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Abstract

Background: Copy number variations (CNV) are important causal genetic variations for human disease; however, the lack of
a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.

Methodology/Principal Findings: Here, we developed a novel integrated strategy to test CNV-association in genome-wide
case-control studies. We converted the single-nucleotide polymorphism (SNP) signal to copy number states using a well-
trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the
physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based
CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36
new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery
disease, 1 with Crohn’s disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2
diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from
previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder
converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further
supports that CNVs have impact on bipolar disorder.

Conclusions/Significance: Our results demonstrated the effectiveness and robustness of our CNV-association analysis and
provided an alternative avenue for discovering new associated loci of human diseases.
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Introduction

Copy number variations (CNV) are DNA segments with gains

or losses in copy number longer than 1 kb compared to a reference

genome. At least 12% of the human genome has been identified as

copy number variable [1] and expression correlation studies have

revealed that these pervasive CNVs may affect physiological

function through regulating gene expression [2]. Increasing

evidence has shown that CNVs play important causal roles in

human diseases. For example, CCL3L1-related segmental dupli-

cation influences susceptibility to HIV-1/AIDS [3]. CNVs at

1q21.1 were associated with neuroblastoma [4]. What is more, de

novo CNVs have been associated with autism [5] and sporadic

schizophrenia [6].

The increasing functions found for CNVs in human diseases

make a genome-wide systematic survey of CNVs become

intriguing. However, there are no such effective tools for testing

the association of CNVs with disease in genome-wide scale.

Although many challenges have been reviewed previously [7,8],

here we re-emphasize the challenges in establishing such statistical

model. First, CNVs have a genomic localization pattern that spans

thousands of nucleotides, thus comparison among a chromosomal

region may be more effective than the specific testing on a

designated nucleotide. However, it is hard to pre-define the range

required for comparison in a large case-control dataset, since the

range is closely related to the function of the DNA segment.

Second, traditional association methods mostly summarized

single-nucleotide polymorphism (SNP) allele intensity into raw

copy number signal. However, the multiple Gauss-like distribution

of the raw copy number signal among cases and controls, which

has been recognized in other studies [1,7,8] and in our data

manipulation, demands a complicated statistical model with
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multiple assumptions to analyze CNV-association. These assump-

tions will not be suitable for every test, and parameters for these

assumptions that are inferred from experience will not be

applicable to every analysis. Those two challenges together with

the complexities that originate from signal noise, summarization

declination (which occurs when combining the SNP’s alleles with

non-linear measurements) and batch bias (which is from unequal

influence of individual selection and experimental condition),

make it difficult to analyze CNV-association in a uniform one-step

test. Additionally, one-step CNV-association testing, especially

through complicated signal summarization, causes intractable

results that cannot be compared to the primary data, whereas

verification of association results from primary data is important in

genome-wide association studies to provide the confidence for the

findings by common consent.

Here, we developed an integrated strategy to test CNV-

association with disease in large-scale case-control studies in

which single-nucleotide polymorphisms were used to calculate the

copy numbers. Our strategy processed the data in a hierarchical

mode to address the challenges individually (schematically

illustrated in Figure 1 and detailed in Materials and
Methods). We transformed continuous signal into discrete copy

number to eliminate signal noise and slight batch bias. We

performed a SNP specific testing with triple null hypotheses

(named as SNP site-based testing) to conform to pathophy-

siologically functioning way of CNV. We also conducted a

geographical pattern-comparison of CNV (named as window-
based testing) to ensure confidence. We applied this strategy to

genome-wide data with seven common diseases from the Well-

come Trust Case-Control Consortium (WTCCC) [9]. In the

original paper of these data, they found 24 independent associated

signals and several moderate significant signals through genotype-

association testing that was mostly applied in classical genome-

wide association study. By using SNP site-based testing and further

window-based testing, we identified 36 new susceptible loci for

these seven diseases, and none of which were reported previously

to be affected by CNVs. Through data querying for physiological

mechanisms and genotype-association, 15 of these identified loci

were reported to be relevant with those diseases, which indicate

that our results are valuable for further disease-related studies.

Results

Two features of our CNV-association strategy were proved

effective in the following results. The first is the multiple

hypotheses for the functioning mode of CNVs in disease. CNVs

Figure 1. CNV-association strategy transforms raw signal into copy number and detects association through site-specific testing
and CNV-pattern clustering. (A) Relative intensity was log2-transformed value for the normalized intensity-sum of the SNP alleles. (B) the relative
allele-ratio was actually a normalized anti-tangent value for the intensity ratio of SNP alleles. These two measurements were arranged along the
chromosomal sequence as a hidden Markov model. (C) In this model (with well-trained parameters), the copy number could be calculated from the
measurements on each SNP site and the neighboring copy numbers. (D) The copy numbers of a designated site for cases and controls were classified
before performing the SNP site-based testing, a Chi-squared test with triple NULL hypotheses in which deletion (labeled as Loss), amplification
(labeled as Gain) or both (labeled as Abnm) were viewed as abnormal. Copy numbers in a window centered to the significant SNP site (denoted in
the orange box) were subjected to a complete linkage clustering (E). To this clustering heat map, a statistical test on the CNV-pattern (named as
window-based testing) was used to reconfirm the significance of association. (See details in the Materials and Methods.)
doi:10.1371/journal.pone.0012185.g001
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may affect phenotype through regulating gene’s expression, such

