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Dopamine, psychosis and schizophrenia:
the widening gap between basic and
clinical neuroscience

JP Kesby®'?, DW Eyles'? JJ McGrath®'”* and JG Scott**?

Abstract

The stagnation in drug development for schizophrenia highlights the need for better translation between basic and
clinical research. Understanding the neurobiology of schizophrenia presents substantial challenges but a key feature
continues to be the involvement of subcortical dopaminergic dysfunction in those with psychotic symptoms. Our
contemporary knowledge regarding dopamine dysfunction has clarified where and when dopaminergic alterations
may present in schizophrenia. For example, clinical studies have shown patients with schizophrenia show increased
presynaptic dopamine function in the associative striatum, rather than the limbic striatum as previously presumed.
Furthermore, subjects deemed at high risk of developing schizophrenia show similar presynaptic dopamine
abnormalities in the associative striatum. Thus, our view of subcortical dopamine function in schizophrenia continues
to evolve as we accommodate this newly acquired information. However, basic research in animal models has been
slow to incorporate these clinical findings. For example, psychostimulant-induced locomotion, the commonly utilised
phenotype for positive symptoms in rodents, is heavily associated with dopaminergic activation in the limbic striatum.
This anatomical misalignment has brought into question how we assess positive symptoms in animal models and
represents an opportunity for improved translation between basic and clinical research. The current review focuses on
the role of subcortical dopamine dysfunction in psychosis and schizophrenia. We present and discuss alternative
phenotypes that may provide a more translational approach to assess the neurobiology of positive symptoms in
schizophrenia. Incorporation of recent clinical findings is essential if we are to develop meaningful translational animal

models.

Introduction

Our knowledge of the neurobiology of schizophrenia,
while still rudimentary, has advanced considerably in
recent years. However, these findings have not translated
to better treatments for those with schizophrenia. The
three primary symptom groups, positive, cognitive and
negative (Box 1), have been associated with reports of
abnormalities in virtually every neurotransmitter system'~
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®. The onset of psychotic symptoms, which is strongly
associated with alterations in dopamine function, is a key
feature underpinning a clinical diagnosis® 7. However,
results from clinical research regarding the specific loci of
dopamine dysfunction in schizophrenia®'°, have trig-
gered a reappraisal of our perspective on the neurobiology
of schizophrenia. Currently there is a disparity between
the tests for positive symptoms in animal models and
recent clinical evidence for dopaminergic abnormalities in
schizophrenia. Therefore, it is critical that this con-
temporary clinical knowledge actively influences the
agenda in applied basic neuroscience.

It is widely acknowledged that we cannot recreate the
complicated symptom profile of schizophrenia in animal
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Box 1: Symptom groups in schizophrenia

*  Positive symptoms: Positive symptoms include delusions and
hallucinations, linked to aberrant salience. These symptoms are
most recognisable during periods of acute psychosis.

*  Cognitive symptoms: Impairments in learning, memory,
attention and executive functioning are all included as
cognitive symptoms.

*  Negative symptoms: Negative symptoms include blunting of
affect (lacking emotional expression), avolition (deficits in
motivation) and social withdrawal.

models. However, animal models (the majority and focus
of the present article being rodent models) provide an
avenue to invasively explore the role of neurotransmitters
and circuitry in psychiatric diseases. To improve the poor
predictive validity of treatments in animal models'!, it is
critical that our understanding and the use of animal
models evolves alongside our knowledge of schizophrenia
neurobiology. The delayed incorporation of new clinical
findings to develop better animal models highlights the
need for better communication between clinical and basic
research communities.

In this article, we discuss the challenges clinicians and
researchers are facing in understanding the neurobiology
of positive symptoms and psychosis in schizophrenia. We
discuss the implications this has for current assessments
of positive symptoms in rodents and propose a more
relevant set of tests for future study. Finally, the need for a
joint focus on bi-directional translation between clinical
and basic research is outlined.

