusczyk, 1999; Ellis, 2009). The first is statistical learning, which
shares a common mechanism among all domains (domain
generality). The second is domain-specific learning, which has
different mechanisms in each domain (domain specificity).
Nevertheless, it is still unknown how statistical learning interacts
with domain-specific learning, how various aspects of statistical
learning (i.e., abstraction of statistically coherent events vs.
combining the chunked units and shallow and deep levels) are
linked to top-down and bottom-up processes of the brain, and
how statistical knowledge can be used in creativity. Further,
although creativity is associated with perception as well as
production (Dailey et al., 1997; Furlong, 2009), no study
has fully revealed the precise distinctions between creative
production and perception (Hargreaves, 2012) from a statistical
learning framework.

Categorization (Jones and Mewhort, 2007) and non-adjacent
dependency (Frost and Monaghan, 2016) are likely to be the
key mechanisms for understanding these questions. For example,
humans learn the transitional probabilities of word categories,
such as nouns and verbs (Jones and Mewhort, 2007); when

the verb “drink” occurs, the brain predicts many subsequent
words which can be drunk. The brain can also generalize both
adjacent and non-adjacent statistical rules of grammar and apply
these rules to novel vocabulary (Gomez and Gerken, 1999).
Using such mechanisms, the brain does not have to code all
the received information, contributing to memory capacity and
uncertainty reduction. We hypothesize that this information
efficiency encourages humans to produce uncertain and creative
information. Future studies are necessary to demonstrate the
roles of hierarchical statistical learning in categorization and
non-adjacent dependency.

Notably, the current statistical creativity model does not
fully explain all the components necessary to be accepted as
creativity. Creativity is the process of producing something
worthwhile as well as original (Lubart and Mouchiroud, 2003;
Kozbelt et al., 2010; Robert, 2011). Despite the evidence on
the contribution of statistical learning to the production of
new and uncertain information, little is understood about
how and why people can recognize such information as
worthwhile and creative. A recent neural study demonstrated
that uncertainty and surprise jointly predict musical pleasure
reflected in the amygdala and hippocampus (Cheung et al., 2019).
This study suggested that musical chord with high uncertainty
but low surprise, and vice versa, evoked high pleasure. Given
the previous findings, we hypothesize that not remarkably
high and low uncertainty can be recognized as creative and
valuable information. This fundamental question will be key to
understanding why people can recognize uncertain information
as worthwhile and novel.

Hierarchical statistical learning may be a key insight into
examining the influence of dispositional, maturational, and
developmental factors of the individuality of creative ability in
the brain with developmental disorders such as ASD. Statistical
learning is an innate mechanism that is facilitated by postnatal
musical training (Francois and Schön, 2011; François et al., 2012;
Paraskevopoulos et al., 2012; Daikoku et al., 2020). There is
inconsistent evidence suggesting the enhancement and reduction
of statistical learning ability in brains with ASD (Gomot et al.,
2011; Roser et al., 2015; Goris et al., 2018; Green et al., 2020),
which is generally thought to be associated with a combination
of genetic and environmental factors (Chaste and Leboyer,
2012). A previous study proposed a neurocognitive model of
competence development (Seither-Preisler et al., 2014), which
describes the interaction between dispositional factors, natural
maturation, and training-induced neural plasticity. The authors
claimed that in the case of music processing, the morphology
of the auditory cortex (bottom right) and the source waveforms
of the early ERP component (P1) represent dispositional and
training-induced factors, respectively. A neural network that is
important for creativity (i.e., DMN) has also been considered to
be associated with both genetic (Meda et al., 2014) and training
factors (Taylor et al., 2013). Thus, dispositional, maturational,
and learning-induced factors may play a key role in the
development and emergence of statistical creativity. Future
research is needed to investigate how prior dispositions interact
with the influence of postnatal training. We believe that this
review will shed light on the key roles of statistical learning in
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musical creativity and facilitate further investigation on how the
development of the brain modulates creativity.

CONCLUDING REMARKS

Musical creativity is ubiquitous and unique to humans.
The interaction between musical creativity and the brain is
complex and involves a variety of neural circuits underlying
sensory perception, learning, memory, action, and creativity.
We emphasize that musical creativity engages “hierarchical”
statistical learning. In particular, we propose two components
that give rise to creativity. The first is deep statistical
learning (integration of shareable units). The second is the
temporal dynamics (fluctuation) of perceptual uncertainty.
Considering evidence that the brains of individuals with
ASD are susceptible to uncertainty, we assert that creativity
in ASD can covertly reflect more (internally oriented)
emotional representations against uncertainty and generation
of creative and individual episodic information. Further
research focused on the hierarchy of statistical learning and
temporal dynamics of perceptual uncertainty may provide

new insights into musical and general creativity in atypical
and typical brains.
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