as the common CNV-loci for the gene PDPR [8], while most

CNVs’ deletion and amplification may not be consistent to the

genes’ down-regulation and over-expression. The most important

reason is that most CNVs do not embrace the whole DNA

segments of one gene, but just located or truncated in the coding,

intron, enhancer or insulator region. Deletion and amplification in

these CNVs may just prohibit the gene’s expression or disable the

gene’s function with aberrant isoforms. Thus, the complex roles of

deletion and amplification should be carefully considered in the

association testing. Here, we hypothesized that deletion and/or

amplification contribute to the gene function separately to cope

with its complexity. CNVs may also affect diseases through their

distribution tendency between cases and controls; therefore, three

kinds of trend tests were applied to test the CNVs’ association with

disease (Text S1). The second feature is comparison of the CNV’s

geographical pattern between cases and controls. Our method

applied a window-based chromosome-along clustering algorithm

to the candidate CNV-loci, and then tested these clustering results

statistically. The accidental signal noise could be easily excluded

through the clustering procedure, and the credible CNVs from

common ancestry or with identical physiological significance tend

to congregate around nearby nodes in the clustering heat map.

The statistical testing on these congregated CNVs is more accurate

than SNP site-based testing, and provides further confidence to

our results.

How to confirm the significance of multiple tests for CNV-

association is another focus of our strategy. The CNV-association

P values are different from common P values in multiple tests, in

that these P values tend to be related with the neighboring sites,

which is a phenomenon caused by the geographical stretch of

CNVs. Thus, the classical Bonferroni correction is not suitable. A

permutation method based on the actual data was required to

generate the theoretical distribution of multiple P values. Here, we

hypothesized that the case-control effect size for every loci is null,

and the difference of measurements originate from individual

selection. We permuted the labels of cases and controls,

recalculated the association P values, and then computed the false

discovery rate (FDR) to educe the appropriate significance level for

the association results (see details in Materials and Methods).

Genome-wide CNV-association results
When the FDR was set to less than 0.05 for each hypothesis in

the SNP site-based testing, 2488 SNP sites with P values above the

significance level were obtained for further window-based testing

(Figure 2A). With an FDR of 2.3561023 for the window-based

testing, we identified 401 disease susceptible SNP sites as disease

susceptible, in which 219 SNP sites were non-redundant

(Figure 2B, Table S1): 43 are associated with bipolar disorder

(BD; MIM 125480), 17 with coronary artery disease (CAD; MIM

607339), 5 with Crohn’s disease (CD; MIM 266600), 41 with

hypertension (HT; MIM 145500), 61 with rheumatoid arthritis

(RA; MIM 180300), 37 with type 1 diabetes (T1D; MIM 222100)

and 15 with type 2 diabetes (T2D; MIM 125853). Thirty-six

CNV-loci were identified from these SNP sites through combining

neighboring SNP sites (Table 1).

We found that SNP sites in close proximity to one another

tended to have similar levels of significance (Figure 2C, Figure
S1). These results indicate that these SNP sites belong to the same

copy number variable region and that these convergent associa-

tions are unlikely to be random events. The high quality of the

final clustering heat map provides confidence for these susceptible

CNV-loci, and the relatively clean CNV-pattern boundaries in the

clustering heat map also indicates the high credibility of these

CNVs (Figure S4). Some of the susceptible CNV-loci in our study

are associated with multiple diseases (Table 1), which is consistent

with the results obtained in the WTCCC genotype-association

study (such as that rs6679677 is significant in RA and T1D) [9].

Biological relevance of the risk loci
To further confirm the effectiveness of our strategy, we

performed data mining within a 0.2-Mb region (which is an

empirical estimation that regulatory elements have a median

distance of 0.1 Mb away from the coding sequence [10,11])

around the centered significant SNP sites for their functional

relationships with corresponding diseases from previous publica-

tions. Fifteen CNV-loci were previously reported to be functionally

related to or be associated with the investigated diseases (Table
S2). For example, CEACAMs (Carcinoembryonic antigen-related

cell adhesion molecule 4, 7, 21) are matrix molecules localized at

the apical glycocalyx of normal colonic epithelium. They are

bacteria receptors [12,13] and have multiple roles in the

pathogenesis of Crohn’s disease [14,15]. Another example is

CASP9 (MIM, 602234), which participates the immune attack in a

murine model of type 1 diabetes [16].

