
Research Article
Integrative Analysis Reveals Comprehensive Altered Metabolic
Genes Linking with Tumor Epigenetics
Modification in Pan-Cancer

Yahui Shi,1 Jinfen Wei,1 Zixi Chen,1 Yuchen Yuan,1 Xingsong Li ,1 Yanyu Zhang,2

Yuhuan Meng,1 Yumin Hu,2 and Hongli Du 1

1School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
2Sun Yet-Sen University Cancer Center, State Key Laboratory of Oncology in South China,
Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, Guangdong, China

Correspondence should be addressed to Hongli Du; hldu@scut.edu.cn

Received 1 August 2019; Revised 21 September 2019; Accepted 1 October 2019; Published 7 November 2019

Academic Editor: Ernesto S. Nakayasu

Copyright © 2019 Yahui Shi et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Cancer cells undergo various rewiring of metabolism and dysfunction of epigenetic modification to support their
biosynthetic needs. Although the major features of metabolic reprogramming have been elucidated, the global metabolic genes
linking epigenetics were overlooked in pan-cancer. Objectives. Identifying the critical metabolic signatures with differential
expressions which contributes to the epigenetic alternations across cancer types is an urgent issue for providing the potential
targets for cancer therapy. Method. (e differential gene expression and DNA methylation were analyzed by using the 5726
samples data from the Cancer Genome Atlas (TCGA). Results. Firstly, we analyzed the differential expression of metabolic genes
and found that cancer underwent overall metabolism reprogramming, which exhibited a similar expression trend with the data
from the Gene Expression Omnibus (GEO) database. Secondly, the regulatory network of histone acetylation and DNA
methylation according to altered expression of metabolism genes was summarized in our results. (en, the survival analysis
showed that high expression of DNMT3B had a poorer overall survival in 5 cancer types. Integrative altered methylation and
expression revealed specific genes influenced by DNMT3B through DNA methylation across cancers. (ese genes do not overlap
across various cancer types and are involved in different function annotations depending on the tissues, which indicatedDNMT3B
might influence DNA methylation in tissue specificity. Conclusions. Our research clarifies some key metabolic genes, ACLY,
SLC2A1, KAT2A, and DNMT3B, which are most disordered and indirectly contribute to the dysfunction of histone acetylation
and DNAmethylation in cancer. We also found some potential genes in different cancer types influenced byDNMT3B. Our study
highlights possible epigenetic disorders resulting from the deregulation of metabolic genes in pan-cancer and provides potential
therapy in the clinical treatment of human cancer.

1. Introduction

Unlike normal cells that regulate their cell division rea-
sonably, cancer cells have the ability to sustain growth-
promoting signals, which lead them to obtain enough energy
through adjusting epigenetics and metabolism mechanisms
to meet the sustained cell division. In recent years, there has
been a growing interest in cancer metabolism, especially the
theory of carbohydrate metabolism disturbance which was
proposed by Otto Warburg in the 1920s [1]. Besides glucose

metabolism, other metabolism disorders including lipid and
amino acid metabolisms have also been discovered in cancer
[2–4]. In addition to providing energy, the research showed
that disordered genes encoding metabolic enzymes may also
promote tumorigenesis through other biological functions
like epigenetic modification [5]. (e most studied epigenetic
alterations associated with carcinogenesis were variation in
DNA and histone structure through posttranslational
modifications and histone variants. (ereinto, DNA
methylation and histone acetylation were the most common
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modifications related to the occurrence and development of
cancer. Numerous studies have found that activation or
overexpression of oncogene and silencing of cancer sup-
pressor gene were due to the apparent epigenetic modifi-
cation at their corresponding locations. (e cancer
suppressor gene BRCA1 was found hypermethylated in
ovarian cancer patients [6], and CDH13 was methylated in
endometrial carcinoma [7]. In the opposite case, hypo-
methylation may lead to the activation of normally silenced
oncogenes. RAS, involved in cell differentiation, pro-
liferation, apoptosis, cellular adhesion, and migration, was
hypomethylated in the promoter in hepatocellular carci-
noma [8].

Although separate investigation on these energy meta-
bolism reprogramming and epigenetic modification dys-
function would uncover molecular characteristics, the
diagnosis and cure effect that targeted them were not as ex-
pected [9, 10]. (e metabolic network was observed to in-
terplay with many altered signaling pathways in cancer, which
increased the difficulty of developing targeted metabolic
treatment [11]. In addition to oncogenic signaling, the ex-
tensive crosstalk was revealed between the metabolic networks
and epigenetics disorders in cancer. For example, with the
abnormal condition, acid environment or metabolic rewriting,
epigenetic landscape would undergo dysfunction which
contributed to gene expression disorder and neoplastic pro-
cesses [12]. Metabolism has a significant influence on epige-
netics through adjusting DNA and histone modification
enzymes [13]; in turn, the epigenetics would affect the
metabolism by altering the gene expression. (ese studies
usually focused on the relationship between metabolism and
epigenetics just in one type of disorder or in an isolated tumor
type [14, 15]. In these specific analyses, the epigenetic alter-
ations were a direct result of the altered activity of a particular
metabolic enzyme. However, whether metabolic genes might
contribute to epigenetic dysregulation more universally across
multiple cancer types is not yet fully clear.