Challenges in diagnosing schizophrenia

Psychiatric symptoms exist on continua from normal to
pathological, meaning the threshold for diagnosis of
schizophrenia in clinical practice can be challenging. The
clinical diagnosis of schizophrenia relies heavily on the
positive symptoms associated with a prolonged psychotic
episode. However, a relatively high percentage of the
general population (8-30%) report delusional experiences
or hallucinations in their lifetime'*™**, but for most people
these are transient'”. Psychotic symptoms are also not
specific to a particular mental disorder'®. The clinical
efficacy of antipsychotic drugs is heavily correlated with
their ability to block subcortical dopamine D2 receptors'”
'8 suggesting dopamine signalling is important. In spite of
this, no consistent relationship between D2 receptors and
the pathophysiology of schizophrenia has emerged'® *°.
In contrast, the clinical evidence points towards pre-
synaptic dopamine dysfunction as a mediator of psychosis
in schizophrenia®®.
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The neurobiology of psychosis: the centrality of
dopamine
Dopamine systems: anatomy and function

An appreciation for the neuroanatomical differences in
subcortical dopaminergic projections/circuitry between
rodents and primates is essential for effective commu-
nication between clinical and basic researchers. For
example, primates feature a more prominent substantia
nigra and less distinctive ventral tegmental area than
rodents. However, more pertinent to the current review
are homologous functional subdivisions of the striatum
observed in both rodents and primates*'~>*, These include
the limbic, associative and sensorimotor areas (Fig. 1).
The associative striatum, defined by its dense connectivity
from the frontal and parietal associative cortices, is key for
goal-directed action and behavioural flexibility. The lim-
bic striatum, defined by connectivity to the hippocampus,
amygdala and medial orbitofrontal cortex, is involved in
reward and motivation. The sensorimotor striatum,
defined by connectivity to sensory and motor cortices, is
critical for habit formation. These functional subdivisions
are also interconnected by feedforward striato-nigro-
striatal projections®. The heavy basis on behavioural
outcomes in neuropsychiatry has made functional sub-
divisions such as these more relevant than ever.

Dopaminergic features of psychosis in schizophrenia

In healthy individuals, dopamine stimulants such as
amphetamine can induce psychotic symptoms>* *” and
people with schizophrenia are more sensitive to these
effects”” ?%. Studies using positron emission tomography
(PET) imaging have shown patients with schizophrenia
show increases in subcortical synaptic dopamine con-
tent?” 3°, abnormally high dopamine release after
amphetamine treatment®*>> and increased basal dopa-
mine synthesis capacity (determined indirectly by
increased radiolabelled L-DOPA uptake)'**> *” compared
with healthy controls. Increased subcortical dopamine
synthesis and release capacity are strongly associated with
positive symptoms in patientsgg’ 38, and increased sub-
cortical synaptic dopamine content is predictive of a
positive treatment response®”. It was widely anticipated
that the limbic striatum would be confirmed as the sub-
division where these alterations in dopamine function
would be localised in patients. The basis for this predic-
tion was the belief that reward systems were aberrant in
schizophrenia®. However, as PET imaging resolution
improved it was found that increases in synaptic dopa-
mine content” '° and synthesis capacity® were localised,
or more pronounced®’, in the associative striatum (Fig. 1;
yellow). Furthermore, alterations in dopamine function
within the associative striatum likely contribute to the
misappropriate attribution of salience to certain stimuli, a
key aspect of delusions and psychosis™*.
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Fig. 1 Functional subdivisions of the dopamine system across species. Midbrain dopamine neurons are the source of dopamine projections to
the striatum in primates (left) and rodents (right). Important neuroanatomical differences exist, especially when considering functional subdivisions of
the striatum. In the primate, the limbic system (orange) originates in the dorsal tier of the substantia nigra (the ventral tegmental area equivalent). In
the rodent, the limbic system originates in ventral tegmental area, which sits medially to the substantia nigra. The midbrain projections to the
associative striatum (yellow) and sensorimotor striatum (blue) follow a dorsomedial-to-ventrolateral topology
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Clinical studies have confirmed that dopamine
abnormalities are also present prior to the onset of psy-
chosis in schizophrenia and thus are not a consequence of
psychotic episodes or antipsychotic exposure. Similar to
what has been observed in patients with schizophrenia,
ultra-high risk (UHR) subjects show increased subcortical
synaptic dopamine content*' and basal dopamine synth-
esis capacity® ****, Importantly, alterations in dopamine
synthesis capacity in UHR subjects progress over time™
and are greater in subjects who transition to psychosis
compared with those who do not*®. Furthermore, higher
baseline synaptic dopamine levels in UHR subjects pre-
dicts a greater reduction in positive symptoms after
dopamine depletion*'. Overall, these findings in UHR
subjects are congruent with those observed in schizo-
phrenia and provide evidence indicating that presynaptic
dopaminergic abnormalities are present prior to the onset
of psychosis.