Obvious physiological relevance of these results was observed in

the susceptible genes identified for bipolar disorder, including

INPP5B (MIM, 147264), POU3F1 (MIM, 602479), MTF1 (MIM,

600172), CCDC91 (coiled-coil domain containing 91), KCNQ5

(MIM 607357) and Olfactory receptors (OR4K5, OR4K2, OR4M1,

OR4K1, OR4N2, OR4K14, OR4K13; 14q11.2). INPP5B hydrolyzes

the calcium-mobilizing second messenger inositol 1,4,5-trispho-

sphate (IP3), which is a signal-terminating reaction in the calcium/

IP3 pathway and may directly affect neurophysiologic regulation

[17]. In this locus, deletion is prevalent in the cases (Figure S4A),

which make sense that deletion might down-regulate the INPP5B

expression, leading to inability of terminating the excited calcium

flux. POU3F1, also known as Oct6, plays a crucial role in

neurodevelopment and has been shown to be potentially relevant

in schizophrenia [18]. POU3F1 was also proved to affect calcium

flux through binding to the promoter region of PIK3C3 (MIM

602609), a member of the phosphatidylinositide 3-kinase family,

and mutations in PIK3C3 have been shown to be involved in a

subset bipolar disorder and schizophrenia patients [19]. MTF1

binds to the metal responsive element, which is regulated by

lithium salts in the treatment of bipolar disorder [20] and may also

interact with cytosolic calcium [21]. More than 1% of the cases

could be confirmed with deletion in 12p11.22 (Figure S4C). The

gene CCDC91 in this locus may affect protein sorting and

membrane trafficking through interacting with GGAs (Golgi-

localized, Gamma ear-containing, ARF-binding proteins) [22]. It

has been found that many members in the same pathway of

CCDC91 are associated with bipolar disorder, and its binding

partner AP1G1 was up-regulated in the post-mortem cerebellum

of schizophrenia patients [23,24]. KCNQ5 (potassium voltage-gated

channel subfamily KQT member 5) may contribute to episodic

disturbances of mood and behavior as well-characterized roles in

other ion-channelopathies [25], and two family members, KCNC2

and KCNQ2, were found to be associated with bipolar disorder

[9,26]. What is more, KCNQ5 is connected to phosphoinositide

signaling through regulation by PIP5K2A(MIM 603140), a

schizophrenia-associated gene [27]. Olfactory receptors, which

belong to the G-protein coupled receptor 1 family, may play some

roles in intracellular aberrant calcium mobilization of olfactory

neurons in bipolar patients [28]. The CNV-association signifi-

cances of those seven olfactory receptors also match the nearby

genotype association (rs7159947, trend P value = 4.9161024,

genotypic P value = 2.0261023) in the WTCCC paper [9].

Risk Loci for Common Diseases
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Moreover, the CNV differentiation of those olfactory receptors

can also be used to explain the substantial olfactory deficits in

patients with schizophrenia [29], a psychotic disorder related to

bipolar disorder.

Therefore, all those associated genes listed above are related to

phosphoinositide/calcium pathway (whose interaction-relationship

is illustrated in Figure S5), which strongly suggests the role of this

pathway in bipolar disorder. Moreover, detailed analysis of these

associated genes (Figure S4A, B, C) implicated that CNVs with

similar boundary and pattern might play roles in the inheritance of

bipolar disorder.

Our strategy found disease-associated CNV-loci from the
SNP sites that were omitted by traditional genotype-
association analysis

CNVs are different genetic variations from SNPs, in that they

are deletion or amplification of DNA fragments but not single-

nucleotide polymorphisms. Here, we compared our CNV-

association results with SNP genotype-association in WTCCC.

There was little tendency-accordance between the both results on

SNP site level (Figure S2), which reflects that CNV-association

are unique from genotype-association and could be new way in

Figure 2. Thresholds for the significance of CNV-association and genome-wide distribution of the results in bipolar disorder. (A) In
the SNP site-based testing, 1000 permutations were performed and the boundary P values (Psnp) were plotted against the false discovery rate (FDR)
values, with different colors indicating the different hypotheses (blue for Abnm, green for Loss and red for Gain). FDR,0.05 (labeled with vertical
dashed line) for each hypothesis was used to select 2488 SNPs as candidates for the window-based testing. (B) In the window-based testing, 25000
permutations were performed and the resulting P values (Pwin) were plotted against the FDR values. 401 SNP sites were selected as the final results,
with an FDR of 2.3561023 (indicated by the vertical dashed line) to ensure that the false positives in all the results were less than 1. (C) The 2log10 of
the SNP site-based P values were plotted against the position on each chromosome. The three hypotheses are plotted in different panels, and the P
values of the chromosomes are shown in alternating colors for clarity. The P values that passed the SNP site-based testing are highlighted in green,
and the P values that passed the window-based testing are highlighted in yellow. The genome-wide distribution results for the seven diseases are in
Figure S1.
doi:10.1371/journal.pone.0012185.g002
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discovering associated loci with human disease. In comparison of

the associated genes, we found that potassium voltage-gated

channel subfamily (KCNQ5 in CNV-association and KCNC2 in

genotype-association), olfactory receptors could be found in the

both results.