Given that anabolism and catabolism of metabolites and
transcriptional dysregulation of metabolic genes are dra-
matically altered in cancer, there is an urgent issue to explore
how such metabolic reprogramming alters epigenetic reg-
ulation at a global landscape. Researchers demonstrate that
the gene expression patterns indeed reflected metabolic
activities [16].(e projects such as the Cancer Genome Atlas
(TCGA) provide large amounts of transcriptomic profiles
across multiple tumor types with well-annotated human
cancer samples [17], which is a good resource to explore
metabolic dysfunction at the transcriptional level. (e
sufficient tumor and normal sample size with transcriptomic
profiles are necessary for revealing relatively accurate
metabolic dysfunction in each cancer. After searching the
TCGA database by sample size for each cancer, we have
performed a metabolic gene expression signature analysis
covering 11 tumor types (normal samples of each cancer
>30) including 5726 samples to identify critical metabolic
gene features and their related epigenetic dysfunction, es-
pecially the DNA methylation. (e different expression
genes were also confirmed by Gene Expression Omnibus
(GEO), NCBI’s publicly available genomics database. To our

knowledge, this is the first study that presents metabolic
reprogramming plays a major role in the regulation of the
epigenome across multiple cancer types. Our objective in
this paper is to provide a global understanding of metabolic
genes as well as their function in epigenetic modification in
tumors and reveal potential targeted therapies for cancer.

2. Materials and Methods

2.1. Data Resources. Samples for different cancer types were
downloaded from the TCGA data portal. To eliminate
heterogeneity from patients and reveal universality more
accurately, the minimum threshold of normal samples was
30 for each cancer type. After the screening, 5137 cancer and
589 normal samples were analyzed. 11 cancer types were
selected as follows: breast invasive carcinoma (BRCA), colon
adenocarcinoma (COAD), colorectal adenocarcinoma
(COADREAD), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney
renal papillary cell carcinoma (KIRP), liver hepatocellular
carcinoma (LIHC), lung adenocarcinoma (LUAD), lung
squamous cell carcinoma (LUSC), stomach adenocarcinoma
(STAD), and thyroid carcinoma (THCA). For each cancer
type, we classified samples into 2 groups: normal samples
and tumor samples (Supplementary Tables 1 and 2).

For the validation material, we extracted the microarray
expression profile (GEO group) from 2010 to 2019 in GEO
database. Datasets were included if the following criteria
were fulfilled: containing both tumor samples and adjacent
normal tissues and normal sample size of more than 30. (e
five datasets (GSE13507, GSE87630, GSE37182, GSE76427,
and GSE32665) containing adjacent normal tissues as the
control were downloaded from the GEO repository. Details
of each microarray study, including sample descriptions, are
provided in Supplementary Table 1.

For this study, we used 2071 human metabolism-related
genes assigned to metabolic pathways in the Cancer Cell
Metabolism Gene DataBase (ccmGDB), official gene sym-
bols, and gene IDs are included in Supplementary Table 3.

2.2. Differential Gene Expression Analysis. (e mRNA ex-
pression profiles data were classified into 2 groups: normal
and tumor. Gene expression was represented with TPM
(transcripts per million) calculated by the counts of mapping
reads in each gene.(e gene with the mean TPM of less than
1 was excluded. (e Cyber-T bayesreg.R, based on a Bayes-
regularized unpaired t test, was used to analyze differences
between tumor samples and normal samples. Differentially
expressed genes (DEGs) were selected by FDR (false dis-
covery rate) less than 0.05 and together with the absolute
value of fold change value not less than 1.5. According to the
metabolic gene list, we filtered the differential expression for
each metabolic gene in each cancer type. For the GEO data,
limma R package was used to screen the DEGs between
tumor and normal samples in each included dataset. We
performed gene differential analysis (|LogFC|> 1, adjusted P

value (FDR)< 0.05) as the cutoff criteria. Hierarchical

2 BioMed Research International



clustering analysis was performed for the DEGs using the R
packages (“pheatmap”).

2.3. Functional Annotation. (e metabolic differential ex-
pression genes (MDEGs) that were found to differentially
express at least 8 cancers were selected. For functional
annotation of those metabolic genes, we used GO and KEGG
pathway annotations within David bioinformatics database
to perform the gene ontology analysis [18, 19]. Significant
pathways with a threshold of P< 0.05 were selected. (e
pathway enrichment bubble plot was drawn using R
packages (“ggplot2”).