Several avenues have been proposed to explain a
selective increase in associative striatal dopamine func-
tion, such as alterations in hippocampal control of
dopamine projections*” *®, alterations in cortical inputs to
midbrain dopamine systems® *° and, although little direct
evidence has been observed, developmental alterations in
dopamine neurons themselves®” °!. Furthermore, other
pathways and/or neurotransmitters may be more critical
in treatment-resistant patients®>, We propose a network
model whereby dysfunction in a central circuit, including
the associative striatum, prefrontal cortex and thalamus, is
critical for the expression of psychotic symptoms in
schizophrenia. This model would suggest that dysfunction

in auxiliary circuits (both limbic and cortical) contribute
to psychotic symptoms by feeding into this primary net-
work. Ascertaining the role of dopaminergic dysfunction,
in the context of networks important for psychotic
symptoms in schizophrenia, will provide a better base for
constructing objective readouts in basic and clinical
research.

Psychosis: a consequence of network dysfunction

Psychosis is a condition that features a range of beha-
vioural alterations that relate to a loss of contact with
reality and a loss of insight. People with psychosis
experience hallucinations (primarily auditory in schizo-
phrenia®®) and delusions. In schizophrenia, auditory hal-
lucinations have been associated with altered connectivity
between the hippocampus and thalamus®*. During hal-
lucinations, increased activation of the thalamus, striatum
and hippocampus have also been observed®. Thus,
altered thalamocortical connectivity, especially with the
hippocampus, may impede internal/external representa-
tions of auditory processing®. In contrast, delusions in
people with schizophrenia have been associated with
overactivation of the prefrontal cortex (PFC) and dimin-
ished deactivation of striatal and thalamic networks®”.
Thus, the complexity of psychotic symptoms is congruent
with the highly connected nature of implicated brain
regions.

Although we still know little about the underlying
neurobiology of psychosis, focal brain lesions allow for a
better understanding of the networks involved without
the confounds of medication and unrelated
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Fig. 2 Network implicated in psychotic symptoms and
schizophrenia. Dysfunction in a variety of brain regions can elicit
psychotic symptoms. A primary circuit involved in psychosis includes
the thalamus and prefrontal cortex (yellow) feeding into the
associative striatum. Alterations in the thalamus and prefrontal cortex
are involved in hallucinations and also insight for delusional
symptoms. Expression of psychotic symptoms in most cases requires
increased activity in the associative striatum and specifically excessive
D2 receptor stimulation (red). Other limbic regions such as the
hippocampus and amygdala (green) can feed into this circuit
contributing to altered sensory perception and emotional context
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neuropathology. Generally speaking, lesions that induce
hallucinations are often in the brain networks associated
with the stimulus of the hallucination (i.e., auditory, visual
or somatosensory)®. Visual hallucinations have been
associated with dysfunction of the occipital lobe, striatum
and thalamus, whereas auditory hallucinations are asso-
ciated with dysfunction of the temporal lobe, hippo-
campus, amygdala and thalamus®®. Insight is generally
maintained after focal brain lesions that produce hallu-
cinations and subcortical dopamine function is normal®®,
unlike what is observed in schizophrenia®®. In contrast, a
loss of insight (which can manifest as delusionary beliefs)
is associated with alterations in cortico-striatal networks.
For example, people with basal ganglia or caudate lesions
can present with both hallucinations and delusions®” .
Furthermore, a case study of religious delusions in a
patient with temporal lobe epilepsy was associated with
overactivity of the PFC®, and there are multiple lines of
evidence suggesting that the PFC is integral for delu-
sionary beliefs®®. Therefore, while impairing networks
specific to certain sensory modalities can lead to halluci-
nations, dysfunctional integration of PFC input to the
associative striatum may be especially important for
delusional symptoms in schizophrenia.

