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A non-spatial account of place and grid cells based
on clustering models of concept learning
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One view is that conceptual knowledge is organized using the circuitry in the medial temporal

lobe (MTL) that supports spatial processing and navigation. In contrast, we find that a

domain-general learning algorithm explains key findings in both spatial and conceptual

domains. When the clustering model is applied to spatial navigation tasks, so-called place and

grid cell-like representations emerge because of the relatively uniform distribution of possible

inputs in these tasks. The same mechanism applied to conceptual tasks, where the overall

space can be higher-dimensional and sampling sparser, leading to representations more

aligned with human conceptual knowledge. Although the types of memory supported by

the MTL are superficially dissimilar, the information processing steps appear shared. Our

account suggests that the MTL uses a general-purpose algorithm to learn and organize

context-relevant information in a useful format, rather than relying on navigation-specific

neural circuitry.
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Concepts organize experiences to enable generalization and
inference. For example, a traveler encountering an unfa-
miliar bird species would reasonably infer the bird was

born from an egg. One longstanding question is the basis for
people’s abstract conceptual knowledge. One intuitive idea is that
concepts ground in a more basic and concrete substrate, such as
sensory-motor experience1. For example, abstract concepts such
as time may be represented in terms of experience of space2.
Relatedly, conceptual knowledge may be organized using circuitry
in the medial temporal lobe (MTL) that supports navigation3.

This view is supported by recent studies that find the brain’s
responses to conceptual tasks parallel those previously found in
spatial tasks. Place cells in the hippocampus4 typically have single
firing fields at circumscribed locations in a spatial environment,
and grid cells in the medial entorhinal cortex (mEC)5–7 display
multiple regularly-spaced firing fields arranged in a hexagonal
pattern covering the environment. These spatially-tuned cells in
the MTL are thought to implement a spatial cognitive map for
navigation8–11, and recent work suggests these cells also represent
conceptual12 and task spaces13. One key question is whether the
same brain systems and computations support concept learning,
memory, and spatial navigation.

One neglected possibility is that the relation between spatial
and conceptual representations has been framed backwards.
Perhaps, rather than concepts grounding in the machinery of
navigation, spatial concepts are a limiting case of a single, more
general, learning system. Such a learning system would be tasked
with learning all relevant concepts, including those tied to phy-
sical space (also see refs. 14,15, and Discussion). This general
learning system would support learning concepts, which are
typically clumpy in that they consist of clusters of interrelated
features in a high-dimensional space16. For example, animals that
fly tend to be small and have wings (see Fig. 1a). Not all possible
combinations of features are relevant and represented. In con-
trast, many spatial tasks5 and their conceptual analogs12 typically
involve a uniform and exhaustive sampling of all possible com-
binations within a low (two-) dimensional space corresponding to
locations in an environment (see Fig. 1c, d).

We evaluate whether a domain general account is plausible by
applying successful models of human concept learning to spatial
contexts. In concept learning studies, these models learn to

represent experience in terms of conceptual clusters, which are
not uniformly distributed17. For example, in a simple case with
two clearly separable and internally coherent sets of objects, a
clustering model would use one cluster to represent each concept,
each of which would be centered amidst its members in repre-
sentational space (e.g. Fig. 1a).

When the model is presented with a novel item, the closest
cluster in representational space is activated, which signals the
category membership of the item. An error-monitoring signal
gauges how well an item matches this closest cluster in repre-
sentational space. In these models, only the closest cluster
maintains non-zero activation (winner-takes-all), so an error-
monitoring signal (entropy term) ‘monitors’ activation of all
existing clusters which indicates how close or far away the current
location was from any cluster, acting as a cluster match (or non-
match signal)17,18.

These clustering representations successfully capture patterns
of activity in the MTL19,20 and are in accord with the notion that
the human hippocampus contains concept cells in which indivi-
dual cells respond to a specific concept, much like how a cluster
in a possibly high-dimensional space can encode a concept21.
Analogously, place cells respond to a location in a particular two-
dimensional spatial context. It is important to note that clusters
are abstract entities in the model, and there need not be a one-to-
one mapping to single concept or place cell (e.g. a cluster can be
represented by a group of place cells with similar tuning (c.f.
refs. 22)—a functional mapping of multiple place cells to one
cluster, and the place cell population to the whole cluster repre-
sentation; Fig. 2c). Furthermore, clustering models explain how
individual episodes give rise to conceptual knowledge over the
course of learning23, consistent with both the hippocampus’s
importance in memory24,25. We evaluate whether the same
mechanisms also offer a general understanding of place and grid
cells, and their relationship to concepts.

