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Background: Marijuana extracts (cannabinoids) have been used for several millennia
for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous
molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply
studied and classified. Thus, therapeutic actions, side effects and pharmacological
targets for cannabinoids have been explained based on the pharmacology of
cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and
sometimes contradictory results suggests the existence of other cannabinoid receptors.
Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed
as putative cannabinoid receptors. According to their expression, GPR18 and GPR55
could be involved in sensory transmission and pain integration.

Methods: This article reviews select relevant information about the potential role of
GPR18 and GPR55 in the pathophysiology of pain.

Results: This work summarized novel data supporting that, besides cannabinoid CB1

and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment.

Conclusion: There is evidence to support an antinociceptive role for GPR18 and
GPR55.

Keywords: GPR18, GPR55, endocannabinoid system, cannabinoid receptors, pain

PHYSIOLOGY OF PAIN

Adaptive Function of Pain
Pain involves unpleasant sensations in response to real or potential tissue damage (Basbaum
et al., 2009). Usually, pain unleashes a signal alert to prevent extensive injury by promoting
defensive (passive and/or active) actions against the noxious (nociceptive) stimuli. Thus, pain
is considered a protective and adaptive mechanism. However, pain may become persistent
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and pathological without a recognized protective or adaptive
mechanism. When this happens, it affects the quality of life of
patients and their social environment. Hence, pathological pain
is an important medical problem causing distress and disability
that requires prompt clinical investigation and treatment (Julius
and Basbaum, 2001; Moffat and Rae, 2011). On the other hand,
considering that tissue damage is not always the main origin
of pain, cognitive perception and somatic sensation should
be considered as related but different phenomena. Cognitive
perception involves a psychological component frequently
related with emotional experiences. Therefore, pain may be
cataloged as a subjective event that requires patient awareness
(Basbaum and Woolf, 1999; Julius and Basbaum, 2001; Walker
and Hohmann, 2005).

Sensory System: Anatomical and
Functional View
The terminal endings of primary afferent neurons whose cell
bodies are located in the dorsal root ganglia (DRG) and
trigeminal ganglia (TG) are responsible for the transmission of
multiple peripheral stimuli (proprioceptive or nociceptive) to
the central nervous system (Julius and Basbaum, 2001; Walker
and Hohmann, 2005). In the case of nociceptive transmission,
two main types of pseudo-unipolar nociceptive neurons are
found in those ganglia: (1) non-myelinated small diameter and
multimodal C-fibers, which conduct electrical impulses at low
speed (∼1 m/s), sensing and transducing thermal, chemical and
mechanical stimuli; and (2) thinly myelinated Aδ-fibers that
show fast conduction velocity (∼5–30 m/s), sensing mechanical
and thermal stimuli (Moffat and Rae, 2011). These primary
afferent nociceptive fibers sense the peripheral nociceptive
environment and send the nociceptive information to the spinal
dorsal horn where they make a synapse with second order
neurons, which convey neuronal firing to supraspinal sites where
the action potentials are decoded and perceived as pain. At
the peripheral level, there are several channels and receptors
involved in the initiation of nociceptive transmission, such as the
transient receptor potential vanilloid type 1 (TRPV1) channel,
tetrodotoxin-resistant (Na+-TTXr) voltage-gated sodium (Na+)
channels, purinergic P2X receptors, serotonin (5-HT3) channel
receptor, and calcium (Ca2+) channels, among others.

The nociceptive signal from the peripheral nociceptive fibers
is directed toward a second order neuron into the spinal cord,
and then the electrical signal is conducted to the brain cortex
mainly through the antero-lateral pathway tract where the signal
is interpreted as a painful sensation (Snider and McMahon, 1998;
Steeds, 2009; Fabbro and Crescentini, 2014). In fact, several
sensorial components such as stimuli identification, location, and
emotional components are codified in the cortex (Albe-Fessard
et al., 1985). The diversity of peripheral and central regions and
mechanisms implicated made the control of nociception and
pain a complex challenge. Finally, we must keep in mind that
nociceptive transmission could be endogenously modulated. For
instance, the spinal cord, which is the first relay of nociceptive
transmission, could be modulated by diverse neuromodulators
(noradrenergic, serotonergic, opioidergic, and oxytocinergic) (for

references see Mason, 2001; Vanegas and Schaible, 2004; Loyd
and Murphy, 2009; Condés-Lara et al., 2015; Llorca-Torralba
et al., 2016) that may diminish or increase the noxious sensation.
Nevertheless, these modulatory systems exist along the noxious
pathways, including the cortical station. So, the modulation
of nociceptive transmission is complex and involves an array
of neurotransmitters, neuromodulators and a wide variety of
specific and non-specific receptors, which are dysregulated
during pathological pain states (Heinricher, 2016).

Classic Treatments for Pain
Pain treatment can be categorized as pharmacologic and non-
pharmacologic. In the first case, there are a variety of druggable
targets in both central and peripheral nervous system commonly
used for pain treatment. Analgesics are classified as: (i) non-
opioid analgesics; (ii) opioid analgesics; and (iii) adjuvant
analgesics (Figure 1). The most frequently non-opioid analgesics
used are non-steroidal anti-inflammatory drugs (NSAIDs), such
as aspirin, ibuprofen and celecoxib. The primary mechanism of
action of NSAIDs is through the inhibition of the cyclooxygenase
enzymes (COX) by consequently decreasing the action of
prostaglandins and their sensitizing properties. Opioid-like
drugs, such as morphine, ameliorate pain by modulating the
cellular excitability at the supraspinal, spinal and peripheral level
through activation of opioid receptors (µ-, δ-, and κ-opioid
receptors). Furthermore, opioids could enhance descending
inhibitory pathways and modify the sensory and affective
components of pain. In the case of adjuvants, local anesthetics
(e.g., lidocaine) stop the electrical impulse by blocking voltage-
gated sodium (Na+) channels. Tricyclic and noradrenaline-
reuptake inhibitors act by maintaining and/or augmenting the
monoamine levels in descending tracts and anticonvulsants
decrease the synaptic transmission affecting neuronal excitability
(Basbaum and Woolf, 1999; Sinha et al., 2017).

Non-steroidal Anti-inflammatory Drugs
Non-steroidal anti-inflammatory drugs are substances that
inhibit a component of the inflammatory cascade and, thence,
are an important therapeutic option for non-steroid-based
pain treatment. Briefly, these compounds (with exception
of acetaminophen) have anti-inflammatory, antipyretic, and
analgesic effects by inhibiting COX activity. At this point, we
must keep in mind that the COX enzymes have at least three
isoforms (COX-1, COX-2 and COX-3) and the non-selective
NSAIDs act to block COX-1 and COX-2 indistinctly, favoring
gastrointestinal and renal side effects (mediated by COX-1
inhibition). These side effects are particularly common in the
elderly, who are most likely to experience chronic pain (Griffin
et al., 1991; Buffum and Buffum, 2000; Horl, 2010). To minimize
the side effects, selective COX-2 inhibitors have arrived at
clinical practice. Unfortunately, several clinical trials have shown
that these inhibitors also increase harmful cardiovascular effects
(Bhosale et al., 2015).