Central to the networks involved in psychosis and
schizophrenia, the thalamus acts as a relay for most
information going to the cortex®®. Brain imaging studies
have demonstrated that medication-naive patients with
schizophrenia have significantly reduced thalamic and
caudate volumes relative to healthy controls and medi-
cated patients65. Moreover, reduced thalamic volumes has
also been observed in UHR subjects®®. A simplified
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schematic of the networks that may be especially relevant
to psychotic symptoms in schizophrenia is presented in
Fig. 2. The thalamus forms a circuit with the associative
striatum and PFC whereby impairments in any of these
regions can impair the functionality of the network as a
whole. In addition, the hippocampus and amygdala, which
are both involved in sensory perception and emotional
regulation, can affect this network via their connectivity
with the thalamus (but other indirect pathways also exist).
Although this is an over simplification, it highlights how
psychotic symptoms could arise from multiple sources of
neuropathology/dysfunction or abnormal connectivity.

Why do antipsychotics work?

This raises important questions as to how antipsychotic
drugs exert their effects. In most individuals with schi-
zophrenia, antipsychotic treatment is effective in reducing
positive symptoms®’; therefore, excessive D2 signalling in
the associative striatum appears to be critical. Stimulation
of D2 and D1 receptor expressing medium spiny neurons
(which are largely segregated®®) in the associative striatum
feedback indirectly to the thalamus, completing a loop
that allows for feedforward-based and feedback-based
signalling. The basal ganglia acts as a gateway for, or
mediator of, cortical inputs®”' and may represent a
common pathway through which psychotic symptoms
present. Therefore, excessive dopamine signalling in the
associative striatum may directly lead to psychotic
symptoms by compromising the integration of cortical
inputs. In treatment-responsive patients, antipsychotics
may attenuate the expression of psychotic symptoms by
normalising excessive D2 signalling® to restore the bal-
ance between D1 and D2 receptor pathways’>. Because
they act downstream to schizophrenia-related presynaptic
abnormalities, they fail to improve indices of cortical
function (ie., cognitive symptoms). Alternatively,
impaired cortical input to the associative striatum via the
thalamus, PFC or other regions could dysregulate this
system independently of, or in addition to, associative
striatal dopamine dysfunction. In this case, D2 receptor
blockade may be insufficient to restore normal function,
which is one explanation for why some individuals are
treatment refractory. For example, increases in subcortical
synaptic dopamine content® and increases in presynaptic
striatal dopamine function®® are both associated with
increased treatment efficacy. Thus, in treatment-resistant
subjects, there is little evidence of abnormal dopaminergic
function®” *2, Medicated persons with schizophrenia, who
remain symptomatic with auditory hallucinations, show
increased thalamic, striatal and hippocampal activation®”.
Moreover, treatment-refractory patients who respond
positively to clozapine treatment show alterations in
cerebral blood flow in fronto-striato-thalamic circuitry,
suggesting clozapine is restoring a functional imbalance in
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Fig. 3 Psychosis: a consequence of severe circuit specific cognitive impairment. This schematic representation highlights the potential for
cognitive symptoms to feed into psychosis networks and create positive feedback loops that spiral to psychosis. Non-specific and heterogeneous
deficits in auxiliary neurocircuitry (in the context of psychosis) lead to broad cognitive impairments unique to each individual. These systems feed
into the primary psychosis networks leading to destabilisation of associative striatal dysfunction and further cognitive impairment. In most individuals
with schizophrenia, excessive dopamine signalling in the associative striatum leads to positive symptoms. Antipsychotics antagonise downstream D2
receptor signalling to blunt the expression of symptoms. In treatment-refractory patients (those who do not respond to first-line antipsychotics)
blocking D2 receptors is insufficient to blunt positive symptoms suggesting further upstream dysfunction in the associative striatum or psychosis
networks. Clozapine may lead to improvement in some of these individuals by stabilising function throughout these networks in addition to D2
receptor antagonism. Positive symptoms in treatment-refractory patients who fail to respond to clozapine may be the result of severe impairment
throughout psychosis networks (and the associative striatum) that are independent of dopamine dysfunction. Thus, our current treatments for
positive symptoms act downstream of the source of cognitive impairments, hence their ineffectiveness in treating cognitive symptoms. While the