To facilitate this evaluation, we simplified the clustering models
to only include aspects necessary for this contribution. Clustering
models that capture behavior on a trial-by-trial basis typically
recruit a new cluster in response to a surprising error. These
models also learn attention weights that accentuate task-relevant
stimulus dimensions and associate clusters with behavioral
responses (e.g., respond “bird”). Without loss of generality, we
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Fig. 1 Cluster learning applied to conceptual and spatial examples. a The most similar cluster moves (i.e., adjusts its tuning) toward its newest member
and becomes associated with a response (blue for bird, red for mammal). b Out of a pool of many randomly tuned clusters, a subset comes to represent
the two concepts over learning. c, d The same learning system applied to an agent locomoting in a circular or a square environment gives rise to a
hexagonal cluster organization. How the stimulus space is sampled affects how clusters are distributed in the representational space.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13760-8

2 NATURE COMMUNICATIONS |         (2019) 10:5685 | https://doi.org/10.1038/s41467-019-13760-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


simplified the models by pre-seeding with a fixed number of
clusters and limiting learning to updating cluster positions. In
particular, the cluster most similar to the current stimulus
updated its position in representational space to be closer (more
similar) to its newest member (see Methods for full details), much
like cluster updating in Kohonen learning maps26 and k-means
clustering27.

Results
A common learning mechanism for space and concepts. As
shown in Fig. 1a, the model when applied to categorizing animals
as birds or mammals learns to segregate the items into two
groupings. These clusters can be seen as concept cells, akin to
place cells (Fig. 2a, b). Notice that the items (i.e., experiences) and
the clusters only cover a select portion of the stimulus space. For
example, no animal exists that is as massive as an elephant and
can fly. Clustering solutions capture the structure of the envir-
onment, which enables generalization to novel cases.

In contrast, the same model applied to an agent exploring a
typical laboratory environment leads to clusters that uniformly
cover the entire representational space in a hexagonal pattern (see
Fig. 1c, d). In the spatial case, there is no salient structure present
in the input to the model, which results in clusters covering the
representational space, much like how a bunch of tennis balls
dropped into a square box will self-organize into a grid-like lattice
according to the mathematics of packing28–33. In the spatial case,
the clusters function in a similar way to a population of place cells
that code for (i.e., discriminate) locations.

In our account, grid-like responses arise from monitoring the
match (inverse error) of the clustering solution (Fig. 2a, b). In
unsupervised learning, error or uncertainty is simply the inverse
of how similar an item is to the best matching cluster. Notice that
matching clusters in the spatial case should display a hexagonal
pattern because of the hexagonal clustering pattern in representa-
tional space, resulting in canonical grid-like receptive fields (see
Fig. 2b). In the conceptual case, we predict that typical grid cell
firing patterns should not be observed because the clusters (i.e.,
place cells) do not form a hexagon pattern (Fig. 2a) in
representational space. One might object that our account is
inconsistent with conceptual learning brain imaging studies that
find grid-like response patterns12. However, these studies are
consistent with the model because they follow the design
principles of typical spatial studies—all feature combinations
within a 2-dimensional stimulus space are sampled, which would
lead to a hexagonal clustering solution (Fig. 2b).

Clustering solutions match grid patterns in mEC. To relate our
account to typical spatial studies, we simulated an agent moving
through its environment as in a free-foraging rodent experiment.
As expected, learning led to clusters forming a hexagonal pattern
(see examples in Fig. 3a, b, left). To assess this quantitatively, we
computed the spatial autocorrelograms of the cluster activation
maps (Fig. 3a, b, right) to obtain the grid score, which reflects the
degree six-fold hexagonal symmetry in the cluster activation
pattern across trials5 (see Methods). We computed grid scores for
each time bin during learning and found that grid scores tended to
increase over learning in both the square (see Fig. 3c for examples
and Fig. S1 for all conditions; mean slope: 0.0044, bootstrap CIs:
[0.0040, 0.0048]) and circular environment (mean slope: 0.0042,
bootstrap CIs [0.0038, 0.0046]; see Tables S1 and S2).