Opioid-Based Treatments
Opioid analgesics act in the central nervous system and
are typically prescribed to patients suffering chronic pain
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FIGURE 1 | General view of the current pharmacotherapy and guidelines used to treat pain. (A) Snapshot of the two main pathways (inhibition or activation) by
which analgesic drugs induce pain relief at peripheral, spinal and supraspinal levels. (B) To treat pain, the WHO proposed the three-step analgesic ladder. Although
primarily for the management of cancer pain, it is also used as a general guideline for the management of acute and chronic non-malignant pain. A key characteristic
in this approach is the use of adjuvants∗∗ with the primary drug along the pain treatment. (C) In the case of neuropathic pain, specific clinical guidelines have been
proposed by several international and regional professional associations. Although several recent clinical trials support these guidelines, we need to keep in mind that
several factors could limit the applicability in real-world settings (i.e., neuropathic pain is a syndrome caused by diverse etiologies and different clinical
manifestations). In general terms, three-line medication has been proposed by several professional associations (including the IASP, EFNS, NICE, and CPS). In all
cases, the use of strong opioids is recommended as a 3rd-line medication agent considering the potential risk for abuse, overdose, mortality or misuse. ∗No
conclusive efficacy on neuropathic pain treatment. ∗∗Adjuvants or co-analgesics are drugs non-specifically designed (or marketed) to treat pain; some examples:
glucocorticoids, antidepressants (some SNRIs and TCAs), α2-adrenergic agonists (e.g., clonidine) and cannabinoids (including cannabis). COX, cyclooxygenase or
prostaglandin-endoperoxide synthase; CPS, Canadian Pain Society; EFNS, European Federation of Neurological Sciences; GPCRs, G protein-coupled receptors,
IASP, International Association for the Study of Pain; NICE, National Institute for Health and Care Excellence (of the United Kingdom); WHO, World Health
Organization.

refractory to non-opioid treatment. Despite their well-known
side effects (sedation, nausea, vomiting, constipation, pruritus
and respiratory depression), opioids are widely accepted as
effective for acute pain as well as cancer pain. This group
of drugs have high abuse liability and are also toxic in
elevated doses. For instance, from 1999 to 2014, more than
165,000 persons died of overdose related to opioids in the
Unites States. In 2013, an estimated of 1.9 million people
abused or were dependent on opioid pain medication (Dowell
et al., 2016). Moreover, placebo-controlled trials indicate that,
on average, opioids do not result in a clinically significant
reduction of chronic pain symptoms (Martell et al., 2007),
and even in cases where opioid analgesia is adequate for
the individual patient, analgesic effects are typically not
maintained during the long-term opioid pharmacotherapy due
to pharmacokinetic or pharmacodynamic tolerance (Ballantyne
and Shin, 2008; Dumas and Pollack, 2008). Eventually, chronic
exposure to opioids results in hyperalgesia (Chu et al.,
2008).

Antidepressants
Antidepressant drugs have been used as analgesics in
chronic pain disorders for decades (Mico et al., 2006).
Their pharmacological mechanisms have been associated
with the ability to block 5-hydroxytriptamine (serotonin
or 5-HT) and noradrenaline re-uptake and consequently
with an increase of the activity of the endogenous analgesic
system. Tricyclic antidepressants (TCAs) (e.g., amitriptyline
and imipramine), tetracyclic antidepressants (TeCAs)

(e.g., amoxapine, maprotiline) and the selective serotonin-
norepinephrine reuptake inhibitors (SNRIs) (e.g., duloxetine
and venlafaxine) are traditionally used to treat chronic pain
(Mika et al., 2013). TCAs have been shown to be effective for
different neuropathic pain conditions in randomized controlled
trials (Finnerup et al., 2010). TCAs are generally reasonably
well-tolerated but high doses are associated with a high risk of
sudden cardiac death (Ray et al., 2004). The SNRIs duloxetine
and venlafaxine have a well-documented efficacy in painful
poly-neuropathy (Finnerup et al., 2010). SNRIs are generally
well tolerated. However, the most common side-effects reported
are nausea, somnolence, dizziness, constipation, anorexia, dry
mouth, hyperhidrosis, and sexual dysfunction (Stahl et al., 2005).

Anticonvulsants
Gabapentin and pregabalin are anticonvulsants with therapeutic
activity against neuropathic pain (Rajapakse et al., 2015). Their
analgesic mechanism has been associated to their binding to
the α2δ1 subunit, which in turn blocks voltage-gated calcium
(Ca2+)-channels at presynaptic sites (Gee et al., 1996) or NMDA
receptors at post-synaptic neurons (Chen et al., 2018; Ma et al.,
2018). Both drugs are well tolerated but the most common
side-effects are somnolence and dizziness, peripheral edema,
weight gain, nausea, vertigo, asthenia, dry mouth, and ataxia
(Quintero, 2017). Other anticonvulsants used for pain relief
are carbamazepine and its analog oxcarbazepine, lamotrigine
and valproate. Lamotrigine is effective for central post-stroke
pain (Vestergaard et al., 2001) and diabetic neuropathy
(Eisenberg et al., 2001), but has failed to relieve pain in patients
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with multiple sclerosis (Breuer et al., 2007) and neuropathic pain
(Silver et al., 2007). Valproate also has a limited role in the
treatment of neuropathic pain (Drewes et al., 1994; Otto et al.,
2004; Agrawal et al., 2009).

Cannabinoids
One alternative for pain treatment came from Asia more than
3000 years ago: marijuana extracts (Li, 1974; Touw, 1981;
Jensen et al., 2015). The utility of marijuana-based drugs for
treating pain is explained by the existence of an ancient system
of cellular control named the endocannabinoid system (ECS).
Unfortunately, our knowledge about the physiology of the ECS
is only partial (see below). In this review, we summarized novel
data supporting that, apart from cannabinoid type-1 (CB1) and
cannabinoid type-2 (CB2) receptors, some putative cannabinoid
receptors (i.e., GPR18 and GPR55) may be useful for pain
treatment. This should allow researchers to focus their studies
on developing endocannabinoid-based options as analgesics and
anti-inflammatory drugs.

ENDOCANNABINOIDS AND PAIN

Endocannabinoid System: Generalities
Despite the ancient and well-known use of cannabis derivatives
for pain management, medically recognized use of these
compounds has largely subsided due to the lack of knowledge of
its molecular pharmacology, its abuse for recreational purposes
and additional undesirable effects, such as hypomotility and
hypothermia (Crawley et al., 1993), impairments in executive
function (Crean et al., 2011) and memory consolidation
(Ranganathan and D’Souza, 2006). However, the identification
of the major psychoactive component 19-tetrahydrocannabinol
(19-THC) (Gaoni and Mechoulam, 1964), and the subsequent
isolation of cannabinoid receptors (CB1 and CB2 receptors, both
G-proteins-coupled receptors linked to Gi/o proteins) with high
expression levels in the nervous system, led to an explosion
of studies exploring the ECS and its regulatory functions in
health and disease. Briefly, the ECS consists of endogenous
cannabinoids (endocannabinoids, eCBs), cannabinoid receptors,
enzymes responsible for synthesis and degradation of eCBs and
all genes related to them (Mackie, 2008a,b).

In this context, although several cannabinoids are available,
current literature about their potential use for pain treatment
remains controversial (Davis, 2014). Indeed, as reviewed by
Nurmikko et al. (2007) and Martin-Sanchez et al. (2009), 19-
THC or 19-THC plus cannabidiol induced relief in only one
among six to nine patients (number needed to treat, NNT = 6–9).
Moreover, the number needed to harm (NNH) (motor and
cognitive dysfunction and altered perception) ranged between
five and eight. These data suggest that, apart from its low efficacy,
19THC could have a narrow therapeutic index. Nevertheless, the
above cannabimimetic effects seem to be mainly mediated by CB1
receptor activation, suggesting that other parts of the ECS could
be druggable to treat pain. In addition, one of the physiological
functions attributed to the eCBs is to suppress pain (Walker and
Huang, 2002).