2.4. Survival Analysis. Kaplan–Meier analysis was used to
identify the genes showing clinical relevance with tumor
patients according to the TCGA datasets.(e tumor samples
were divided into two groups according to the median
expression of each gene: high expression (with TPM values
higher median) and low expression (with TPM values lower
median). (en, the log-rank test was used to analyze the
differences between groups, and the significantly prognostic
value was selected with a threshold of the P value <0.05.
Univariate Cox regression analysis was used to further
identify the independent prognosis factors. Statistical ana-
lyses were performed using R package (“survival”).

2.5. DNA Methylation Analysis. For DNA methylation
analysis, the average DNA methylation value (β values) for all
CpG sites correlated with a gene in the genomic region be-
tween 0 and 1,500 bps ahead of the transcription start site was
calculated. (e ChAMP is an R/Bioconductor package that
was used to calculate differentially the significantly expressed
probes that had a P value <0.05 and |Δβ|> 0.2 between two
group samples, respectively, in our analysis (http://www.
bioconductor.org/packages/release/bioc/html/ChAMP.html).
One group was between normal and tumor, and the other
group was the different DNA methylated level between
top10% and bottom10% samples by DNMT3B expression.
(en, the overlap probes were obtained between the two
groups. Differentially expressed probes with Δβ> 0.2 were
defined as hypermethylation of the corresponding genes, and
those with Δβ – 0.2 were defined as hypomethylation of the
corresponding genes.(en, these probes were compared with
different expression genes for the following analysis.

2.6. Spearman’s Rank Correlation Analysis. Spearman’s rank
correlation was calculated using the function “cor.test” in R
between promoter probe methylation level and their cor-
responding gene expressions. (e significant negative cor-
relations were considered if the correlation coefficient r was
<0, and significant positive correlations were considered if r
was >0. We calculated the above overlapped genes and their
corresponding probes. (e genes were obtained whose
Δβ> 0.2 and r< –0.2 were regarded as hypermethylated and
significantly anticorrelated between methylation and ex-
pression results.

2.7. Association Analysis between Oncogene/Tumor Suppres-
sor Mutation and Metabolic Pattern. To identify the asso-
ciation between oncogene/tumor suppressormutation events
and metabolic profile, we first choose the top 15 mutation
driver genes in pan-cancer according to the previous com-
prehensive study [20]. Information regarding mutation
frequency and sample matrix in each cancer type was
downloaded from the TCGA, an open-access database that is
publicly available at cBioportal [21] (http://www.cbioportal.
org). We choose the top 3 oncogene/tumor suppressor with a
highmutation frequency for each cancer type and divided the
sample into two parts according to whether each oncogene/
tumor suppressor is mutated or not. (e differential gene
expression analysis was conducted between the above
grouping samples in each cancer type. (e associations were
analyzed between the focus metabolic gene of this study as
well the whole metabolic spectrum and key oncogene/tumor
suppressor mutation.

3. Results

3.1. Global Changes in Metabolic Gene Expression. To un-
derstand metabolic gene expression in different cancers, we
analyzed 5137 tumor and 589 normal samples spanning 11
different tumor types. According to the clinical information,
we divided samples into 2 subgroups for each cancer type:
normal and tumor (Supplementary Table 1). Figure 1(a)
presents the total number of expressed genes (EGs), dif-
ferentially expressed genes (DEGs), and metabolic differ-
ential expression genes (MDEGs) in 11 cancers. (e number
of upregulation and downregulation of MDEGs in 11
cancers is shown in Figure 1(b). To validate the different
analysis results in TCGA, we choose the MDEGs (found
differential expression at least 8 cancers) to get the differ-
ential distribution in GEO database. As shown in
Figure 1(c), the GEO data exhibited the same differential
variation trend as in TCGA cancer types. To gain a view of
metabolic status in cancer, we carried out the MDEGs (were
differentially expressed in at least 8 cancers) sets of metabolic
pathways based on the GO and KEGG pathway analysis
(Supplementary Tables 3 and 4). (e pathways, namely,
purine metabolism, carbon metabolism, pyrimidine meta-
bolism, and beta-alanine metabolism, were dysregulated in
cancers (Figure 2, Supplementary Table 4).