symptoms may share common neuropathology

expression of psychotic symptoms may be a discrete outcome, separate to impairments in cognitive function, the upstream cause of these

these systems’>. Taken together, this evidence suggests
that psychosis is the result of a network dysfunction that
includes a variety of brain regions (and multiple
neurotransmitter-specific pathways), of which impair-
ment at any level could precipitate psychotic symptoms.

Although increased positive symptom severity has been
associated with impaired cognitive flexibility’*, there is a
little evidence for subcortical hyperdopaminergia playing
a direct role in the cognitive impairments observed in
schizophrenia. Furthermore, antipsychotic treatments do
not improve patient’s cognitive function””. There is a
mounting evidence that cognitive symptoms may present
prior to positive symptoms in schizophrenia’®. Given
brain networks involved in hallucinations and delusions
all involve cortical regions, the underlying pathology
causing cognitive symptoms may also contribute to psy-
chotic symptoms. Thus, in some cases psychosis may
represent the summation of broad cognitive impairments
inducing local network dysfunction (Fig. 3). Regardless,
positive symptoms are relatively distinct in the clinical
setting but the presence and severity of symptoms are
determined  interactively = with  interviews and

questionnaires. The inability to do the same in other
species means the best avenue for assessing animal
models may be to identify outcomes that are sensitive to
the underlying neurobiology observed in schizophrenia
and psychosis. Given the action/effectiveness of anti-
psychotics, the primary downstream region of interest, in
the context of elevated dopamine transmission, is the
associative striatum.

Modelling psychosis: the use of animal models
Potentially, the most useful avenue for animal models to
assist in schizophrenia research will be identifying con-
vergent aetiological pathways’’. Understanding which
neurotransmitter systems and brain regions are most
involved may help to identify the core neurobiological
features of schizophrenia. For example, changes in
dopaminergic systems are observed in animal models
after manipulation of factors based on schizophrenia
epidemiology®” °, genetics’®, pharmacology’® and related
hypotheses®®. These include changes in early dopamine
specification factors®” °!, sensitivities to psychostimu-

lants®>>%7% 89 and  alterations in  dopamine
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obtain rewards (a) The primary differences in testing are that humans can receive monetary rewards whereas rodents tend to be given food rewards.
Furthermore, rodents require more initial training to learn the action (i.e, lever pressing or nose poking). To test for goal-directed action (b) both
humans and rodents are trained to associate two actions (left and right button/lever presses) with two separate food rewards. One of these rewards
is then devalued through an aversive video (cockroaches on the food item) for humans or feeding to satiety in rodents. Healthy controls will
demonstrate outcome-specific devaluation by biasing their response towards the food reward that was not devalued. Serial reversal learning (c)
requires the subject to learn a simple discrimination between two choices of which one is associated with a reward. Once certain criteria are met, the
contingencies are reversed so that the non-rewarded stimulus is now rewarded and the previously rewarded stimulus does not attain a reward. This
is classified as the first reversal. Once the criteria are met for the new contingencies, the rewarding stimulus is switched again (back to the original
pairings) for the second reversal. This switching back and forth continues until completion of the test
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neurochemistry®>>"”® 7%, Evidence of subcortical dopa-
minergic hyperactivity or sensitivity in animal models is
proposed to represent the face validity (i.e., mimicking the
phenomenology of schizophrenia) for psychosis in
patients. The most commonly used behavioural assess-
ments of positive symptoms in animal models include
enhanced amphetamine-induced locomotion and deficits
in prepulse inhibition (PPI)*'. These tests are widely used
because they are relatively simple to perform. However,
we propose that given current knowledge of the neuro-
biology in schizophrenia, they have outlived their useful-
ness as measures of positive symptoms.