Endogenous Cannabinoids
The first eCB isolated in the brain was N-arachidonoyl
ethanolamide (AEA), or anandamide (a name taken from
the Sanskrit word Ananda, which means “bliss, joy,” and
amide) (Devane et al., 1992; Figure 2). AEA is a fatty acid
neuromodulator derived from the non-oxidative metabolism of
arachidonic acid (AA). The second endocannabinoid identified
was 2-arachidonoyl glycerol (2-AG) (Mechoulam et al., 1995;
Sugiura et al., 1995). As the search for endogenous 19-THC-like
compounds continued, other bioactive lipids were extracted from
animal tissues. These include noladin ether (Hanus et al., 2001),
virodhamine (Porter et al., 2002) and N-arachidonoyl dopamine
(NADA) (Huang et al., 2001).

The most widely investigated eCBs are anandamide and 2-
AG. Indeed, anandamide is present in about 170-fold lower
levels of brain tissue than 2-AG (Stella et al., 1997), and
both lipidic derivatives activate cannabinoid CB1 and CB2
receptors. Certainly, anandamide shows preferential affinity
for CB1 (Ki = 89 nM) compared to CB2 (Ki = 371 nM)
receptors (Gauldie et al., 2001), whereas 2-AG is considered
a full agonist at both CB1 and CB2 receptors (Sugiura and
Waku, 2000). Nevertheless, it has been shown that AEA
could activate the vanilloid type-1 receptor (TRPV1), which
contributes to the many non-CB1-mediated effects (Zygmunt
et al., 1999; Smart et al., 2000). Furthermore, AEA and other
eCBs (palmitoylethanolamide [PEA] and oleylethanolamide
[OEA]) also are agonists of the peroxisome proliferator-activated
receptor α (PPARα) (Fu et al., 2003; Bouaboula et al., 2005;
Lo Verme et al., 2005). PEA also has a well-established role
in pain modulation and inflammation in rodents (Jaggar et al.,
1998; Calignano et al., 2001; Lo Verme et al., 2005; D’Agostino
et al., 2007; González-Hernández et al., 2015), whereas in
humans PEA treatment seems to relieve neuropathic pain
(Calabro et al., 2010; Conigliaro et al., 2011; Gatti et al.,
2012).

The eCBs are atypical neurotransmitters and/or
neuromodulators. They are not stored in synaptic vesicles
and are not released from presynaptic terminals via an exocytotic
mechanism. In fact, their precursors exist in the cell membrane,
are cleaved by specific enzymes “on demand” depending on
intracellular calcium increase and are released from cells
immediately after their production. The synthesis, release
and deactivation of the endogenous cannabinoids are tightly
regulated processes. As discussion of these processes is beyond
the scope of this review, the interested reader is referred to
several reviews on the topic (Howlett, 2002; Piomelli, 2003;
Simon and Cravatt, 2006; Okamoto et al., 2007; Ueda et al., 2011;
Luchicchi and Pistis, 2012).

Cannabinoid Receptors
To date, there are two known cannabinoid receptors that are part
of the ECS, the CB1 and CB2 receptors. These receptors belong
to the 7-transmembrane G-protein coupled receptors (GPCRs)
primarily coupled to Gi/o proteins that inhibit adenylyl cyclase
(AC) and increase mitogen-activated protein kinase (MAPK)
activity downstream of β-arrestin (Howlett, 2002; Vasileiou
et al., 2013). Activation of these receptors triggers the inwardly

Frontiers in Pharmacology | www.frontiersin.org 4 January 2019 | Volume 9 | Article 1496

https://www.frontiersin.org/journals/pharmacology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-09-01496 January 3, 2019 Time: 17:1 # 5

Guerrero-Alba et al. GPR18 and GPR55 in Pain

FIGURE 2 | Chemical structures of some plant (A), synthetic cannabinoids (B) and endocannabinoids (C) that bind to cannabinoid receptors (D). It is interesting to
note that cannabinoids could activate intracellular pathways by direct activation of its receptors (\protectÊ and Ë) or modulate other family receptors
(\protectÌ and Í), which contribute to the biological effect of these molecules (particularly for the endocannabinoids). In general terms, classic cannabinoid
receptors (CB1 and CB2) are GPCRs, which are canonically coupled to Gi/o proteins. Consequently, under CB1/2 receptors: (i) a decrease of adenylyl cyclase (AC)
activity; (ii) an inactivation of Ca2+ channels; and (iii) activation of inwardly rectifying K+ channels are achieved. These are signal transduction systems associated
with inhibition of neurotransmitter release. The inhibition of AC occurs via activation of Gαi-mediated signaling whereas Gαo-activation results in inhibition of
voltage-dependent Ca2+ channels (VDCCs) through the release of associated βγ subunits (apparently CB2 receptors are ineffective, compared with CB1, for shifting
ionic currents via βγ subunits). In addition to PKA inhibition, CB1/2 receptor signaling also leads to the downstream activation of MAPK which can regulate nuclear
transcription factors and consequently expression of several genes. Note that GPR18 seems to be coupled to Gi/o proteins, whereas GPR55 has been associated
with an increase of intracellular Ca2+ via Gα12/13. In the case of TRPV1 channels (a non-selective cation channel for Ca2+, Mg2+, and Na+ ions), it is well-known
that agonist can be used rationally for the treatment of pain considering that this channel under constant activation desensitizes the nociceptive neuron. Finally,
although not fully investigated, cannabinoid compounds could also activate PPARα/δ, which are involved in pain modulation and transmission.
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rectifying potassium (K+)-channels and A-type potassium (K+)-
channel currents and inhibits N-Type and P/Q type calcium
(Ca2+)-channel activity (Demuth and Molleman, 2006). The CB2
receptor is also negatively coupled to adenylyl cyclase but it seems
not to be coupled to calcium (Ca2+)-channels (Felder et al.,
1995). However, CB1 receptors can also interact with Gs and
Gq/11 under certain conditions and with certain agonists (Mackie,
2005, 2008b). In addition, a pair of orphan-related receptors
(GPR18 and GPR55) is also described as cannabinoid putative
receptors.

CB1 receptor expression
The CB1 receptor is highly expressed in the cortex, cerebellum
and associational cortical regions of neocortex (Glass et al., 1997).
It is also expressed in the spinal dorsal horn (Sanudo-Pena et al.,
1999) and in DRG neurons (Hohmann and Herkenham, 1999;
Salio et al., 2002; Walker and Hohmann, 2005). Autonomic
nerve terminals express CB1 receptors (Ishac et al., 1996; Vizi
et al., 2001), which negatively modulate the sympathetic tone
(Marichal-Cancino et al., 2013). Low levels of these receptors
have been reported in the adrenal gland, thymus, heart, bone
marrow, tonsils, prostrate, uterus, ovary and lung (Galiegue et al.,
1995; Rice et al., 1997). A key characteristic of this receptor
is the formation of heterodimers, suggesting that intracellular
signaling could change under different conditions (Callen et al.,
2012; Laprairie et al., 2012; Straiker et al., 2012).

CB2 receptor expression
The CB2 receptor is mostly expressed on cells of the immune
system and spleen (Munro et al., 1993; Galiegue et al., 1995;
Di Marzo et al., 2004). A few studies have found CB2
immunoreactivity expression in glial and neuronal cells in some
areas of the rodent brain (Gong et al., 2006; Onaivi et al.,
2006), but this expression remains controversial (Hohmann and
Herkenham, 1999; Salio et al., 2002; Walker and Hohmann,
2005). Notably, nerve injury and inflammation upregulate
expression of CB2 receptors in neurons and microglia (Beltramo
et al., 2006; Rahn and Hohmann, 2009; Sagar et al., 2009; Hsieh
et al., 2011). Furthermore, some studies have demonstrated the
presence of CB2 receptors in the DRG and afferent fibers in the
spinal dorsal horn (Ross et al., 2001; Anand et al., 2008).