Following learning, we evaluated the gridness of the clustering
solution (see examples in Fig. 3a, b and Figs. S2 and S3). A
substantial proportion of simulations satisfied the criterion for
grid-like organization, with 45.3% in the square and 38.6% in the
circular environment, which closely match the proportions in
empirical results (45% and 38%, respectively; see Supplementary
Note 1)34,35. The average grid score in both the square
environment (mean: 0.277, bootstrap CIs [0.273, 0.0.280]) and
circular environment (mean: 0.313, bootstrap CIs [0.309, 0.318])
were greater than zero; see Tables S3 and S4).

Cluster representations are shaped by environmental geometry.
According to the clustering account, grid-like responses should
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Fig. 2 Cluster representations after learning for conceptual and spatial
tasks. a Clusters clump into two groups. Thus, novel bird and mammal
stimuli will strongly activate one or the other grouping, which does not lead
to a grid response across possible stimuli. b In contrast, for the spatial case,
clusters form a hexagonal grid which leads to a grid-like response across
possible stimuli when cluster activity is monitored. c Clusters determine the
receptive fields for a population of place or concept cells, and the cluster-
monitoring/error-monitoring mechanism (grid or spatial cells) reflect the
distribution of the clusters. Abstract cluster representations are instantiated
by multiple cells in the hippocampus and medial entorhinal cortex (mEC)
with similar firing fields to represent the same location (or concept) in the
case of hippocampal cells or cluster match in the case of mEC cells.
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only arise under very specific conditions in which the environ-
ment is fairly uniform. The imposition of any structure, including
changes to the overall geometry of the environment, should affect
the clustering in a manner that makes it less grid-like.

Related, Krupic et al.36 identified grid cells in rodent mEC in a
square box, then placed the animals in a trapezoid environment.
They found that activity maps of grid cells became less grid-like
in the trapezoid and that the decline was greatest for responses
elicited on the narrow side of the trapezoid. To simulate this
experiment, the model was first trained in a square and then
transferred to a trapezoid environment (see Fig. 4a–d for an
example and Fig. S4 for more examples). As in the empirical
studies, the model’s overall grid scores declined in the trapezoid
environment (Fig. 4e; trapezoid mean grid score: 0.058, bootstrap
CIs [0.054, 0.061]; Fig. 4f; square minus trapezoid mean: 0.219,
bootstrap CIs [0.214, 0.224]) and the grid scores were higher on
the wide than on the narrow side of the trapezoid (Fig. 4g; wide
minus narrow mean: 0.133, bootstrap CIs [0.127, 0.139]; see
Tables S5–S7).

Discussion
Previous work has explained a wide array of learning and
memory phenomena in terms of clustering computations sup-
ported by the MTL23. Here, this same basic account was shown
to account for basic spatial navigation phenomenon, including
place and grid cell-like response patterns. Specifically, we showed
that a learning mechanism that seeks to minimize error in the

task-relevant feature space captures conceptual structure in
concept learning tasks and spatial structure in two-dimensional
navigation contexts, which lead to place and grid cell-like
representations. Rather than spatial mechanisms providing a
scaffolding for more abstract conceptual knowledge3,10, the cur-
rent results suggest that key findings in the spatial literature
naturally arise as limiting cases of a more general concept
learning mechanism. Whereas concepts can be clumpy, struc-
tured, and high dimensional, typical spatial tasks involve
exhaustive and uniform sampling of simple two-dimensional
environments, which leads to degenerate clustering solutions that
pack clusters into a hexagon lattice, giving rise to so-called grid
cells (Fig. 3). The clustering account correctly predicted how
deviations from these unstructured learning environments should
reduce grid-like cell responses (Fig. 4).