3.2. DisorderedMetabolic Genes Related toHistoneAcetylation.
In the transacetylation process (Figure 3, Table 1), the citrate,
acetate, and fatty acids were the main sources for generating
acetyl coenzyme A (acetyl-CoA) which would provide the
acetyl group to histone. In the citrate metabolism, the genes
encoding pyruvate dehydrogenase (PDH) and ATP citrate
lyase (ACLY) were included. PDH had no significant
changes between cancer and normal samples. ACLY was
upregulated in 5 cancer types. In the acetate metabolism, the
gene-encoded acyl-CoA synthetase short-chain family
member 2 (ACSS2) was downregulated in 5 cancer types. In
the fatty acid synthetase part, ACACA and FASN were
upregulated in 4 cancer types. In the fatty acid oxidation
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Figure 1: Cancer-induced changes in all gene and metabolic gene expressions. (a) (e number of EGs, DEGs, and MDEGs in 11 different
cancer types. Orange bar represents EGs, green bar represents DEGs, and purple bar represents MDEGs in 11 different cancer types. (b)(e
number of significantly upregulated and downregulation of MDEGs in 11 types of cancers. Significantly different genes were filtrated by the
following criteria: FDR> 0.5, |Fold Change|> 1.5. Red and green bars represent upregulated and downregulationMDEGs, respectively, in 11
cancer types. (c) Heat map of differentially expressed genes in TCGA and GEO database. Red color represents the upregulated genes; blue
color represents the downregulated genes; white color represents genes without change. EGs: expressed genes; DEGs: differentially
expressed genes; MDEGs: metabolic differential expression genes; BRCA: breast invasive carcinoma; COAD: colon adenocarcinoma;
COADREAD: colon rectum adenocarcinoma; HNSC: head and neck squamous cell carcinoma; KIRC: kidney renal clear cell carcinoma;
KIRP: kidney renal papillary cell carcinoma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell
carcinoma; STAD: stomach adenocarcinoma; THCA: thyroid carcinoma; TCGA: the cancer genome atlas; GEO: Gene ExpressionOmnibus.
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Figure 2: Gene ontology and pathway enrichment analysis of rewiring metabolic genes in cancer tissues compared to normal. (a) (e gene
ontology analysis; P< 0.01. (b)(eKEGGpathway enrichment analysis;P< 0.01.(e top 15 pathways were chosen and analyzed.(e size of
the circle indicates the number of enriched genes.
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process, the acylcarnitine would be transported to the mi-
tochondria to mediate fatty acid metabolism by solute
carrier family 25 member 20 (SLC25A20). SLC25A20 had a
lower expression in 8 cancer types compared with those of
normal samples. Citrate produced acetyl-CoA through the
ACLY and acetate produced acetyl-CoA through ACSS2 also
in the nucleus which indicated that acetyl-CoA existed in the
nucleus and cytoplasm of mammalian cells, influencing both
metabolism and the global regulation of the gene expression
[5]. Histone acetyltransferases (HATs) could acetylate the
acetyl group from acetyl-CoA to the histone. Lysine ace-
tyltransferase 2A (KAT2A) was mainly studied as HATs.(e
gene KAT2A had an upregulated expression in 9 tumor
types.

3.3. Disordered Metabolic Genes Related to DNA Methylation.
(e disordered metabolic genes in transmethylation path-
ways were filtered out in our results. Accordingly, we as-
sembled a metabolic map depicting the distribution of these
changes in the pathway (Figure 4, Table 1). (ere were three
metabolites as methyl donors: methionine, folate, and be-
taine. All of them provided the methyl group to S-adeno-
sylmethionine (SAM) through their metabolic cycle. In the
betaine part, the expression of SLC44A4, CHDH, and BHMT

was disordered across cancers and had a general downward
trend. In the folate cycle, SLC19A1 and MTHFD1 had
upregulated expression in 6, 6 tumors and downregulated
expression in 3, 1 tumor, respectively. DHFR and MTHFD2
were not downregulated in cancers, and they were upre-
gulated in 6 and 9 cancers, respectively. Methionine and
ATP were catalyzed into SAM by methionine adenosyl
transferase (MAT). (e gene MATIA was downregulated,
and MAT2A was upregulated in one cancer. In the trans-
methylation reactions, the genes encoding histone methyl-
transferase (HMT) were not significantly different in
cancers. Only DNA methyltransferase (DNMT) genes were
presented in results:DNMT1,DNMT3A, andDNMT3Bwere
all highly expressed in 8, 6, and 9 cancer samples compared
with normal, respectively.

3.4. Survival Analysis of Disordered Metabolic Genes. To
analyze the DNA methylation and identify the related genes
which may show clinical relevance with tumor patients, we
performed the survival analysis on the disordered DNMTs
genes using TCGA datasets. Disordered DNMT3B was
screened and was found to have an impact on overall sur-
vival months. In BRCA, KIRC, KIRP, LIHC, and LUAD,
patients whose tissues have a higher expression of DNMT3B

Glucose
9/2/0

Pal-CoA Mol-CoA

4/7/0

Ac

Ac

Nucleus

SLC2A1

FASN

5/6/0
ACLY

Glucose

Ac-CoA

Citrate Acetate
5/6/0
ACLY

0/6/5
ACSS2

Pyruvate

Pyruvate Ac-CoA Citrate Citrate

Mitochondrial matrix

0/3/8
SLC25A20

Ac-CoA

4/6/1
ACACA Acetate

Acetate

7/2/2
HK2 7/4/0

PFKP8/3/0
PKM2

9/2/0
KAT2A

Figure 3: Detailed network map of transacetylation of gene expression levels in the 11 cancer types. Note: each metabolic reaction is marked
with the number of tumors (out of 11 considered in our analysis) in which at least one gene in the corresponding reaction is significantly
(FDR< 0.05) upregulated (red), downregulated (green), and neutral (black). If unmarked, no statistically significant change in mRNA
expression was detected. Cytoplasmic citrate came frommitochondrial citrate which was produced by glucose for glycolysis in the cytoplasm
and TCA cycling in the mitochondria. With the catalysis of ACLY, ACACA, and FASN, part of citrate was used to generate long-chain fatty
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had significantly shorter overall survival compared to those
with lower expression. (e higher expression of DNMT3B
led to poor prognosis in those cancer types, especially in
KIRP with the maximum hazard ratio (Figure 5). (e
DNMT1 was significantly associated with patient survival
times only in one cancer type (not shown), and it was seen
that the DNMT3A expression did not affect patient survival.