Role of CB1 and CB2 Receptors on
Primary Afferent Neurons
DRG neurons express CB1 receptors (Hohmann and
Herkenham, 1999; Ross et al., 2001; Price et al., 2003). This
receptor is synthesized in the cell neuronal bodies and inserted
on both central and peripheral terminals (Hohmann and
Herkenham, 1999; Hohmann et al., 1999). CB1 receptors
are mainly expressed in myelinated fibers of DRG neurons
(Hohmann and Herkenham, 1999; Salio et al., 2002; Bridges
et al., 2003) and also co-localize with CGRP, TRPV1 and IB4
(Hohmann and Herkenham, 1999; Hohmann et al., 1999;
Ahluwalia et al., 2000; Bridges et al., 2003; Veress et al., 2013).

Nerve injury enhances CB1 receptor expression in the DRG
and spinal cord (Lim et al., 2003; Wang et al., 2007; Shiue
et al., 2017) and other brain areas related with the emotional

component of pain (Knerlich-Lukoschus et al., 2011). These data
give an anatomical basis for the involvement of CB1 receptors
in modulating neuropathic pain. In this regard, it has been
shown that systemic and local administration of CB1 receptor
agonists produce anti-nociceptive effects in neuropathic pain
models (Herzberg et al., 1997; Fox et al., 2001; Bridges et al.,
2003; Yu et al., 2010). Moreover, deletion of CB1 receptors in
peripheral (but not at spinal or supraspinal level) nociceptors
reduced analgesia by local or systemic (but no intrathecal) CB1
receptor agonists (Agarwal et al., 2007). Thus, CB1 receptors
located at primary afferent neurons constitute the prime target
for producing cannabinoid analgesia.

Some of the peripheral antinociceptive effects of cannabinoids
may occur through interaction with another receptor system.
In this regard, an early work in rat nodose ganglion neurons
showed that cannabinoid agonists inhibited 5-HT-induced
currents in a concentration-dependent manner. The inward
current was sensitive to the serotonin (5-HT3) receptor
antagonist MDL72222, suggesting a cannabinoid-mediated
inhibition of serotonin (5-HT3) currents (Fan, 1995). Later,
in vivo experiments demonstrated that application of CB1 and
CB2 receptor agonists attenuated the activity of rat peripheral
(5-HT3) receptors on the terminals of cardiopulmonary afferent
C-fibers (Godlewski et al., 2003) through an allosteric interaction
at a (5-HT3) modulatory site (Barann et al., 2002). Moreover,
the inhibitory effects of cannabinoids may occur through
a synergistic action with opioid receptors and their signal
transduction pathways (Pugh et al., 1996; Smith et al., 1998;
Manzanares et al., 1999; Massi et al., 2003; Scavone et al., 2013) or
by a cannabinoid-mediated increase in opioid peptide synthesis
and release of endogenous opioids such as enkephalins and
dynorphins (Corchero et al., 1997a,b; Valverde et al., 2001).

The use of cannabinoid agonists as analgesic drugs is limited
due to adverse effects in the CNS (Clermont-Gnamien et al.,
2002; Attal et al., 2004; Turcotte et al., 2010). However, since
it has been demonstrated that CB1 receptors are expressed at
primary afferent neurons (Agarwal et al., 2007), the synthesis
of CB1 receptor agonists with limited CNS penetration is under
development (Clapper et al., 2010; Yu et al., 2010).

The molecular mechanisms by which the CB1 receptor has
peripheral antinociceptive effects are not completely understood.
It is known that CB1 receptor, coupled to Gi/o protein, can
modulate several cellular mechanisms, all of which can reduce
the excitability of neurons (e.g., opening of inward rectifying
potassium (K+)-channels and A-type potassium (K+)-channels,
and inhibiting N-Type and P/Q type calcium (Ca2+)-channels)
(Demuth and Molleman, 2006). Moreover, there are several
studies showing that cannabinoids can modulate the activity of
transient receptor potential (TRP) channels, which are implicated
in the modulation of pain processing. For example, multiple
studies have shown that activation of the CB1 receptor suppresses
capsaicin-induced hyperalgesia in afferent neurons (Ko and
Woods, 1999; Li et al., 1999; Johanek et al., 2001; Millns
et al., 2001; Johanek and Simone, 2004; Santha et al., 2010).
However, there are controversial findings regarding the effects
of CB1 receptor agonists on TRPV1 channels, because the CB1
receptor agonist anandamide exerts dual effects on afferent
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neurons, depending on the concentration used (Ross, 2003; Evans
et al., 2004; Sousa-Valente et al., 2014). Specifically, anandamide
produces a CB1-mediated inhibitory effect at nM concentration,
while it exerts a TRPV1-mediated stimulatory effect at higher
concentrations (µM) in primary afferent neurons (Tognetto
et al., 2001; Roberts et al., 2002; Ross, 2003; Fischbach et al., 2007).
A recent study using mouse afferent neurons has shown that
activation of CB1 receptors inhibit nerve growth factor (NGF)-
induced sensitization of TRPV1 (Wang et al., 2014), possibly
through multiple signaling pathways, including ERK1/2 and
PI3K (Zhuang et al., 2004; Stein et al., 2006; Zhu and Oxford,
2007).

The analgesic action of cannabinoids may be mediated by
the presynaptic inhibition of neurotransmitter release in sensory
neurons. For example, presynaptic CB1 receptors inhibit CGRP
and substance P (SP) release from trigeminal sensory nerves
(Akerman et al., 2004; Oshita et al., 2005). Moreover, CB1
receptor agonists reduce voltage-activated Ca2+ current in DRG
neurons (Ross et al., 2001). On the other hand, it is possible
that even more important than peripheral actions, cannabinoids
induce analgesia by interfering with circuitry in the rostral
ventromedial medulla (RVM) (Meng et al., 1998).

CB2 receptors have also been found in nociceptive sensory
neurons of rodents (Ross et al., 2001; Merriam et al., 2008;
Schuelert et al., 2010) and humans (Anand et al., 2008). Like
with CB1 receptors, nerve damage upregulates CB2 receptors in
the superficial laminae of the dorsal horn of the spinal cord and
isolated DRG of mice (Wotherspoon et al., 2005) and human
beings (Anand et al., 2008).

Although the specific role of the CB2 receptor in sensory
neurons remains unclear, several functional studies in sensory
neurons point to an antinociceptive role (Burston and
Woodhams, 2014). For instance, the putative CB2 receptor
agonist JWH-133 inhibits capsaicin-induced depolarization
of the vagus sensory nerve in guinea pigs and humans (Patel
et al., 2003). Moreover, JWH-133 reduces the response of
wide dynamic range dorsal horn neurons to both innocuous
and noxious intensities of mechanical stimuli (Elmes et al.,
2004). This compound also attenuates the capsaicin-evoked
Ca2+ response in DRG neurons in neuropathic rats (Sagar
et al., 2009), while GW818646X (other CB2 receptor agonist)
diminishes capsaicin-induced inward cation currents and
elevation of cytoplasmic Ca2+ (Anand et al., 2008). Another CB2
receptor agonist, A-836339, inhibits von Frey-evoked activity
of WDR neurons in neuropathic rats (McGaraughty et al.,
2009). Local peripheral injection of the selective CB2 receptor
agonist AM1241 into the hind paw produces antinociception
to thermal stimulation (Malan et al., 2001). AM1241 also
inhibits bradykinin-induced mesenteric afferent nerve activity
(Hillsley et al., 2007). This effect was absent in CB2 knock-
out mice and blocked by AM630, a CB2 receptor inverse
agonist. Local injection of the PEA analog N-(4-methoxy-2-
nitrophenyl)hexadecanamide induces CB1- and CB2-dependent
antinociception in rats (Roa-Coria et al., 2012). Similar results
were observed with GW833972A, another putative CB2 receptor
agonist (Belvisi et al., 2008). Interestingly, repeated systemic
administration of the CB2 receptor selective agonist AM1710

suppresses paclitaxel-induced allodynia (Deng et al., 2015).
Taken together, the data strongly suggest that CB1 and CB2
receptors have an antinociceptive role. Despite this evidence,
there are few cannabinoid-based drugs currently available for
clinical use (see below).