Our proposal stands in contrast to other ideas that a dedicated,
phylogenetically older spatial navigation system in the MTL
supports the newer, higher-level cognitive functions3,10. In par-
ticular, we suggest there are no intrinsic ‘place’ or ‘grid’ cells, but
instead a flexible system that will represent the relevant variables
at hand, including physical space. Emerging evidence shows that
cells in the MTL exhibit mixed-selectivity in that they respond to
multiple variables, such as place and grid cells that also code for
task-relevant sound frequency13, routes37,38, objects and con-
text39, and time40, suggesting a flexible code. Clustering is a
flexible mechanism and can learn representations in multi-
dimensional space, and therefore is a strong candidate mechan-
ism for organizing multi-modal, complex information for
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Fig. 3 Clustering leads to activation maps similar to spatial cells in medial entorhinal cortex. a, b Examples of activation maps with grid patterns in a
square environment (A-left) and their corresponding spatial autocorrelograms (A-right), and activation maps in a circular environment (B-left), and spatial
autocorrelograms (B-right). c Examples showing grid scores increasing over learning in the square (top) and circle (bottom). d, e Univariate scatterplots
showing grid scores for simulations in the square (d) and circle (e). Dashed line represents the most conservative threshold for a ‘grid cell’.
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consolidation of knowledge for memories and concepts. A
growing body of work supports the idea that the MTL system is a
key part of a general learning system for organizing knowledge
into a useful representation, which can be used for effective
behavior and for memory consolidation.

Clustering models organize information and represent con-
cepts in feature space to enable the identification, classification,
and generalization of novel objects17,18. These models can be
closely linked to episodic memory23 and accounts of hippocampal
function including relational memory41, statistical learning42, and
transition statistics (successor representation14,43–45), with objects
or memories arranged in the form of a cognitive map.

Several recent accounts have proposed different mechanisms
for the hippocampal-entorhinal cell circuit in organizing non-
spatial information10,14,15. One major feature that distinguishes
our account is the role of place and grid cells. In our account, the
hippocampus plays a central role in organizing information about
the current environment or task, and the mEC monitors these
hippocampal representations. As such, mEC cells do not play a
representational role, but play a role in learning—monitoring
error from existing clusters in order to update the cluster repre-
sentation. Both grid and non-grid spatial cells contribute to this
function, and the high gridness of a subset of these cells is a result
of the environment or space.

Other accounts hold that grid cells are key representational
units in the cognitive map. For example, Stachenfeld and col-
leagues14 suggested that place cells encode predictions of future
states, and grid cells encode a low-dimensional decomposition
of this hippocampal predictive map that may be useful for sta-
bilizing the map and representing sub-goals. In contrast, we
suggest that place cells (clusters) are the key representational
units which encode locations in representational space and its
structure, whereas grid cells monitor place cell activity. Behrens
and colleagues15,46 proposed that the hippocampal-entorhinal
circuit learns and represents structural knowledge useful for
generalization. This account assumes objects are represented in
lateral EC (lEC), structure is represented in mEC, and the hip-
pocampus encodes conjunctions of the two. The learnt structural

information in mEC can be used to generalize to different con-
texts with shared structure. In our account, conceptual knowledge
and its structure is represented in the hippocampus, and any
generalization to new instances from existing structure is from
hippocampal representations (as generalization is performed in
clustering models of concept learning). In contrast to the view
that hippocampal representations arise from interactions between
mEC and lEC, we argue for a central role of prefrontal cortex
(representation of the task or relevant features) for shaping
hippocampal representations19, in combination with sensory
inputs arriving via entorhinal and perirhinal cortex, and from
anterior inferior temporal cortex to prefrontal cortex47,48 to the
hippocampus.

Whereas our account holds that place and grid cells emerge
from a general learning system, Bellmund and colleagues suggest
that the population code of place and grid cells play a role in
mapping the dimensions of cognitive spaces in cognitive tasks,
and that spatial navigation could serve as a model system to
understand cognitive spaces10 (also see ref. 3). Although there are
commonalities, their proposal suggests that place and grid cells
provide or a ‘metric’ or distance code for abstract spaces, and that
there is a straightforward mapping from neural representations of
physical space to abstract space. In our view, when the context
involves a significant degree of selective attention to stimulus
features or task variables, the representational space can be
warped to a different, more effective representation of the context
at hand (e.g. reducing dimensionality by attending to the task-
relevant dimensions49), which does not simply map onto the two-
dimensional spatial case.