(e red plots present the high expression of each in-
dividual while the blue plots present the low expression of
each individual. P value of less than 0.05 was considered as
statistically significant. HR: hazard ratio.

3.5. DNMT3B Contributing to the Altered DNA Methylation
and Corresponding Gene Expression. Based on the analysis
the DNA methylation disorders resulted from DNMT3B,
different DNAmethylation probes were obtained in high and
low DNMT3B expression samples and then compared to the
difference between tumor and normal.(e number of altered
methylation probes was varied from 26 to 234 across tumor
types, and these changes may be contributed by high ex-
pression of DNMT3B (Supplementary Table 6). (ese probes
correspond to genes that were enriched in the different GO
terms depending on the cancer types, such as regulation of
cell differentiation in KIRC and signal transduction in KIRP

(Supplementary Table 7). Since the gene expression level was
contributed by DNA methylation alteration in tumors, we
overlapped the differential methylation and the differential
expression genes data in cancer versus normal samples. 8 to
87 genes were screened out and were dysregulated with the
differential methylation and mRNA across cancer types but
few of them overlapped (Figure 6(a)). Functional annotation
showed that the most frequently hypermethylated genes
(Δβ> 0.2) across cancers were enriched in anterior/posterior
pattern specification (Figure 6(b)), and the hypomethylated
genes were in signal transduction (Figure 6(c)). Based on the
calculated correlations between methylation and expression
data, the highly anticorrelated genes were retained. After
filtering and merging, thereinto, the hypermethylated-re-
pressed and hypomethylated-activated genes are shown in
Table 2 (Supplementary Table 8).

3.6. Association between Metabolic Gene Expression and
Oncogene or Tumor Suppressor Mutation. Metabolic
reprogramming can be partly influenced by oncogenic
driver events. To identify somatic alterations that potentially
drive metabolic expression, we identified the top 3 onco-
gene/tumor suppressor with the highest frequency of mu-
tations and assessed whether their mutation status correlated

Table 1: List of the critical different expression genes of categories we studied in the specific types of cancer.

Terms Genes Upregulation cancer types Downregulation cancer types

Methylation

SLC19A1 BRCA/COAD/COADREAD/HNSC/LIHC/STAD LUAD/LUSC/THCA
SLC44A4 BRCA/KIRP/LIHC/LUAD COAD/COADREAD/HNSC/KIRC/LUSC
DHFR COAD/COADREAD/HNSC/LUAD/LUSC/STAD
CHDH COADREAD/STAD HNSC/KIRC/LUSC
BHMT KIRC/KIRP/LIHC

MTHFD1 COAD/COADREAD/HNSC/LUAD/LUSC/STAD LIHC

MTHFD2 BRCA/COAD/COADREAD/HNSC/KIRC/LIHC/
LUAD/LUSC/STAD

AHCY BRCA/COAD/COADREAD/LIHC/LUAD/LUSC/
STAD KIRC/KIRP

MAT1A BRCA/COAD/COADREAD/LUAD/LUSC LIHC
MAT2A LIHC THCA

DNMT1 BRCA/COAD/COADREAD/HNSC/LIHC/LUAD/
LUSC/STAD

DNMT3A BRCA/HNSC/LIHC/LUAD/LUSC/STAD

DNMT3B BRCA/COAD/COADREAD/HNSC/KIRP/LIHC/
LUAD/LUSC/STAD

Acetylation

SLC2A1 BRCA/COAD/COADREAD/HNSC/KIRC/LIHC/
LUAD/LUSC/STAD

HK2 HNSC/KIRC/KIRP/LIHC/LUSC/STAD COAD/COADREAD

PKM2 BRCA/COAD/COADREAD/HNSC/LIHC/LUAD/
LUSC/STAD

PFKP BRCA/HNSC/KIRC/KIRP/LUAD/LUSC/STAD

SLC25A20 BRCA/COAD/COADREAD/HNSC/KIRC/KIRP/
LUSC/STAD

FASN COAD/COADREAD/LIHC/STAD
ACACA COAD/COADREAD/LIHC/STAD KIRC
ACLY COAD/COADREAD/HNSC/KIRC/LIHC
ACSS2 BRCA/COAD/COADREAD/KIRC/LUSC