CB1 and CB2-Based Treatment for Pain
A randomized, placebo-controlled, double-blinded crossover
design was used to examine the effect of cannabinoids on pain.
Low, medium, and high doses of smoked cannabis (respectively
2, 4, and 8% 19-THC by weight) did not modify capsaicin-
induced pain assessed in 15 healthy volunteers 5 min after
exposure (Wallace et al., 2007). In contrast, the medium dose
of 19-THC diminished capsaicin-induced pain 45 min after
cannabis exposure. Of note, these authors found that a high
dose of cannabis increased capsaicin-induced pain (Wallace et al.,
2007). Similar results have been reported with a high dose of
nabilone (an oral synthetic cannabinoid 19-THC analog) on 41
patients with postoperative pain (Beaulieu, 2006). Another study
evaluated cannabis extract capsules (20 mg of 19-THC) in 18
healthy female volunteers (Kraft et al., 2008). Treatment with19-
THC was not able to reduce pain induced by capsaicin, electrical
stimulation or sunburn. Taken together, it seems that 19-THC
is not effective for acute pain. A similar conclusion was reached
after analyzing a total of 611 patients in seven well-designed
studies (Stevens and Higgins, 2017).

Although the effects of cannabinoids in the acute pain setting
seem to be disappointing, results of clinical trials evaluating
cannabinoids in chronic pain are much more promising (see
Table 1). The conditions causing chronic pain varied between
studies and included neuropathy (chemotherapy, diabetes,
human immunodeficiency virus [HIV]), cancer, fibromyalgia,
multiple sclerosis and rheumatoid arthritis (Whiting et al.,
2015). Sativex (containing 19-THC:cannabidiol [CBD] in an
approximate 1:1 ratio [oral spray]) reduced neuropathic pain in
patients with unilateral neuropathic pain (Berman et al., 2004;
Nurmikko et al., 2007; Langford et al., 2013; Serpell et al.,
2014). Likewise, treatment with smoked cannabis diminished
pain in patients with multiple sclerosis (Rog et al., 2005; Corey-
Bloom et al., 2012), neuropathic pain (Wilsey et al., 2013) and
diabetic neuropathy (Wallace et al., 2015). In contrast, sativex
was ineffective in relieving chemotherapy-induced neuropathic
pain (Lynch et al., 2014). Oral administration of dronabinol,
a synthetic 19-THC analog, modestly reduced central pain in
patients with multiple sclerosis (Svendsen et al., 2004). Nabilone,
another synthetic 19-THC analog, diminished neuropathic pain
in diabetic patients (Toth et al., 2012). Oral administration of
19-THC (ECP002A) reduced pain in patients with progressive
multiple sclerosis. Drug dosage was well tolerated and had a stable
pharmacokinetic profile (van Amerongen et al., 2017). Nabilone
is also effective in patients with medication overuse headache
(Pini et al., 2012). In contrast, nabilone did not reduce pain in
patients with fibromyalgia (Skrabek et al., 2008).

A limitation to clinical use of cannabinoids for pain is their
unfavorable side-effect profile, such as drowsiness, dizziness,
speech impediments, memory impairment and confusion.
Results of clinical trials with these agents indicate that high
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TABLE 1 | Studies about the antinociceptive effects of CB1 and CB2 receptor agonists in different pain models.

Pain model Drug treatment
and dose

Behavioral readout Route Results Proposed mechanisms
of action

Reference

Partial SNL WIN 55,212-2
0.3–10 mg/kg
CP-55,940
0.03–1 mg/kg
HU-210
0.001–0.03 mg/kg

Mechanical
hyperalgesia Thermal
hyperalgesia Tactile
allodynia

s.c. or
i.t.

They produce complete
reversal of mechanical
hyperalgesia with catalepsy
Only WIN 55,212-2
reversed tactile allodynia
and thermal hyperalgesia in
this model

Via activation of CB1
receptors in both CNS
and in the periphery

Herzberg et al., 1997;
Fox et al., 2001;
Bridges et al., 2003

SNL or carrageenan
model

AZ11713908
0.6–1.2 µmol/kg

Thermal and
mechanical
hyperalgesia

s.c. Robust analgesia in both
models

Likely via peripheral
activation of CB1
receptor

Yu et al., 2010

Mechanical stimulation,
formalin or capsaicin
models, in mice that
lacked CB1 receptor
specifically in primary
nociceptors

Endocannabinoids
(AEA and
arachidonic acid)

Thermal and
mechanical
hyperalgesia

The nociceptor-specific
loss of CB1 receptor
substantially reduced the
analgesia produced by
local and systemic but no
intrathecal, delivery of
cannabinoids

Via CB1 receptors
expressed on the
peripheral terminals of
nociceptors

Agarwal et al., 2007

SNL, carrageenan, LPS
or CIA model

URB937 1 mg/kg
URB597 10 mg/kg
PF-3845 0.1-10
µg/kg

Thermal and
mechanical
hyperalgesia, tactile
allodynia

i.p. or
i.t.

Attenuation of hyperalgesia
and partial reduction of
allodynia

Suppresses FAAH activity
and increases AEA levels

Clapper et al., 2010;
Kinsey et al., 2011;
Booker et al., 2012

FCA, partial SNL, tail flick,
hot plate or incision
model of postoperative
pain

GW405833
0.3–30 mg/kg

Mechanical
hyperalgesia and
tactile allodynia

i.p. Elicits potent and
efficacious antihyperalgesic
effects in rodent models of
neuropathic, incisional and
chronic inflammatory pain

Via activation of CB2
receptors

Valenzano et al.,
2005

FCA, chronic constriction
injury, incision model of
postoperative pain or
knee joint osteoarthritic
pain

A796260
11–35 mg/kg

Thermal and tactile
allodynia

i.p. Analgesic activity in all pain
models

Via activation of CB2
receptors

Yao et al., 2008

Partial SNL or
carrageenan model

JWH133 50–
100 nmol/mouse

Tactile allodynia i.t., i.p.
or local

Reverses partial sciatic
nerve ligation-induced
mechanical allodynia in
mice.

Via activation of central
CB2 receptors

Patel et al., 2003;
Elmes et al., 2004;
Yamamoto et al.,
2008; Sagar et al.,
2009

SNL, Formalin,
Carrageenan, FCA or
intradermal capsaicin

AM1241
0.03–6 mg/kg

Tactile and thermal
allodynia, mechanical
hyperalgesia and
nocifensive response

i.v., i.p.
or i.pl.