Our higher-level account provides a general theoretical fra-
mework applicable to a large range of tasks, in contrast to lower-
level models of place and grid cells which make specific predic-
tions in spatial contexts but have less explanatory power to
generalize across contexts. Our model’s contribution is providing
a general mechanism that could be used across domains. Here, we
provided an algorithmic-level model50 that links across two dif-
ferent computational accounts of task descriptions (spatial and
concept tasks), and connects learning mechanisms from concept
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Fig. 4 The clustering model captures declines in grid responses in trapezoid environments. a–d Example of distortion in a trapezoid environment.
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learning to spatial representations found at the single-cell level.
Specifically, we were able to link the model representations to
neural measures reported in the spatial literature, closely
matching a number of empirical observations.

Our model showed a similar proportion of grid-like cells in
found in mEC. Other models either do not capture the hexagonal
code14 (90 degree grids) or need to build in additional con-
straints32 (non-negativity constraint changes the 90 degree grid
patterns to 60 degree grid patterns). When they find a large
proportion of grid cells, they are too good in that all the simulated
cells are grid cells32,51. Other work have modeled or analyzed
mathematical properties of the grid code (e.g. refs. 31,33), but also
do not account for variability in the grid score in mEC cells. Here,
we used a simple model from a high-level perspective based on
ideas from concept learning and memory and matched the pro-
portion of grid cells with empirical data, suggesting that the
constraints of the clustering model matches the constraints the
brain uses to build these representations.

Our model also captured the causal relation between place and
grid cells. In our account, grid cells play a cluster-match or error-
monitoring function where they monitor (connected to and
receive input from) place cells, and self-organize over time to
produce a hexagonal firing pattern. This is consistent with
developmental work52,53, where place cells appear in baby rats
very early in life, and grid cells develop shortly after, as they
explore and learn about spatial environments during normal
development. Furthermore, inactivation of the hippocampus
(with place cells) leads to grid cells in mEC losing the periodicity
of their firing fields54, whereas inactivation of the mEC (with grid
cells) only mildly affect hippocampal place fields55. Our account
provides a different way of thinking about hippocampal-mEC
interactions, which makes predictions that can guide future
experiments and analyses.

Our account suggests that grid-like responses from the MTL
should be the exception, not the rule, when encoding abstract
spaces. Outside the typical laboratory study, representational
spaces may be high dimensional and not all dimensions or values
along dimensions will be equally relevant, nor will all combina-
tion of values across dimensions (see Fig. 1a). In support of this
characterization, empirical work has shown that grid cells also
lose their grid-like properties in more complex environments
such as mazes56.

Our account made several predictions that matched empirical
data, where changes in environmental geometry lead to specific
changes in the cluster representation. The model also provides
further predictions. First, the mapping from place to grid cells
within a context should be predictable. An mEC grid or spatial
cell is assumed to receive input from multiple place cells in the
hippocampus, and that mEC cell should have fields in the same
location as the place cells it receives input from (Fig. 2a, b).
Therefore, if place cells that represent a certain location are
inactivated, the corresponding fields of the mEC cells that
monitor those place cells should also disappear. Since an mEC cell
may receive inputs from multiple place cells, a strict test would
require inactivation of all (or at least a large proportion of) place
cells that represent one location (a cluster in the model), pre-
dicting all mEC cells should also lose those fields. Future work
with large-scale concurrent recordings in multiple brain regions
with specific (e.g. optogentic) manipulation may allow these
predictions to be tested. One novel prediction of our model is that
when error is high early in learning for a particular location, mEC
cells should show a low firing rate and that best matching place
cells should update their tunings to more strongly respond at that
location (i.e., cluster updating). Updating a cluster (or recruiting a
new cluster) should result in adjustment to the tuning of neigh-
boring clusters, leading to a cascade of changes across place cells.