One interesting finding is that a large proportion (25.1%) of

our results were absent in genotype-association analysis

(Figure 3A, B, C, Figure S2 and Table S1). This

phenomenon results from two limitations of genotype association:

the genotyping model in the association test is limited to three

genotypes (AA, BB, AB) and the genotyping quality is dependent

on the sample-wide intensity mapping of the A and B alleles. Both

of these limitations are not suitable for SNPs in copy number

variable regions with chaotic intensity mapping and with

genotypes not limited to three (shown by the sample-wide

intensity maps in Figure 3D and Figure S3). Similar

phenomenon of CNVs’ effect on genotype-association has been

found in the locus of CYP2D6 in breast cancer [30], and it has

been pointed out that CNVs in this locus should be assessed

before genotype-association analysis [31].

Table 1. CNV-loci associated with seven diseases.

Disease Chromosome Landmark Loss Abnm Gain Window-based Trend Genotypic

BD 1p34.3 rs16824514 7.5561025 1.0661024 3.8361021 1.1661025 1.5861021 1.4261021

BD 6q13 rs4991400 2.2961024 2.2961024 1.00 2.2961024 6.7361021 8.7861021

BD 12p11.22 rs10843150 1.6061025 4.9061025 1.00 1.6061025 8.2661021 9.5961021

BD 12p11.21 rs4931443 1.00 2.9861025 2.9861025 1.3661025 NA NA

BD 14q11.2 rs2635556 3.3461021 7.5561025 1.3661024 1.5861025 NA NA

CAD 3p26.1 rs163968 2.0161024 2.0161024 1.00 2.0161024 9.1661021 8.4661021

CAD 7q21.11 rs10245061 4.8561028 4.8561028 1.00 4.8561028 2.6261021 2.1061021

CAD 16q22.1 rs2303200 1.6461022 3.9361024 8.9861027 8.9861027 NA NA

CAD 19q13.2 rs2016070 1.5161021 9.5461023 1.3961025 1.3961025 NA NA

CD 19q13.2 rs1015758 2.3161021 1.9461023 1.0061024 4.8861025 NA NA

HT 1p31.1 rs596204 2.8561025 2.8561025 1.00 2.8561025 2.0261021 6.0561022

HT 2q13 rs3906021 1.5261024 2.0361024 1.00 5.3661025 9.5261021 5.7861021

HT 5q12.1 rs4302532 2.1461024 2.1461024 1.00 2.1461024 6.6561021 6.7961021

HT 5q22.1 rs152875 5.0861025 2.6561025 5.2061021 8.9861025 NA NA

HT 10p14 rs263431 2.2161024 2.2161024 1.00 1.6761024 1.00 1.00

HT 10q25.3 rs2419854 1.3461024 1.3461024 1.00 1.6961024 2.7061021 5.3361021

HT 11q12.2 rs175126 2.2661023 2.2661023 1.00 5.2061025 2.7061021 4.2461021

RA 1q23.3 rs10917851 1.9561024 7.5561025 3.8861021 1.9561024 1.9461021 4.2861021

RA 2q31.2 rs2303836 7.5561025 7.5561025 1.00 7.5561025 5.9161022 6.2661023

RA 7p21.3 rs1467345 1.3161023 1.3161023 1.00 6.1461026 6.6861021 9.1261021

RA 7q21.11 rs10245061 8.2061028 8.2061028 1.00 8.2061028 8.0461021 4.0961021

RA 8p11.1 rs12550215 2.9261025 1.4061025 3.0661021 2.9261025 9.9261021 1.0161021

RA 9p23 rs10977624 2.9261025 2.9261025 1.00 1.9561024 1.8661021 3.9661021

RA 15q13.3 rs2926504 8.4661027 1.0761025 4.1161021 8.4661027 2.4061021 2.6461021

RA 16q22.1 rs2303200 2.7561021 1.1861023 1.0561024 6.6761025 NA NA

RA 19q13.2 rs2016070 9.1761021 1.2361024 6.1961026 6.1961026 NA NA

T1D 1p36.13 rs6429757 8.7561026 6.2061026 1.00 8.7561026 4.4361021 6.8661021

T1D 1q41 rs337147 9.5161027 8.8561025 1.00 9.5161027 5.6661021 6.6261021

T1D 2p14 rs13409606 1.0661025 1.0661025 1.00 1.0661025 NA NA

T1D 5q22.1 rs524203 5.6861024 3.1161024 5.2061021 1.5861024 8.7661021 9.7761021

T1D 10p15.3 rs2210553 1.0061025 1.0061025 1.00 1.0061025 5.4961021 3.1661021

T1D 14q11.2 rs10873018 1.7061027 1.2061027 1.00 1.7061027 6.2661023 2.0061023

T1D 15q11.2 rs2880332 8.8861026 3.2961021 4.7461022 1.1361024 NA NA

T2D 1p34.3 rs16824514 1.5261023 1.6461022 5.2261021 2.3561024 6.3561021 8.8661021