Analgesic effects in all pain
models

Via activation of
peripheral CB2 receptors

Malan et al., 2001,
2002; Ibrahim et al.,
2003; Quartilho et al.,
2003; LaBuda et al.,
2005; Beltramo et al.,
2006; Hillsley et al.,
2007; Yao et al.,
2008

Formalin model or
postoperative pain

HU308 30,
50 mg/kg

Nocifensive response
and actile allodynia

i.p. Reduces blood pressure,
blocks defecation, and
elicits anti-inflammatory and
peripheral analgesic activity

Via activation of CB2
receptors

Hanus et al., 1999;
LaBuda et al., 2005

FCA or chronic
constriction injury

GW842166X
0.1–0.3, 15 mg/kg

Mechanical
hyperalgesia

p.o. Very potent analgesic in
inflammatory and
neuropathic pain models

Potent and highly
selective full agonist at
the CB2 receptor

Clayton et al., 2004;
Giblin et al., 2007;
Anand et al., 2008

SNL A836339
1–3 µmol/kg

Tactile allodynia i.v. Reduces both spontaneous
and von Frey-evoked firing
of WDR neurons in
neuropathic rats

Via activation of spinal
and peripheral CB2
receptors

McGaraughty et al.,
2009

Paclitaxel-neuropathic
pain

AM1710
0.1–10 mg/kg

Mechanical and
thermal allodynia

i.p. Suppresses allodynia
generated by paclitaxel
without central side effects

Via activation of CB2
receptors

Rahn et al., 2011;
Deng et al., 2015

AEA, anandamide; SNP, spinal nerve ligation; FCA, Freud’s complete adjuvant; CIA, collagen-induced arthritis; LPS, lipopolysaccharide; s.c., subcutaneous; i.p,
intraperitoneal; i.t., intrathecal; i.v., intravenous; p.o., oral administration; i.pl, intraplantar.
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dosages are required to attain therapeutic effects and it is
difficult to reach these dosages in clinical practice (Turcotte
et al., 2010). At doses that prevent subjective effects, some
cannabinoids seem to be ineffective for controlling acute pain
(Kalliomäki et al., 2013). Several peripherally restricted CB1 and
CB2 receptor agonists have been developed to avoid these side
effects (Pertwee, 2009; Yu et al., 2010; Rahn et al., 2011; Yrjola
et al., 2013). However, additional research is needed to improve
study methodologies including the use of standard formulations
and/or dosages, the increase in the number of subjects involved,
and the general determination of the safe and effective use of
cannabis for the treatment of human pain.

Another interesting area of research has recently focused on
the evaluation of the possible synergy between cannabinoids
and opioids in the management of pain. A combination of 19-
THC and morphine diminished experimental pain in healthy
volunteers (Roberts et al., 2006). Furthermore, dronabinol
combined with opioids relieved chronic pain in patients (Narang
et al., 2008).

In the last years, pain research has focused on the inhibition of
the enzymes playing a role in EC metabolism and the elevation
of the EC tonus locally. Special emphasis is given on multi-
target analgesia compounds, where one of the targets is the
EC degrading enzyme. Dual FAAH1 /TRPV1 blockers, such
as N-arachidonoyl-serotonin (AA-5-HT) and OMDM198, are
effective in animal studies, but this multi-target strategy has not
yet reached the clinic (Maione et al., 2007, 2013; Morera et al.,
2009; Costa et al., 2010; Malek et al., 2015).

Importantly, cannabinoids interact (apart from CB1 and CB2)
with several other pharmacological receptors, including the
cannabinoid putative receptors GPR18 and GPR55 (which have
been even suggested as CBx and CB3 receptors). It is likely
that the contradictory effects observed in clinical trials using
Cannabis sp.-based treatments (e.g., 19-THC) may be due to
the high promiscuity of cannabinoids for their receptors. Before
achieving a clinical benefit from an EC system-based therapy
in pain (and other alterations), it is mandatory to detect and
understand the physiological and/or pathophysiological role of
the cellular targets involved. In this context, we provide an
analysis of the potential participation of the putative cannabinoid
receptors GPR18 and GPR55 in pain (see below).

GPR18 AND GPR55: POTENTIAL
TARGETS FOR PAIN TREATMENT

GPR55 and GPR18: Generalities
Cannabinoids interact with multiple orphan receptors
(Alexander, 2012). Different groups have discussed if G
protein-coupled receptor 18 (GPR18) and 55 (GPR55) should
be considered as novel cannabinoid receptors (Alexander,
2012; Alexander et al., 2017). Nevertheless, the nomenclature

1FAAH, Fatty Acid Amide Hydrolase Enzyme. FAAH is an integral membrane
enzyme that hydrolyzes the endocannabinoid anandamide and related amidated
signaling lipids. FAAH KO mice display elevated anandamide levels, showing
reduced nociceptive transmission in several pain models. Journal of Neurobiology
61: 149–60.

suggested by the Nomenclature Committee of the Union of
Basic and Clinical Pharmacology (NC−IUPHAR) Subcommittee
on Cannabinoid Receptors (Pertwee et al., 2010) decided that
all criteria to consider these as novel cannabinoid receptors
remain incomplete and, accordingly, they were classified again
as orphan receptors (Alexander et al., 2017). Independently
of the official decision, these receptors clearly interact with
cannabinoids directly or indirectly. Expression of GPR18 seems
to be rich in the testis, spleen, peripheral blood leucocytes and
lymph nodes (Gantz et al., 1997; Vassilatis et al., 2003; Rosenkilde
et al., 2006). Its expression suggests a potential role in the
control of immune system activity (e.g., leucocytes migration)
(Burstein et al., 2011) and accordingly inflammation. Moreover,
activation of GPR18 by N-arachidonoylglycine leads to apoptosis
of inflammatory leukocytes (Burstein et al., 2011; Takenouchi
et al., 2012), which in turn reduces local inflammation. There
is also evidence that activation of GPR18 lowers intraocular
pressure in mice (Miller et al., 2016). All these findings suggest
a physiological function of NAGly via GPR18 in different
inflammatory processes.

Knowledge about GPR55 physiology in the nervous system
has increased recently (Marichal-Cancino et al., 2017). This
receptor has been suggested as a potential therapeutic target
in Parkinson’s disease due to a possible alteration on its
expression in the basal nuclei (Celorrio et al., 2017), where
it is related to procedural memories (Marichal-Cancino et al.,
2016). GPR55 is also expressed in the hippocampus, where
it has a role in spatial navigation (Marichal-Cancino et al.,
2018). Furthermore, it is possible that some antiepileptic
actions observed with phytocannabinoids involve the blocking
of GPR55 (Kaplan et al., 2017). However, the above is a
topic under study and findings are preliminary. Despite all
advances in the physiology of GPR55, several actions in different
areas of the CNS remain obscure (Marichal-Cancino et al.,
2017). Interestingly, PEA (a cannabinoid related compound)
is currently used to treat pain and inflammation. Like other
cannabinoid related molecules, PEA has a very complex
mechanism of action, which includes direct and/or indirect
interaction with CB1, TRPV1, PPAR, GPR55 and GPR18, among
other receptors (Keppel Hesselink et al., 2014). Certainly, PEA
has high affinity for GPR55 as a full agonist (Ryberg et al.,
2007). Thus, it is necessary to investigate whether GPR55 is
involved in the analgesic and anti-inflammatory actions of
PEA.