KAT2A COAD/COADREAD/HNSC/LIHC/LUAD/LUSC/
KIRC/KIRP/STAD

Note: the blank content means the genes had no upregulation expression or downregulation in one particular cancer type.
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with the metabolic profile. THCA and KIRP were screened
out because sample size with each 3 gene mutation was less
than 20 (Supplementary Table 9). For each cancer type, we
performed the differential expression analysis of metabolic
genes based on the two group samples with oncogene/tumor
suppressor mutated or not (Supplementary Table 10).
DNMT3B was upregulated in BRCA, LIHC, and STAD in
TP53-mutated conditions when compared against non-
mutated samples. Upregulated expression SLC2A1 was
observed in LIHC and LUAD in TP53-mutated conditions.
(e other key metabolic genes related to DNA methylation
and histone acetylation described in Table 1 were not as-
sociated with oncogenes or tumor suppressors within the
scope of our study (Supplementary Table 10).

We also analyzed the association between metabolic
pathways and mutation patterns. Compared to other cancer
types, most of metabolism pathways in BRCA were disor-
dered with TP53 andMYCmutation, respectively. In BRCA,
LIHC, LUAD, HNSC, and STAD, groups with TP53

mutations were associated with most of the genes related to
nucleotide, lipid, and amino acid metabolisms. (e other
metabolic process associated with mutation patterns across
cancer types is shown in Supplementary Figure 1 and
Supplementary Table 11.

4. Discussion

Dysregulation of metabolism and dysfunction of epigenetic
modification is now the established feature of cancer.
However, the mechanism of how metabolic gene rewriting
influenced the global epigenetic modification levels in pan-
cancer is not yet fully clear. We performed a pan-cancer
analysis of transcriptome profiles covering 11 tumor types in
a comprehensive collection of 2071 metabolic genes. We also
elaborated on the alteredmetabolic genes which are involved
in the dysfunction of epigenetic modifications including
acetylation and methylation across cancers. ACLY, SLC2A1,
KAT2A, and DNMT3B are the critical genes contributing to
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rahydrofuran; MTHF: methyltetrahydrofolate; SAM: S-adenosyl-L-methionine; SAH: S-adenosyl-L-homocysteine.
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Figure 5: Survival analysis of gene DNMT3B. (a) BRCA, (b) KIRP, (c) KIRC, (d) LIHC, and (e) LUAD.
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epigenetic dysfunction across cancers. (ereinto, DNMT3B
is upregulated in 9 cancer types, and its higher expression
showed a correlation with overall survival in 5 cancer types

and it might contribute to the specific DNA methylation
disorder. (is result suggests a close link between DNMT3B
expression, DNA methylation, and carcinogenesis.
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Figure 6: (e significantly differentially methylated genes reveal distinct effects of DNMT3B expression. (a) (e heat map of different
expression genes contributed by DNMT3B across cancers. (b) Gene ontology analysis of hypermethylated genes (Δβ< –0.2). (c) Gene
ontology analysis of hypomethylated genes (Δβ> 0.2).
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Table 2: (e different expression genes with hypermethylation or hypomethylation in the specific types of cancer.