T2D 1q41 rs337147 3.6561026 1.1761023 4.1361021 3.6561026 9.6161021 8.0361021

T2D 19q13.2 rs2016070 5.7961025 3.6461026 4.4461023 5.7961025 NA NA

Notes: Landmark is the representative SNP site in the associated CNV-loci. Loss, Abnm and Gain denote the three hypotheses in the SNP site-based testing, in
which deletion, amplification and both were tested respectively; Window-based is the P values from the window-based testing; Trend and Genotypic indicate the
genotype-association P values in the WTCCC paper, and missing P values in both of the tests are labeled with ‘‘NA’’ for Not Available. A detailled list of SNP sites that
were associated with diseases could be found in the Table S1. Seven diseases were tested with CNV-association in the present work, which are bipolar disorder (BD),
coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes (T2D).
doi:10.1371/journal.pone.0012185.t001
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Discussion

In the present study, we have shown that our two-level CNV-

association testing is a reliable strategy to search for risk CNV-loci.

This method is complement to the traditional genotype-association

analysis, and provides a unique way to discover new causes for

human diseases. Our results provide further evidence that CNVs

involve in many common diseases. In addition, the new risk CNV-

loci identified in our work will be helpful on understanding the

pathogenesis of these diseases.

The functions of CNVs are interesting topics in disease-risk

study, the complexity of which has been mentioned previously

[1,8], but they are far from being fully understood. Linear-effect

model is the most common hypothesis on how CNVs function in

disease, and the findings in the CNV-loci 16q22.1 (Armitage trend

test P value = 3.9861028, the trend also shows in clustering heat

map) can support this hypothesis: amplification of two genes

(PDPR and AARS) in 16q22.1 might impose a counteractive effect

on CAD, while loss of copy number may cause weaker recovery

from heart attack as they function in post-ischemic heart [32,33].

However, most loci have more complicated association with

disease. Loss of copy number in the gene INPP5B may induce

leakage-cleanup of IP3 in the nerve conduction, and then induce

patients to lose control of excited emotion, while gain of copy

number shows no obviously effect in bipolar disorder. In 14q11.2,

a common copy number variable region, copy number differen-

tiation may produce irregular isoforms of olfactory receptors, and

then causes mis-perception in the olfactory and neuronal cells.

Pattern discordance could be found in many CNV-loci of RA and

T1D, which might be from aberration of DNA recombination and

repair in somatic and germ cells. The CNVs with pattern

discordance may make an impact on these diseases by interfering

the genes’ functions explicitly or through cell-recognition in

complicated immune pathway. In a word, copy number variations

may work in very complex way in the development of disease, and

the function of risk CNV-loci need a locus-by-locus analysis.

Materials and Methods

Disease data and training set
Two Affymetrix Mapping 500K chip datasets were used in the

present work, which include the Wellcome Trust Case-Control

Figure 3. Comparison with the traditional genotype-association analysis demonstrates the priority of our method in CNV-regions.
‘‘Gen’’ labels the genotypic testing (a Chi-squared test with 2 degrees of freedom) results obtained from the WTCCC paper [9]. The 2log10 of SNP
site-based P values in our study with the triple NULL hypotheses, in which deletion (A, labeled Loss), amplification (C, labeled Gain) and both (B,
labeled Abnm) were evaluated separately, are plotted against the 2log10 of the P value from the genotype-association test of WTCCC [9]. For clarity,
the genotype-association P values,1025 are highlighted in green, the CNV-association P values that passed the single SNP site-based testing are in
blue, and the CNV-association P values that passed the window-based testing are in red. The SNP sites that are absent from the genotype-association
testing are plotted by default as zero (highlighted in brown), and the absent sites that passed the SNP site-based testing are labeled with black. The
genotypic testing (Gen) and trend testing (Add, another testing for genotype tendency of disease in WTCCC [9]) for the seven disease are compared
with our CNV-association results in Figure S2. (D) Evidence that CNVs can lead to chaotic genotyping clusters in copy number variable regions. All
the 17000 individuals are labeled with grey, individuals with CNVs in the disease group are in red, and individuals with CNVs in controls are in green.
More evidence of chaotic sample-wide intensity maps affected by CNVs can be found in Figure S3.
doi:10.1371/journal.pone.0012185.g003
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Study Consortium (WTCCC) data for seven diseases (each

comprising 2000 cases and 3000 normal control individuals) [9]

and a training data of 90 individuals in Utah, USA, from the

Centre d’Etude du Polymorphisme Humain collection (abbrevi-

ated as CEU, which is of Northern and Western European

ancestry) [34]. The WTCCC data was used to test the association

of the CNVs with disease. Individuals from the WTCCC data

were filtered following the instructions in the paper [9] in order to

avoid contamination, false positives, non-Caucasian ancestry and

relatedness. Based on the multi-scale comparison between the

CEU data and WTCCC data in the original paper [9], the CEU

data was selected as the training set to estimate the parameters of

the hidden Markov model. The CEU data was quantile

normalized to the WTCCC data as described in the WTCCC

paper [9].