When error is low, this signifies a good match between the
environment and one’s current knowledge (cluster representa-
tion) and experience, and little or no update is necessary. Inac-
tivating the mEC should disrupt the error signal, which should
disrupt learning in new environments. Recent evidence suggests
place and grid cells both move towards goals or rewards57–59, and
there seems to be a greater number of place cells recruited near
goal locations60,61 consistent with more clusters moving towards
the goal or more clusters recruited at locations near the goal.
Finally, our model predicts that both grid and non-grid spatial
cells should perform the same function, in both concept and
spatial tasks. There is some evidence in the spatial domain which
showed that non-grid spatial cells in mEC contain as much spatial
information as grid cells and could serve similar functions62.

The primary strength of our account, namely that it offers an
algorithmic account of spatial and concept learning tasks, serves
to highlight the need for complementary lower-level accounts.
There are various open questions such as how place cell remap-
ping occurs across contexts and partial remapping effects with
disruption to mEC63,64. Our hope is that our model can even-
tually link to lower-level models that incorporate biological
details such as spiking neurons and incorporate knowledge from
memory research that can explain more empirical findings and
provide new insights to these questions. Accounts are needed at
multiple levels of analysis. We view our model as intermediary (at
the algorithmic level) and aim for it to serve as a bridge between
the goal of the computation and its implementation. Our model
can serve as a guide for how operations such as cluster updating
are physically realized.

Building this integrative bridge between the concept, memory,
and spatial literatures allows for findings from one domain to
inform the other. For example, task goals and attentional
mechanisms in the concept literature have been found to shape
hippocampal representations19,20. Analogous tasks can readily be
constructed to evaluate whether spatial cells support broader
information processing functions (cf. ref. 13) and how general
learning algorithms shape their response properties (cf. ref. 14).
Likewise, the concept literature emphasizes the hippocampus’s
interactions with other brain areas, such as medial prefrontal
cortex, to assist in encoding task relevant information19. When
richer spatial tasks are considered, there is a ready set of candi-
date mechanisms and neural systems that may offer domain
general explanations that link across brain, behavior, and
computation.

Methods
Simulations. A simulation run comprised of a learning period with a million trials
(training phase) where clusters updated their positions in relation to the agent’s
position as it explored the environment. After learning, we quantitatively assessed
the regularity of the cluster position arrangements (test phase). We ran
1000 simulation runs for each condition (number of clusters).

Simulation procedure and model specifications. At the beginning of the learning
phase of each simulation run, we set the number of clusters, number of learning
trials, the environment (square, circle), the learning rate, and the learning update
batch size. The number of clusters were set (ranging from 10 to 30) and were
initiated at random locations in the environment. The shape of the environment
was defined by a set of points that could be visited by the agent. The square
environment was 50 by 50, where each point was a location specified by a value on
the x- and y-axis. The circular environment was defined by drawing a circle in
Matlab with a radius of 50, and selecting the points within the bounds of the circle.
The starting position and movement trajectory of the agent was then determined as
a random walk over one million trials. The agent started at a random position and
steps in the horizontal and vertical axes were computed separately. On each trial,
the agent could go up, down, or stay on the vertical axis, and left, right, or stay on
the horizontal axis. The step was sampled from [−4, −2, −1, −1, 0, 1, 1, 2, 4],
where negative values are steps to the left, positive steps are steps to the right, and
zero means stay. Movement on the vertical dimension was determined in the same
way, but negative values were upward steps and positive values were downwards
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steps. If the generated step brought the agent out of the environment, the step was
cancelled and a new step was generated as above.

We considered a simple winner-take-all network in which only the cluster at
position posi closest to stimulus x (agent’s location) had a non-zero activation.
Bold type is reserved for vectors. The distance between posi and x is defined as:

disti ¼ posi � xk k ð1Þ
In the Kohonen learning rule, cluster i updates its position posi to move toward
stimulus x according to:

Δposi ¼ ηt � ðx � posiÞ; ð2Þ
where ηt is the learning rate at time t. In the present simulations, we used batch
updating to increase numerical stability in which 200 updates were performed
simultaneously. The learning rate η for batch time t followed an annealing
schedule:

ηt ¼
η0

1þ ρ � t ; ð3Þ

where η0 is the initial learning rate set to 0.25 and ρ is the annealing rate set to 0.02.

Assessing regularity of cluster positions. To assess whether cluster positions
formed a regular hexagonal structure with learning in a comparable manner way to
grid cells found in the medial entorhinal cortex (mEC), we followed the method of
Hafting et al.5 and Perez-Escobar et al.35.