Cancer types Probe Δβ Gene Fold change P value r P value

BRCA

cg05661282 0.328652 ZNF154 –2.51052 0 –0.5733 4.31E – 69
cg02938205 0.313603 CCDC36 –4.76933 0 –0.25194 1.03E – 12
cg11417025 0.340146 SOSTDC1 –3.43449 5.82E – 11 –0.45553 4.54E – 41
cg17116120 0.203629 COX4I2 –2.06691 0 –0.26144 1.31E – 13
cg06087421 0.206592 TAL1 –3.82039 0 –0.24326 6.26E – 12
cg06363129 0.297534 SOSTDC1 –3.43449 5.82E – 11 –0.49109 2.09E – 48
cg03757145 0.274106 CDKL2 –2.28953 2.5E – 08 –0.63537 4.45E – 89
cg12042659 0.231631 ZNF132 –2.00658 0 –0.48716 1.49E – 47
cg07220448 0.29423 SOSTDC1 –3.43449 5.82E – 11 –0.45009 5.08E – 40
cg10168635 0.267563 C2orf88 –5.55411 0 –0.32566 1.18E – 20
cg14625175 0.405266 HOXA10 –2.7302 0 –0.2537 7.06E – 13
cg14263942 0.281991 CDKL2 –2.28953 2.5E – 08 –0.63136 1.19E – 87
cg18868483 0.301089 B3GAT2 –1.54216 4.51E – 05 –0.22273 3.44E – 10
cg01454592 0.245132 CCDC36 –4.76933 0 –0.24726 2.75E – 12
cg10344081 0.294167 CDKL2 –2.28953 2.5E – 08 –0.63967 1.23E – 90
cg06126713 0.395028 SOSTDC1 –3.43449 5.82E – 11 –0.44907 7.94E – 40
cg24432073 0.20478 CDKL2 –2.28953 2.5E – 08 –0.62519 1.73E – 85
cg02085507 0.372686 TRIP10 –1.54805 0 –0.20553 7.39E – 09
cg05308656 0.253266 ARL4C –1.64326 6.71E – 13 –0.52274 1.06E – 55
cg11270393 0.308156 ITPRIPL1 –5.73674 0 –0.39404 2.9E – 30
cg12506930 0.323833 ZNF154 –2.51052 0 –0.57088 2.14E – 68
cg07519235 0.459351 GPRC5B –2.5035 0 –0.49936 3.06E – 50
cg21113446 0.215296 PPP2R2B –3.10098 0 –0.33333 1.29E – 21
cg02324432 0.253122 KLHL2 –1.79165 0 –0.23855 1.62E – 11
cg04203238 0.274658 PROM1 –1.68571 0.000897 –0.64459 1.9E – 92
cg04243822 0.216055 C1QTNF1 –3.30512 0 –0.22631 1.76E – 10
cg00680551 0.424494 NCALD –3.00007 0 –0.37035 1.14E – 26
cg27049766 0.32279 ZNF154 –2.51052 0 –0.61756 6.93E – 83
cg08816590 0.288288 PDE1B –3.70157 0 –0.30695 2.05E – 18
cg14988503 0.210715 CDKL2 –2.28953 2.5E – 08 –0.58357 4.19E – 72
cg18236571 0.263708 PABPC4L –1.69422 2.54E – 09 –0.48483 4.73E – 47
cg18085435 –0.20795 ATP8B1 1.700614 8.59E – 08 –0.56131 1.05E – 65
cg01062470 –0.2649 KIF24 2.804288 0 –0.30429 4.14E – 18
cg04567302 –0.25404 SLC44A4 5.457885 0 –0.6607 1.26E – 98
cg16702815 –0.32459 AGR3 5.086635 3.09E – 12 –0.69724 3.7E – 114
cg10173620 –0.29247 ABHD2 1.920326 0.000667 –0.36501 6.75E – 26
cg11819637 –0.26298 THPO 3.885221 1.36E – 06 –0.67328 1E – 103
cg08960448 –0.33095 SEPT12 5.27739 7.67E – 05 –0.30054 1.1E – 17
cg27530053 –0.20353 FAM83E 3.858755 8.11E – 09 –0.458 1.5E – 41
cg23631538 –0.3347 DENND2D 1.578295 8.5E – 13 –0.43718 1.31E – 37
cg12633764 –0.29531 MAPT 1.804312 4.72E – 05 –0.72534 8.3E – 128

KIRC
cg27026192 0.214365 KIFC3 –1.57694 0 –0.36061 2.72E – 11
cg02993070 0.296156 FERMT2 –1.58269 3.77E – 15 –0.26413 1.59E – 06
cg02852670 0.260053 KLHL33 –3.21637 0 –0.25921 2.52E – 06
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Table 2: Continued.