Amphetamine-induced locomotion

Amphetamine increases dopamine release in striatal
brain regions of both humans®® and rats®*. Amphetamine-
related behaviours in rodents are also strongly linked to
activity in striatal brain regions® ®2, Thus, an increased
locomotor response to amphetamine (and other

psychostimulants, which face similar criticisms) is con-
sidered a simple test to reflect the subcortical hyperdo-
paminergia underlying the psychotic symptoms in
schizophrenia. Most animal models of schizophrenia
report increased locomotor activation after psychosti-
mulants’®, However, the recent clinical evidence descri-
bed above suggests that current assessments of animal
models does not reflect contemporaneous knowledge of
dopamine activity in those with schizophrenia.

The relative contribution of specific dopamine pathways
to amphetamine-induced locomotion provides a good
example of why a paradigm shift is required for research
using animal models for positive symptoms in schizo-
phrenia. For example, amphetamine-induced locomotion
is largely driven by limbic dopamine release. Local
administration of amphetamine®®" or dopamine®**% %’
into the nucleus accumbens induces locomotion. Fur-
thermore, blocking dopamine signalling in the nucleus
accumbens attenuates amphetamine-induced
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Fig. 5 Behavioural tests to probe associative striatal function. a The neurocircuitry involved in goal-directed action can be split into three
primary circuits. The associative system (red), including the PFC and ACC, is required for the acquisition and expression of goal-directed action, which
is sensitive to outcome devaluation. In contrast, the limbic system (green) is critical for the formation of associations between reward predictive
stimuli and action. Habitual behaviours rely on the sensorimotor system (purple). b Behavioural flexibility involves OFC and PFC inputs to the
associative striatum. The OFC is critical for reversal learning whereas the PFC is required when shifting to new rules or strategies. The associative
striatum is the only common region required for goal-directed action that is sensitive to outcome devaluation and serial reversal learning. OFC
orbitofrontal cortex, PFC prefrontal cortex, ACC anterior cingulate cortex, vm ventromedial, m medial, dl dorsolateral, lat lateral

locomotion®. Specifically activating limbic dopamine
projections using chemogenetic tools robustly increases
locomotion, but activating associative dopamine projec-
tions does not’'. Thus, there is an anatomical misalign-
ment between the primary behavioural outcome deemed
important for positive symptoms in animal models of
schizophrenia (i.e, psychostimulant-induced locomotion
driven by limbic dopamine), and clinical evidence in
patients (hyperactive associative striatal dopamine). Fur-
thermore, clinical studies directly comparing activity
levels in patients with schizophrenia and bipolar disorder
suggest that hyperactivity may be a core feature of bipolar
disorder rather than schizophrenia®.

One argument for amphetamine-induced locomotion
is that it is predictive of antipsychotic efficacy, but this is
merely a serendipitous side effect. Systemically admi-
nistered amphetamine increases dopamine function in
both the limbic striatum (locomotion) and associative
striatum (positive symptoms). Systemically administered
antipsychotics antagonise D2 receptors throughout the
brain. Therefore, amphetamine-induced locomotion
acts serendipitously to predict antipsychotic effective-
ness via dopamine release in a parallel circuit (limbic vs.
associative dopamine). Optimally, antipsychotics that
diminish dopamine signalling preferentially in the
associative, rather than the limbic, striatum need to be
developed. Obviously, amphetamine-induced locomo-
tion would not be predictive for the latter treatment
options.

Prepulse Inhibition

One of the most consistently observed neurological
impairments in schizophrenia is impaired sensorimotor
gating in the form of decreased PPI’* °*, Deficits in PPI
may reflect an inability to gate out irrelevant information.
PPI deficits also respond to antipsychotics but are not
specific to schizophrenia® ?*. Thus, PPI deficits do not
represent a specific or diagnostic trait of schizophrenia.
Intact cortical and striatal function are critical for PPI°?
and, therefore, deficits in PPI also reflect an interface
between positive and cognitive symptom groups®'.