In Hafting et al.5, rodents traversed circular and square environments whilst
they recorded electrophysiological signals from mEC neurons. They found cells
that displayed multiple firing fields and resembled a grid of regularly tessellating
triangles spanning the recorded environment. To assess this regularity
quantitatively, they computed the spatial autocorrelogram of the firing rate map. If
the fields were arranged in a regular grid, the center peak of the autocorrelogram
should be surrounded by six equidistance peaks, forming a regular hexagon. The
spatial autocorrelogram was computed as follows. With λ1 x; yð Þ denoting the
cluster activation at location x; yð Þ, the autocorrelation with spatial lags of τx and τy
was estimated as:

rðτx ; τyÞ ¼

n
P

λ1ðx; yÞλ2ðx � τx ; y � τyÞ
�P

λ1ðx; yÞ
P

λ2ðx � τx ; y � τyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

λ1ðx; yÞ2 � ðPλ1ðx; yÞÞ2
q

´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

λ2ðx � τx ; y � τyÞ2 � ðPλ2ðx � τx ; y � τyÞÞ2
q

; ð4Þ

where rðτx ; τyÞ is the autocorrelation between bins offset of τx and τy, λ1 x; yð Þ and
λ2 x; yð Þ are equivalent for an autocorrelation indicates the average firing rate of the
cell in each location x; yð Þ, and n is the number of spatial bins over which the
estimation was made.

To quantify the degree of this regularity, a ‘grid score’ is commonly used35 by
computing the correlation between the center region of the spatial autocorrelogram
(a masked region including the six surrounding peaks but excluding the centre
peak) and a 60° and 120° rotated version (to assess the six-fold hexagonal
symmetry) minus the correlation between the spatial autocorrelograms and a 30°,
90°, and 150° rotated version (where there should be a low correlation):

ðr60� þ r120� Þ
2

� ðr30� þ r90� þ r150� Þ
3

ð5Þ
To assess the regularity of the cluster positions in a given environment in the

current study and compare our results with empirical findings, we followed the
method described above. We first computed activation maps to emulate firing rate
maps in empirical neuronal recordings, and computed the spatial autocorrelogram
to obtain the grid score.

Assessing change in gridness during and after learning. To characterize how
cluster positions changed over time in the learning phase, activation maps were
computed over trials during learning in a set of 200 simulation runs. Trials were
binned into 20 equally spaced time bins with 50,000 trials in each time bin. We
assumed that the activation strength of the winning cluster was a Gaussian function
of distance from the agent:

acti ¼
1
ffiffiffiffiffiffiffi
2π2

p e�
1
2dist

2
i ; ð6Þ

where acti is cluster i’s activation strength. To compute activation maps for each
time bin, activations were computed at each location and normalized by the
number of visits by the agent (as done in empirical studies) to create a normalized
activation map. The maps were smoothed (Gaussian kernel, SD= 1), spatial
autocorrelograms were computed, and grid scores were computed for each time
bin. As the clusters moved continuously over time (not defined by the time bins),
activation maps changed over each time bin.

To test whether gridness increased over time, we used a linear model to estimate
the slope (beta value) of the grid score of activation maps over each time bin
(20 bins) for each simulation run during the learning phase. For each condition
(number of clusters), we estimated the slope for 200 simulation runs, giving

200 beta values. We computed the mean and bootstrapped 95% confidence
intervals (CIs) over all conditions and simulation runs to test if the grid score
increased over time. We also computed the mean and bootstrapped 95% CIs over
the 200 beta values for each condition.

To assess gridness at the end of learning, a new movement trajectory was
generated with 100,000 trials and cluster positions were fixed. Grid score after
learning was assessed for all 1000 simulation runs. The activations and normalized
activation map were computed over all test trials, the activation map was smoothed
(Gaussian kernel, SD= 1) and the spatial autocorrelogram of the activation map
was computed following Hafting et al.5, except firing rates were replaced with
normalized cluster activation values at each location. Grid scores were then
computed based on the spatial autocorrelograms using Eq. (5). We computed the
mean grid scores and bootstrap 95% CIs over all conditions and simulation runs.
We also computed the mean and bootstrap 95% CIs over each condition.