Actions of GPR18 and GPR55 and Their
Potential Role in the Pharmacology of
Pain
GPR18 and GPR55 are differentially expressed in the central
and peripheral nociceptive systems of rodents and humans,
suggesting a potential role in the modulation of nociceptive
pathways (DRG TXome Database)2(Ray et al., 2018). In general,
GPR18 is less studied compared to GPR55 (see below). This
is partly due to the fact that signaling mechanisms and

2http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome/search.
php
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endogenous ligands are still controversial (Alexander et al.,
2017). GPR18 has been suggested to modulate, depending on the
ligand, both Gαi/o and Gαq/11 transduction pathways (Console-
Bram et al., 2014). In this sense, NAGly is proposed as the
endogenous GPR18 ligand (Kohno et al., 2006; McHugh et al.,
2010). However, a recent study suggests that NAGly increases
Ca2+ mobilization and MAPK activity in HAGPR55/CHO cells
(Console-Bram et al., 2017). This response is attenuated by
ML193 (GPR55 receptor antagonist) suggesting that NAGly-
mediated effects depend on GPR55 activation. Moreover, an
independent study reported that NAGly does not activate
GPR18 receptors (Lu et al., 2013). In support of this,
there is a previous observation showing that NAGly does
not activate GPR18 (Yin et al., 2009). These discrepancies
could be partially explained by the fact that NAGly is also
a reversible and non-competitive inhibitor of the glycine
transporter type 2 (GlyT2) (Wiles et al., 2006). In line with
this, it has been shown that NAGly enhances inhibitory
glycinergic transmission synaptic within the superficial dorsal
horn by blocking glycine uptake via GlyT2 and decreasing
excitatory NMDA-mediated synaptic transmission (Jeong et al.,
2010).

It has been proposed that both GPR18 and GPR55 could play
a role in the modulation of acute and chronic pain (Table 2).
In animal models of inflammatory pain, intraplantar NAGly
administration attenuates formalin-induced pain (Huang
et al., 2001). Moreover, intrathecal administration of NAGly
reduces complete Freund’s adjuvant (CFA)-induced mechanical
allodynia and thermal hyperalgesia by a CB1-independent
mechanism (Succar et al., 2007). Additionally, NAGly increases
the production of 15-deoxy-113,14-prostaglandin J2 and lipoxin
A4, leading to a reduction in the migration of inflammatory
cells into the area of acute inflammation (Burstein et al.,
2011). GPR18 is expressed on human leukocytes, including
polymorphonuclear neutrophils (PMN), monocytes, and
macrophages and, furthermore, its activation regulates leukocyte
trafficking during acute inflammation (Chiang et al., 2015).
GPR18 and TRPV1 are expressed in chondrocytes within
the deep zone of cartilage in patients with osteoarthritis
(OA) (Dunn et al., 2016), suggesting that GPR18 presence
in degenerate tissues could be a target for treatment with
cannabinoids.

Nerve injury enhances expression of GPR18 mRNA in
spinal cord and/or the DRG of rats, suggesting a potential
role of GPR18 in the modulation of neuropathic pain
(Malek et al., 2016). Accordingly, intrathecal administration
of NAGly reduces mechanical allodynia in rats subjected to
spinal nerve ligation and this effect is not prevented by
pretreatment with either the CB1 or CB2 receptor antagonists
AM251 and SR144528, respectively (Vuong et al., 2008).
Although NAGly has been proposed as an endogenous
GPR18 ligand, recent studies have found that resolvin D2
(RvD2) also activates GPR18 receptors (Chiang et al., 2015;
Zhang et al., 2016). RvD2 activates recombinant human
GPR18 in a receptor- and ligand-dependent manner and
promotes the resolution of bacterial infections and organ
protection (Chiang et al., 2015). Moreover, RvD2 enhances

endothelial cell migration in a Rac-dependent manner via
GPR18, and GPR18-deficient mice have an endogenous defect in
perfusion recovery following hind limb ischemia (Zhang et al.,
2016). In rodents, intrathecal administration of RvD2 reverses
CFA-induced inflammatory pain, prevents formalin-induced
spontaneous pain, and also reverses C-fiber stimulation-evoked
long-term potentiation in the spinal cord (Park et al., 2011).
However, RvD2 antinociceptive effects seem to be mediated
by additional mechanisms involving the inhibition of transient
receptor potential (TRPV1 and TRPA1) channels (Park et al.,
2011). Undoubtedly, more studies to redefine the signaling
pathways, ligands and physiological functions of GPR18 are
needed.

GPR55 has been found highly expressed in large-diameter
neurons, but present at low levels in small-diameter neurons
of the mouse DRG (Lauckner et al., 2008). Indeed, reports
suggest that GPR55 plays a role in modulating nociceptor
excitability. Activation of GPR55 with lysophosphatidylinositol
(LPI) promotes excitability in cultured large DRG neurons
by increasing intracellular Ca2+ (Lauckner et al., 2008)
and also produces mechanical hypersensitivity in mice
after local peripheral administration (Gangadharan et al.,
2013). Although there is a general consensus that LPI acts
as an agonist for GPR55, it has been also reported that
LPI modulates large-conductance Ca2+-activated potassium
(K+) channels (BKCa) (Bondarenko et al., 2011a,b), 2-pore
domain potassium (K+)-channels (TREK-1) (Maingret et al.,
2000; Danthi et al., 2003) and the potassium (K+) channel
subfamily K member 4 (KCNK4 or TRAAK) (Maingret et al.,
2000), transient receptor potential (TRPV2; Monet et al.,
2009; Harada et al., 2017), and transient receptor potential
(TRPM8; Vanden Abeele et al., 2006; Andersson et al., 2007)
channels. All these channels are expressed in the primary
nociceptive pathway and their activation either modulates or
amplifies sensory information (Basbaum et al., 2009). Therefore,
the pharmacological data with LPI should be taken with
caution. Furthermore, LPI is not the sole GPR55 activator.
The hydrophilic glycerophospholipid lyso-phosphatidyl-β-D-
glucoside (LysoPtdGlc) was recently reported as a regulator
of the nociceptive central axon projections by activating
GPR55 with high affinity (Guy et al., 2015). This indicates that
glycerophospholipids could play a role modulating nociceptive
inputs in vivo.

Nerve damage increases GPR55 mRNA expression in the
spinal cord and DRG of rats (Malek et al., 2016) suggesting
the participation of these receptors in neuropathic pain. It has
been shown that the synthetic GPR55 agonist O-1602 reduces
movement-evoked firing of nociceptive C fibers in a rat model
of acute joint inflammation, and this effect is blocked by the
GPR55 receptor antagonist O-1918 (Schuelert and McDougall,
2011). O-1602 also has protective effects in a murine model of
experimentally induced colitis, but this anti-inflammatory effect
could not be mediated by GPR55 (Schicho et al., 2011).

On the other hand, other studies have reported that GPR55
knockout mice show a reduced tumor-induced mechanical
hypersensitivity (Gangadharan et al., 2013). GPR55 agonist
O-1602 produces pronociceptive effects in neuropathic rats
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TABLE 2 | Possible role of GPR18 and GPR55 receptors in different animal models of pain.