We processed the data using SNPs annotated in the NCBI build

35 and build 36 reference databases, and the results in the different

builds were almost the same. In the main text and supporting

information, results were only shown for build 35. Since the sex

chromosomes are different from autosomes in copy number

detection and comparison, only the autosomes were tested in our

work.

Strategy of CNV-association with one-step data
transformation and two-pass statistical testing

CNVs are mostly detected from SNP genotyping data, thus a

precise transformation from SNP allele intensity into copy number

is essential in testing the association between CNVs and diseases.

In our work, a powerful hidden Markov model that makes the best

of the SNP allele information was applied. To make sure that the

parameters of hidden Markov model were suitable for all the high-

throughput dataset of WTCCC, we developed a training program

to calculate these parameters. This hidden markov model is

depicted in the Figure 1A, B, C, and is detailed in the following

text.

The significance of the CNVs was evaluated in two levels of

statistical tests: (i) SNP site-based testing to measure the

disease-association on a specific SNP site and (ii) Window-based
testing to measure the CNV-pattern differentiation in and

around the selected SNP site. Additionally, multiple trend
testing was also applied for exploring CNV-association with

disease (see details in Text S1). The SNP site-based testing was

used to selected candidate for window-based testing, and the

window-based testing ensured the credibility of the identified

CNV-loci. This statistical flow chart is shown in Figure 1C, D, E
and is detailed in the following text.

Transformation of SNP signal to copy number
The SNP data from the genotyping chips was first converted to

copy number (hidden copy number state) using a well-trained

hidden Markov model. The hidden Markov model treated the

series of SNP sites, which were arranged along the chromosome

sequence, as a hidden Markov chain. The copy number

calculation on the site of the hidden Markov chain is dependent

on the signal of each SNP site and the copy number of

neighboring SNP site. Two measurements for each SNP site were

used to calculate its copy number: (i) the Log R Ratio (LRR),

which is the log2-transformed value for the normalized intensity-

sum of the SNP alleles, and (ii) the B allele frequency (BAF), which

actually is a normalized anti-tangent value for intensity-ratio of the

SNP alleles. The expected value for each SNP genotype cluster

and intensity-sum, which were used in the normalization for LRR

and BAF, were the 90% trimmed mean of all of the corresponding

values from the WTCCC samples. All of the measurements and

transformations above were calculated according to the instruc-

tions from the original technical paper [35], but the copy number

used in the following case-control association analysis was the total

copy number integer from the hidden Markov state in the original

technical paper [35]. For example on a certain SNP site, the CNV

genotype is ‘‘AAB’’, which had a copy number of 3 and belonged

to state 5 in the original paper; but here we use 3 to denote the

CNV genotype.

The hidden Markov model needs a series of parameters to

calculate the hidden Markov state, including the LRR’s expecta-

tion (and standard deviation) for each state, the BAF’s expectation

(and standard deviation) for each state, the transition probability

matrix for inferring relationship among SNP-series, and other

parameters. These parameters were trained from the CEU data of

HapMap and the program was performed automatically to

eliminate bias from manual selection in the original technical

paper [35]. Before estimation, hidden states of the training set

were assigned with initial values of these parameters, and CNVs

that spanned at least three continuous SNP sites were treated as

real variations to eliminate coincidence from noise. The LRR’s

expectation for each state was determined by linear extrapolation.

The LRR’s standard deviation calculated from SNP sites with two

copies was adopted for all other states, as we assumed that noise

plays similar roles in every state and this could be seen in the

actual data distribution. The BAF’s expectation and standard

deviation for every state were inferred from the data distribution of

the previous state calling. Transition probability for the hidden

Markov model was calculated using the Baum-Welch algorithm,

and a chromosome-weighted mean was used as the actual

transition probability. Repetition of the estimation program was

performed using the newly generated values of these parameters,

until constant values were obtained independently of the initial

values, with a change of ,0.0001 for every parameter.

SNP site-based testing for site-specific significance
The influence of changes in copy number (amplification and/or

deletion) on physiological function is far from fully understood, so

testings for amplification, deletion or the both were used to

measure the significance on single SNP site. We postulated triple

NULL hypotheses that (i) amplification (denoted as Gain), (ii)

deletion (denoted as Loss) or (iii) the both (denoted as Abnm) show

no difference between the case and control groups. For a certain

SNP site, the copy numbers of cases and controls could be

summarized in Table 2.

If N denotes the total number of cases and controls, ri denotes

the sum of the rows and cj denotes the sum of columns, the

Table 2. The numbers of cases and controls in SNP site-based
testing.