PPI is assessed almost identically in rodents and
humans and, therefore, is one of the most widely studied
deficits in schizophrenia. In rodents, the contribution of
limbic dopamine projections to PPI are well-known”,
though the associative striatum has also been impli-
cated®® 7. Thus, PPI deficits clearly lack specificity con-
cerning  the  hyperdopaminergia  observed in
schizophrenia. Therefore, when assessing rodent models,
PPI impairments alone are insufficient for determining
positive symptom phenotypes and their predictive validity
suffers from the same criticism as that of amphetamine-
induced locomotion (parallel blockade of limbic D2
receptors).

Can we objectively test positive symptom
connectivity in rodents?

Clearly, alternative behavioural phenotypes in animal
models, consistent with the underlying neuroanatomical/
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biological features of schizophrenia, need to be estab-
lished. This does not invalidate our current rodent mod-
els; it just emphasises that, in light of the recent
compelling PET evidence in patients, we need to review
their relevance to the positive symptoms of schizophrenia.
Psychosis, an extremely ‘human’ syndrome, will never be
truly observable in rodents. However, we can, and should,
aim to establish more translationally relevant tests for the
underlying neurobiology of psychosis. Ultimately, we need
better behavioural tests for positive symptoms in animal
models that will lead to therapies efficacious for both
positive and cognitive symptoms in patients. We contend
that tests aimed at understanding associative striatal
function are imperative. We propose that a combination
of cognitive behavioural tasks, that can be tested similarly
in humans and rodents (Fig. 4a), represents our best
opportunity to assess positive symptom neurobiology in
animal models. It is important to consider that neither
task alone is a reliable indicator of positive symptom
neurobiology (as these tasks assess cognitive function and
outcomes are therefore relevant to cognitive symptoms);
however, in combination they can help isolate associative
striatal function.

Goal-directed action: sensitivity to outcome devaluation
Goal-directed behaviour is critical for understanding
the relationship between actions and their consequences
in both humans and rodents. Moreover, goal-directed
action heavily depends on the function of the associative
striatum®** **71% and can be assessed using near iden-
tical behavioural paradigms in both humans'®' and
rodents'** (Fig. 4b). To test impairments in the learning
of action-outcome associations in humans and rodents
the sensitivity to outcome-specific devaluation can be
determined. Outcome-specific devaluation is useful way
of establishing that an action is goal-directed and that the
correct action—outcome associations have been formed. In
order to test this, after training to associate actions with
specific outcomes (action—outcome association), one of
the outcomes is devalued. After devaluation, when the
subject is given the choice between the two action-
outcome pairs, healthy controls respond more for the
outcome that was not devalued. This demonstrates the
ability to establish action-outcome associations correctly
and adapt actions based on newly acquired information.
The specific neurocircuitry involved in goal-directed
behaviour is based on years of associative learning
research'%’. Sensitivity to outcome devaluation is depen-
dent on the PFC and associative striatum (Fig. 5a).
Impairments in goal-directed action in schizophrenia
have been associated with altered caudate function'®' and
disorganised thought'®*, Importantly, the insensitivity to
outcome devaluation observed in persons with schizo-
phrenia was not due to impairments in reward sensitivity
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after devaluation (i.e., limbic systems) but rather, reflected
an inability to use this information to direct choice'®'.

Behavioural flexibility: serial reversal learning

One limitation of outcome-specific devaluation is that it
does not allow for the delineation of functional deficits in
the PFC vs. associative striatum. Thus, pairing this task
with another that relies on the associative striatum, but
not the PFC, is required. The basal ganglia is also involved
in flexible decision-making and specifically reversal
learning (the ability to adapt when outcome contingencies
are reversed) which can be tested similarly in humans and
rodents (Fig. 4c). Extensive work in rodents, primates and
humans have demonstrated that specific forms of beha-
vioural flexibility are dependent on differing neuro-
circuitry®®'%> 1%(Fig. 5b). For example, the orbitofrontal
cortex and associative striatum are critical for reversal
learning when re-exposed to previous contingencies (e.g.,
serial reversal learning). In contrast, the PFC is critical for
shifting from one rule or strategy to another (i.e., atten-
tional set-shifting). Thus, deficits in serial reversal learn-
ing are particularly sensitive to orbitofrontal cortex and
associative striatal dysfunction but not PFC dysfunction.
Persons with schizophrenia exhibit deficits in both
attentional set-shifting and reversal learning'®’. Deficits in
reversal learning are independent of working memory
deficits and have also been associated with disorganised
thought'®®,