Classification and percentage of grid cell-like maps. To assess whether acti-
vation maps showed a regular hexagonal pattern that would be classified as a ‘grid
cell’ according to criteria set in empirical studies, and to compare the percentage of
grid-like activation maps from our clustering model to the percentage of grid cells
found in the mEC, we used a shuffling procedure to find the statistical threshold of
the grid score that passes the criterion for a ‘grid cell’ described in Wills et al.52.

The procedure was performed on spatial autocorrelograms of the activation
maps produced on the test phase, where cluster positions were fixed. Since cluster
activations were generated in relation to the agent’s location during movement,
they were temporally correlated. Therefore, to break the location-activation
relationship, the vector of activations were randomly shuffled in time, and we
ensured that each location was at least 20 trials from its original position. The
activation map was smoothed (Gaussian kernel, SD= 1) then the grid score was
computed. For each condition, this shuffling procedure was performed 500 times
on each simulation run (on a subset of 200 simulations). The threshold was defined
as the 95th percentile of the 500 shuffled grid scores, giving 200 threshold values
(from each simulation run) per condition (number of clusters). The highest
threshold value (most conservative) was used as the threshold for each condition.
In the figure in the main text (Fig. 3d, e), the thresholds plotted are the highest
(most conservative) thresholds across all conditions in that particular environment.

For each condition, we computed the percentage of activation maps that
exceeded the shuffled grid score threshold. We computed the percentage of ‘grid
cells’ for each condition (number of clusters) separately and then computed the
mean percentage across conditions.

Gridness in trapezoid environments. To simulate the effect of asymmetric
boundaries in a trapezoid enclosure on gridness36, we took cluster positions from
simulations after learning in square environments, and ran an additional learning
phase for 250,000 trials. In this new learning phase, the shape of the environment
was now a trapezoid (the agent could only move to those locations), and the
annealed learning rate schedule continued (starting at 0.0025, reducing to 0.002 at
the end). The trapezoid dimensions were 5 × 24 × 50 pixels, closely matching the
proportions in36 (0.2 × 0.9 × 1.9 meters; multiplied by (50/1.9) equals to 5.26, 23.7,
and 50).

In order to test whether the asymmetric boundaries of the trapezoid affected
gridness, the trapezoid was split into two halves and we computed the grid score for
the spatial autocorrelogram on the left (wide) and right (narrow) side of the shape.
Due to discretization, we split it as close to equal as possible. The wide half
extended from the leftmost pixels to the 17th pixel (338 pixels), and the narrow
side extended from the 18th pixel to the 50th pixel (339 pixels).

Due to the asymmetrical shape of the trapezoid environment, the procedure for
generating a movement trajectory above leads to a slightly biased sampling of the
wide part of the trapezoid, and less exploration of the middle and top parts of the
shape. To deal with this, we made a slight change to the possible steps after
generating a step that brings the agent out of the environment, described below. For
each trial, the step was generated as before. If the generated step was out of the
environment, the step was cancelled, and the next step was determined as follows. If
the step generated would have brought the agent out of the bottom of the trapezoid,
the next step was sampled from [0, 0, 1, 1] (stay or up). If the step brings the agent
out to the top, the next step was sampled from [−1, −1, 0, 0] (down or stay). When
the step takes the agent out of the left of the trapezoid, then the next step to be
sampled on the horizontal axis were [0, 1, 1, 2, 4], towards the inner portion of the
environment. If the step took the agent out of the right side of the trapezoid, the
next step was generated as before, from [−4, −2, −1, −1, 0, 1, 1, 2, 4]. This is
because when the agent is out of the trapezoid on the horizontal (left-right) axis,
the agent could still be in the middle of the shape on the vertical axis, since the
shape becomes more narrow as it reaches the right. Finally, when it lands exactly in
the middle of the horizontal axis, but is out of the shape (on the horizontal axis), the
next step to be sampled from on the vertical axis is [−1, 0, 1].

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.
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Code and data availability
All simulation code and plotting scripts are available at https://github.com/robmok/
code_gridCell. Data generated and used for this manuscript is available at https://osf.io/
2dz3x/.
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