Gain cn§3ð Þ

Loss cnƒ1ð Þ

Z Norm Abnm cn=2ð Þ

Cases n11 n12

Controls n21 n22

Notes: Z is the number of samples, cn is the copy number of individuals. Gain,
Loss and Abnm denote the three hypotheses, in which amplification, deletion
and the both were tested separately. Norm is the number of the samples that
exclude those with CNVs tested. The element of this table, nij , is the number of
individuals in the different conditions.
doi:10.1371/journal.pone.0012185.t002
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expected value for nij is calculated from eij~
ricj

N
. The P value

could be calculated from the following chi-squared distribution

with one degree of freedom:

x2~
X nij{eij

� �2

eij

If any of the eij values were less than 5, a Fisher’s exact test was

applied instead. If ri and cj are constant in the permuted

contingency table and n
mð Þ

ij is number of the elements in

permutation, the exact P value for one permutation can be

calculated as follows:

P mð Þ~
P ri!:P cj !

N:P n
mð Þ

ij

Then the Fisher’s exact P value is calculated as follows:

Pfisher~
X

P mð Þ
ƒPobserved

P mð Þ

Window-based testing for CNV-patterns
Window-based testing was based on clustering heat map of

CNV-pattern, which can test the CNV-association in and around

the specific SNP site. In this testing, copy number, which was

generated from random noise or possessed irregular pattern, could

be eliminated. For an individual, a series of SNP sites in a window

centered on a specific site were extracted to measure the CNV-

region. This region can be described by vectors, such as that vx

and vy denote vectors from different individuals.

vx~vector x1,x2, � � � ,xnð Þ

vy~vector y1,y2, � � � ,ynð Þ

In vectors vx and vy, x and y are used to denote the copy numbers

for the series of SNP sites in the selected region. n is the dimension

of the vector, which is the same as the window size. Based on the

distribution of the lengths of CNVs along chromosomes in the

actual data, n was set to 41 in the present work to bracket the most

CNVs in the corresponding region. The Euclidean distance

between vx and vy was adopted in the clustering method, and a

complete linkage clustering algorithm [36] was modified slightly to

accelerate the computation speed in our work. The distance

calculation and clustering method above were selected through

visual analysis using some example data.

All the vectors clustered in an unbiased manner between the

cases and controls. If Z denotes the number of samples, Nodej

denotes a certain node in the clustering relationship tree and

Re Node denotes the remaining samples apart from those in

Nodej . The data obtained for every node could be summarized

into contingency Table 3.

A Chi-squared test could be applied to this table, but when nij

were less than 5, the Fisher’s exact test was used instead. The P

value could be calculated in the same way for the contingency

table in SNP site-based testing.

For every node in the clustering tree, a corresponding P value

could be calculated. The node for the most significant P value was

defined as ‘‘First class node’’, and then the corresponding P value

was named as ‘‘First class P value,’’ which was also defined as the P

value for the window-based testing.

First class P value~ min
1ƒjƒn

P value of nodej

��

The First class P value, which is the most significant using different

divisions in the vector dimensions, is the only reasonable

measurement to scale the CNV differentiation between cases

and controls, since we cannot predefine the actual dimensional

division.

Correction of multiple tests by calculating false discover
rates (FDR)

A permutation-based method was used to obtain the signifi-

cance level for the SNP site-based testing. In the permutation

procedure, the labels of the cases and controls were randomly

permuted 1000 times, and then the P values for all of the diseases

were pooled together to calculate the FDR. Psite denotes a

designated P value in the observed data, P and P mð Þ denote the P

values in the observed data and permutated data respectively, Nsnp

denotes the number of SNP sites and Tpm denotes the number of

permutations. The FDR for the SNP site-based testing can be

calculated using the following formula.

FDRsite~

N
snp

P mð Þ
ƒPsite

Tpm
:Nsnp

PƒPsite

The P value in the window-based testing was not only dependent

on the neighboring SNP sites but also built upon the clustering

structure. To filter out the false positives obtained in multiple tests,

we assumed that the copy number windows (which were labeled

with the centered SNP sites) possess similar statistical power in all

the diseases and all the window-based P values were pooled to

calculate the FDR. FPwin denotes a designated P value in the

observed data, FP and FP mð Þ denote the P values in the observed

data and permuted data respectively, Nwin denotes the number of

copy number window and Twin denotes the number of

permutations. After the labels for the case and control were

permuted 25000 times, the FDR for the window-based testing was

calculated as follows:

FDRwin~

Nwin

FP mð Þ
ƒFPwin

Twin
:Nwin

FPƒFPwin

Table 3. The numbers of cases and controls in window-based
testing.