A circuit level approach to positive symptoms in animal
models

Advances in behavioural neuroscience have helped to
delineate specific circuits important for aspects of com-
plex behaviour. Moreover, improvements in circuit iso-
lation using techniques such as optogenetics'® or
chemogenetics''® mean the field is at a point now where
we can focus on particular brain regions and circuits. The
proposed tasks, outcome-specific devaluation and serial
reversal learning, provide a potential mechanism to focus
on associative striatal function (Fig. 5). For example, an
insensitivity to outcome devaluation and impaired serial
reversal learning would be predicted if associative striatal
function is compromised. In contrast, an insensitivity to
outcome devaluation but maintained serial reversal
learning would predict impairments in PFC function. The
opposite would be true if orbitofrontal cortex dysfunction
is present. Although this is far from perfect, an under-
standing of the extended connectivity from the associative
striatum provides a starting point to probe animal models
of schizophrenia to determine whether they demonstrate
true associative striatal dysfunction rather than limbic
dysfunction. Like psychosis, deficits in goal-directed
behaviour'®® and reversal learning'®’ are observed in a
multitude of disorders other than schizophrenia, meaning
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that multiple tests assessing cognitive function and other
circuitry will still be required to determine how useful one
particular animal model will be to an individual psychia-
tric condition. This combination of tests, however, will
allow for a more selective assessment of associative
striatal function.

Challenging longstanding assumptions and
moving forward

Clozapine, discovered in the 1960’s, remains the most
effective antipsychotic medication, although its use is
restricted due to its side effect profile''. This stagnation in
drug development for schizophrenia highlights a key
weakness in schizophrenia research; a lack of effective bi-
directional translation between basic and clinical research.
The fact that the current methods of testing for psychotic
symptoms in rodents are now misaligned with recent
clinical evidence indicates a need to advance how positive
symptoms are examined in animal models. We have pro-
posed a combination of behavioural tests in rodents that are
sensitive to dysfunction at the primary site of dopaminergic
neurobiology observed in schizophrenia. There will never
be a perfect model for psychosis in rodents, but it is critical
that we acknowledge the limitations of current methods so
that an active dialogue is established.

It is also imperative that basic and clinical researchers
maintain active collaborations to prevent the mis-
interpretation or mistranslation of animal studies. For
example, based on the work in monkeys and rodents' ">~
114 the results of D1 receptor agonists on working
memory function in schizophrenia have been largely
negative'”>™"'”. One contributing factor may have been
that the preclinical studies tested delay-dependent work-
ing memory (i.e., how long a piece of information is kept
in working memory), whereas the clinical studies tested a
differing working memory construct, memory span
capacity (i.e, how many items can be kept in working
memory at one time). Other factors such as medication
history''® may also interfere with the effectiveness of
translation between preclinical and clinical studies. To
improve translational schizophrenia research it is
imperative that we build better avenues for communica-
tion between basic and clinical research teams to avoid
the aforementioned issues.

Conclusion

Complex syndromes like schizophrenia require a con-
stant reformulation and evolution of ideas and strategies
that cannot be achieved by either basic or clinical research
in isolation. Clinically, the point at which psychotic
symptoms become apparent has dictated our primary
diagnostic criteria. Furthermore, it has become evident
that a range of complex symptoms emerge before this
diagnostic time point. Clinical research must continue to
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elucidate the features associated with the development of
psychosis and better inform a patient’s clinical trajectory
throughout the course of schizophrenia. However, our
current ability to model psychotic symptoms in animal
models is at best questionable and based on historical
presumptions rather than recent clinical evidence. Thus,
it is imperative that basic research using animal models
develops objective measures for the neurobiology under-
lying psychosis in schizophrenia. Understanding in detail
the neurobiological processes that precede these beha-
vioural abnormalities, an avenue of research that cannot
be conducted in humans, now becomes a priority. It is
only by a synthesis of such approaches that novel ther-
apeutic targets and treatments will emerge.
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