Pain
model/specie

Drug
treatment

Dose Route Outcome Proposed mechanisms
of action

Reference

Formalin /rat NAGly 275 nmol i.pl. Suppression of phase II
response

Non-CB1 mediated
mechanism

Huang et al.,
2001

CID16020046 10 µM Intra-ACC Attenuation of phase II
response Reduction of
p-ERK in the ACC
Attenuation of spinal c-fos
expression in the spinal
cord

Endogenous activation of
GPR55 signaling.
Modulatory effects of
GPR55 signaling in the
ACC on the descending
pain pathway

Okine et al., 2016

Formalin/mouse N/T N/T N/T No differences between WT
and GPR55−/− mice in
mechanical, cold and heat
hypersensitivity

Non-GPR55 mediated
mechanism

Carey et al., 2017

CFA /rat NAGly 70–700 nmol i.t. Attenuation of mechanical
and thermal hyperalgesia

Non-cannabinoid mediated
mechanism

Succar et al.,
2007

CFA/mouse N/T N/T N/T Absence of mechanical
hyperalgesia in GPR55−/−

mice

GPR55 signaling Staton et al.,
2008

Capsaicin/mouse N/T N/T N/T GPR55−/− and WT mice
display comparative levels
of capsaicin-evoked
nocifensive behavior,
mechanical and thermal
hyperalgesia

Non-GPR55 mediated
mechanism

Carey et al., 2017

PNL/rat
PNL/Mouse
PNL/Mouse

NAGly N/T
N/T

70–700 nmol
N/T N/T

i.t. N/T N/T Reduction of mechanical
allodynia Absence of
mechanical hyperalgesia in
GPR55−/− mice
GPR55−/− and WT mice
develop similar levels of
hypersensitivity to
mechanical, heat, and cold
stimulation

CB1 and CB2 independent
mechanism GPR55
signaling Non-GPR55
mediated mechanism

Vuong et al.,
2008 Staton
et al., 2008 Carey
et al., 2017

CCI/rat O-1602
AA-5-HT

1–10 mg/kg
100–1000 nM

i.p. i.t. Pronociceptive properties in
neuropathic pain induced
by O-1602 (atypical
cannabinoid) Upregulation
of CB2, GPR18, and
GPR55 mRNA in the spinal
cord and/or DRG after CCI.
Increased pain threshold to
mechanical and thermal
stimuli following AA-5HT

Pronociceptive role of
GPR55. Possible role of
GPR18 Involvement of
CB2, GPR18 and GPR55
receptors

Breen et al., 2012
Malek et al., 2016

Paclitaxel/mouse N/T N/T N/T GPR55−/− and WT mice
develop similar levels of
paclitaxel-induced
mechanical and cold
allodynia

Non-GPR55 mediated
mechanism

Carey et al., 2017

LPI-induced
pain/mouse

LPI 2 pmol–
6 nmol

i.pl. WT mice: Sensitization
against non-painful and
painful mechanical stimuli.
GPR55−/− mice: reduction
of LPI-induced acute
allodynia, attenuation of
LPI-induced long-term
mechanical hyperalgesia

GPR55, Gαq/11, and Gα13
pathways, and their
signaling via RhoA-ROCK
as well as ERK1/2

Gangadharan
et al., 2013

Hot plate
test/rat

LPI 1 µg Intra-PAG Reduction in nociceptive
threshold that is abolished
by a pretreatment with
ML-193, a GPR55
antagonist.

Pro-nociception mediated
by GPR55 activation at
central levels. Blockade of
GPR55 signaling in the PAG
may promote analgesia

Deliu et al., 2015

CFA, Complete Freund’s Adjuvant; PNL, partial ligation of the sciatic nerve; CCI, chronic constriction injury; NAGly, N-arachidonylglycine; LPI, lysophosphatidylinositol;
AA-5-HT, N-arachidonoyl-serotonin; WT, wild type; ACC, anterior cingulated cortex; PAG, periaqueductal gray; N/T, not tested.
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(Breen et al., 2012). At the central nervous system, local injection
of the GPR55 putative inverse agonist CID16020046 into the
anterior cingulated cortex (ACC) produces antinociception in
the formalin test by decreasing the extracellular signal-regulated
kinase 1/2 (ERK1/2) phosphorylation in the ACC and c-fos
mRNA expression in the spinal cord (Okine et al., 2016).
Moreover, LPI administration into the periaqueductal gray (PAG)
attenuates nociceptive latencies in a hot-plate test and also
produces a concentration-dependent increase in intracellular
Ca2+ levels in dissociated rat PAG neurons expressing GPR55
mRNA (Deliu et al., 2015). Although the exact mechanisms
underlying the GPR55-mediated antinociceptive effects remain
to be elucidated, it has been suggested that some cytokines
(e.g., IL-4 and IL-10) are responsible for the modulatory effects
observed during inflammatory pain conditions (Staton et al.,
2008).

Using cell lines, other studies have shown that GPR55 couples
to Gα13 and activates GTPases RhoA, Cdc42 and Rac1 (Ryberg
et al., 2007; Henstridge et al., 2009). Some efforts have tried to
elucidate the G-protein signaling pathway activated by GPR55
agonists in vivo. Using pharmacological and conditional genetic
tools in mice, the research group headed by Rohini Kuner showed
that LPI-mediated hypersensitivity depends on the activation of
Gα13 and Gαq/11, which in turn activate ERK1/2 (Gangadharan
et al., 2013). In support of these results, it has been shown that LPI
produces β-arrestin trafficking, MAPK, ERK1/2 phosphorylation
and activates the G-protein signaling by a PKCβII-independent
mechanism (Oka et al., 2007; Kapur et al., 2009). Interestingly,
the effects on β-arrestin GPR55 complex formation, ERK1/2
phosphorylation and internalization of GPR55 are blocked by
the GPR55 antagonist/partial agonist CP55,940 (Kapur et al.,
2009), suggesting that a complex mechanism triggered upon
GPR55 activation modulates G-coupled signaling pathways.
Moreover, it has been documented that activation of GPR55
leads to additional p38 MAPK (Oka et al., 2010) and AKT
phosphorylation (Pineiro et al., 2011). These events are related
to the subsequent activation of several major transcription
factors such as the nuclear factor of activated T-cells (NFAT)
(Waldeck-Weiermair et al., 2008; Henstridge et al., 2009, 2010),
CREB (Henstridge et al., 2010), NF-kB (Waldeck-Weiermair
et al., 2008; Henstridge et al., 2010), and ATF2 (Oka et al.,
2010).

Certainly, there is extensive literature indicating that signaling
pathways involving MAPK and transcription factors such as
NF-κB play an important role in pain (Niederberger and
Geisslinger, 2008; Ji et al., 2009). However, it is worth
emphasizing that most of the signaling mechanisms reported
for GPR55 receptors have been obtained in vitro using cell
lines and may not be completely translated to in vivo models.
This is particularly important due to the recent discrepancies
in the pain field using GPR55 knock-out mice. It was originally
reported that mice lacking GPR55 show no differences in
baseline pain responses compared to wild-type mice, but
mechanical hyperalgesia is absent following either intraplantar
CFA injection or partial nerve ligation (Staton et al., 2008).
However, a recent study using knock-out mice suggests that
GPR55 is dispensable for the development of inflammatory

and neuropathic pain (Carey et al., 2017). According to
these authors, GPR55 knock-out mice have no differences
in mechanical, cold or heat hypersensitivity after intraplantar
capsaicin, formalin or CFA injection. Likewise, development and
maintenance of neuropathic pain after paclitaxel administration
or partial nerve ligation is undistinguishable between GPR55
knock-out and wild-type mice. While the explanation for
this discrepancy is not clear, Carey et al. have suggested
that these differences could be due to multiple factors,
including the way the GPR55 knock-out mice were made, the
battery of tests used, freely moving animals versus restrained
animals during the test, sex differences, body weight, and
age of animals. Evidently, more behavioral studies using
controlled experimental conditions will be necessary to define
the importance of GPR55 receptors in modulating pain
responses.

CONCLUSION

Cannabinoids, via CB1 receptors, mainly induce inhibition
of pain integration that seems to be useful particularly in
the treatment of chronic pain, whereas CB2 stimulation
mainly causes antiinflammation via negative modulation of the
immune system. GPR18 and GPR55 have a role in integrating,
transmitting and/or alleviating pain. However, further studies
using more selective pharmacological tools combined with
genetic tools to generate cell-specific ablation or reactivation of
GPR18/GPR55 receptors in specific cell populations will help to
clarify the functional role of these receptors to take advantage of
them in therapeutics.
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