Z Nodej Re Node

Cases n11 n12

Controls n21 n22

Notes: CNV-pattern is classified in the window-based chromosome-along
clustering process and is organized in different nodes of the clustering heat
map. Z is the number of samples, and Nodej denotes the number of cases or
controls in the specific node in the clustering heat map. Re Node denotes the
number of samples that exclude those in the Nodej . The element of this table,
nij , is the number of individuals in the different conditions.
doi:10.1371/journal.pone.0012185.t003
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Multiplying the SNP sites number (above boundary P value, in the

observed data) by the corresponding FDR could provide the

estimation of false positives from random coincidence of individual

selection. In the SNP site-based testing, FDR,0.05 was used to

determine the proper number of candidates for the window-based

testing. In the window-based testing, the boundary of the FDR was

adjusted to ensure that false positives in the final results were less

than 1 copy number window (centered SNP site).

Supporting Information
Supporting information include supporting data with five figures

and two tables, and supporting methods in Text S1. The code for

the data transformation and the two-level CNV-association tests

was written in the C/C++ programming language. This code and

the manual for the data processing are available at http://www.ihs.

ac.cn/xykong/CNV_Association_Test.rar.

Supporting Information

Figure S1 The genome-wide distribution of the CNV-association

results in the seven diseases. The 2log10 of the SNP site-based P

values in our testing with the three hypotheses, in which deletion

(labeled as Loss), amplification (labeled as Gain) and both (labeled as

Abnm) were evaluated as abnormal separately, are plotted against

the position on each chromosome. For clarity, P values that passed

the SNP site-based testing are highlighted in green and the SNP sites

that passed the window-based testing are highlighted in yellow.

Found at: doi:10.1371/journal.pone.0012185.s001 (1.10 MB

DOC)

Figure S2 Comparison with the previous genotype-association

analysis demonstrates the priority of the CNV-association test in

copy number variable regions. ‘‘Gen’’ and ‘‘Add’’ indicate the

genotypic test and trend test, respectively, in the WTCCC paper.

The 2log10 of the SNP site-based P values in our test with the triple

NULL hypothesis (Loss, Abnm and Gain) were plotted against the

2log10 of the P values from the genotype association test from the

WTCCC (A–G). For clarity, the genotype association P val-

ues,1025 are highlighted in green, the CNV-association P values

that passed the single SNP site-based testing are in blue and the

CNV-association P values that passed the window-based testing are

in red. SNPs absent from the genotype association analysis are

plotted by default as zero and highlighted in brown, in which many

SNPs that passed the SNP site-based testing are labeled with black.

Found at: doi:10.1371/journal.pone.0012185.s002 (0.78 MB

DOC)

Figure S3 Evidence that CNVs can lead to chaotic genotyping

clusters in copy number variable regions. The selected sample-wide

intensity maps show the typical influence of CNVs in the seven

diseases labeled with abbreviations (A–F). All of the 17000 individuals

are labeled with grey, individuals with CNVs in the disease group are

in red and individuals with CNVs in controls are in green.

Found at: doi:10.1371/journal.pone.0012185.s003 (0.49 MB

DOC)

Figure S4 Selected CNV-loci that show strong evidence of

association with diseases. The 2log10 of the SNP site-based P values

are plotted against the genomic location, in which the SNPs that

passed the window-based testing are indicated in dark blue for the

deletion hypothesis, dark green for the amplification hypothesis and

orange for the deletion and amplification hypothesis. SNPs that

lacked significance are shown in light colors (light blue for deletion,

light green for amplification and yellow for both). Functionally

affected regions were characterized within a 0.2 Mb region centered

on the identified SNP sites, and the region boundary (vertical dashed

line) coincided with the length limitations or the location of

neighboring genes. The clustering heat map for 41 SNP windows

(each corresponding to the upper CNV-region) demonstrated good

CNV boundaries in and around the ‘‘first class node.’’ In the heat

map, black indicates a copy number of 0, red a copy number of 1,

light grey a copy number of 2 and green a copy number of 3.

Found at: doi:10.1371/journal.pone.0012185.s004 (6.21 MB

DOC)

Figure S5 The cartoon depicts the function of the calcium-related

pathway in bipolar disorder. The Ca2+/IP3 pathway has been

reported to be closely related to bipolar disorder, and the molecules

revealed in previous studies are labeled with blue circles and in red

font. IP3 precursors in the membrane and metabolites in the cytosol

are denoted by different shaped boxes. INPP5B, POU3F, Olfactory

receptors (belonging to GPCR, G Protein-Coupled Receptors) and

KCNQ5, which were found to be associated to CNVs in our work,

are labeled with black font and orange circles (or boxes).

Found at: doi:10.1371/journal.pone.0012185.s005 (0.09 MB

DOC)

Table S1 List of SNP sites showing significance in the window-

based testing.

Found at: doi:10.1371/journal.pone.0012185.s006 (0.63 MB

DOC)

Table S2 22 risk genes that were validated from previous studies.

Found at: doi:10.1371/journal.pone.0012185.s007 (0.20 MB

DOC)

Text S1 Supporting methods of multiple testing for trend.

Found at: doi:10.1371/journal.pone.0012185.s008 (0.08 MB

DOC)
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