Cancer types Probe Δβ Gene Fold change P value r P value

KIRP

cg11800117 0.293577 C11orf75 –1.50718 3.06E – 05 –0.26745 7.16E – 06
cg20962532 0.209952 KCNJ1 –32.1899 0 –0.26319 1.01E – 05
cg11968091 0.261459 ODZ4 –2.24539 0.000389 –0.30657 2.26E – 07
cg05227215 0.41792 CXXC5 –2.04975 0 –0.25958 1.35E – 05
cg04858586 0.269997 RABGAP1L –2.15075 5.35E – 13 –0.21864 0.000266
cg03648711 0.255349 ODZ4 –2.24539 0.000389 –0.2788 2.77E – 06
cg24277788 0.243307 ACSL1 –2.44389 1.27E – 14 –0.33942 8.17E – 09
cg03883256 0.265289 USP2 –3.63204 0 –0.21891 0.000261
cg10416846 0.299733 PNOC –4.19665 2.27E – 08 –0.25688 1.67E – 05
cg24127861 0.207238 REC8 –2.2299 0.000653 –0.31031 1.58E – 07
cg15974053 0.242659 HSD17B14 –2.21561 2.94E – 05 –0.73157 3.69E – 47
cg16530498 0.222937 HSD17B14 –2.21561 2.94E – 05 –0.74962 1.14E – 50
cg19414598 0.214085 DMC1 –1.57414 0.010418 –0.46463 4.44E – 16
cg15731317 –0.37473 SYTL2 1.895209 0.000186 –0.50345 5.16E – 19
cg00583003 –0.28896 SPP1 2.483728 3.64E – 06 –0.2564 1.73E – 05
cg21622977 –0.22364 RBPMS 1.793989 3.22E – 08 –0.49531 2.29E – 18
cg17660833 –0.53805 HRH1 4.616294 2.92E – 08 –0.33817 9.35E – 09
cg20306842 –0.21944 CREB5 7.099205 1.84E – 10 –0.40814 2.01E – 12
cg23031196 –0.31756 SLC38A1 1.620018 0.000342 –0.37927 8.38E – 11
cg01944226 –0.28436 SLC16A3 4.39414 8.6E – 06 –0.76961 6.36E – 55
cg09182455 –0.41989 CORO1C 2.191563 4E – 11 –0.22222 0.000209
cg01812894 –0.26035 ALDH1A1 2.206084 0.000791 –0.2834 1.86E – 06
cg01942558 –0.4858 TNFAIP6 45.14506 1.33E – 05 –0.68008 1.51E – 38
cg09122223 –0.34216 IL18 2.298725 1.94E – 07 –0.24966 2.91E – 05
cg16929739 –0.38802 HRH1 4.616294 2.92E – 08 –0.32623 3.25E – 08
cg09727050 –0.39502 TNFAIP6 45.14506 1.33E – 05 –0.78361 3.61E – 58
cg07042532 –0.32291 CREB5 7.099205 1.84E – 10 –0.62039 1.54E – 30
cg13445177 –0.29628 S100A10 1.832289 4.18E – 08 –0.34141 6.61E – 09
cg14333454 –0.30823 SFN 11.18657 0.034773 –0.7839 3.08E – 58
cg08778148 –0.2173 TFPI 2.08801 0.00022 –0.44876 5.55E – 15
cg14578677 –0.23981 TLR6 2.307439 0.007805 –0.44887 5.46E – 15
cg12669354 –0.35182 CD151 1.854554 1.27E – 11 –0.37366 1.66E – 10
cg00449608 –0.3179 GPR45 3.093416 0.00448 –0.44012 2.08E – 14
cg26864526 –0.36952 HRH1 4.616294 2.92E – 08 –0.53238 1.86E – 21
cg10183885 –0.26987 SLC16A3 4.39414 8.6E – 06 –0.8219 1.96E – 68
cg06836480 –0.24006 DHRS9 9.536973 0.012336 –0.23825 6.8E – 05
cg11702866 –0.44443 HRH1 4.616294 2.92E – 08 –0.29902 4.58E – 07
cg06457736 –0.44623 HRH1 4.616294 2.92E – 08 –0.31287 1.23E – 07
cg24258705 –0.47246 MET 4.732257 1.75E – 08 –0.63402 3.26E – 32
cg15717250 –0.34571 UPK1B 4.304701 0.004226 –0.66398 3.33E – 36
cg03489712 –0.29538 ZYX 1.99858 3.19E – 10 –0.22033 0.000237
cg09950681 –0.33674 PKP3 2.143401 0.047341 –0.60723 5.34E – 29
cg14550985 –0.33893 RIN1 5.119397 2.06E – 10 –0.68575 2.09E – 39
cg21950166 –0.36612 SFN 11.18657 0.034773 –0.71606 2.3E – 44
cg06720467 –0.34964 SFN 11.18657 0.034773 –0.55134 3.43E – 23
cg20992002 –0.30043 PKP3 2.143401 0.047341 –0.6543 7.26E – 35
cg02872476 –0.23267 DBNDD1 3.125374 4.05E – 08 –0.66917 6.07E – 37
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Various metabolism pathways responsible for epigenetic
modifications have been identified. One relevant pathway of
metabolic gene rewiring and epigenetic landscape is the
histone acetylation, which plays a critical role in regulating
chromatin structure, thus participating in specific gene
regulation [22]. A number of researches show that unstable
histone acetylation is contributed by changed acetyl-group
donor acetyl-CoA [23], which is a key metabolite in the
mitochondria and cytoplasm, associated with breakdown of
carbohydrates and fats via altered glycolysis and β-oxidation,
respectively [24]. (e acetyl-CoA synthesis is by ACSS2 [25]
and ACLY [5] according to the different substrates. (ere is
a similar or opposite trend for key gene expression, ACSS2 is
decreased in 5 cancers, and ALCY is found in 5 tumors
compared to their normal samples. We consider that the
citrate to the acyl-CoA pathway plays an important role in
histone acetylation in the carcinogenesis of categories we
studied.ACLY plays a critical role in determining the histone
acetylation, and ACLY knockdown leads to apoptosis and
growth suppression in breast cancer cells [26]. Inhibition of
ACLY inhibits glucose-dependent histone acetylation to
suppress glioblastoma cell proliferation [27]. ACLY was
upregulated in COAD, COADREAD, HNSC, KIRC, and
LIHC in the present study which indicates ACLY might
promote tumor proliferation in these cancer types. In-
terestingly, the reduction in histone acetylation and defect of
SLC2A1 expression are observed in the ACLY knockdown
cells [5]. (erefore, upregulated ACLY and SLC2A1 in
COAD, COADREAD, HNSC, KIRC, and LIHCmight result
in histone acetylation leading to selective regulation of genes
involved in glucose metabolism. (us, we speculate ACLY
and SLC2A1 may serve as critical linker of metabolic and
histone acetylation in these cancer types. For metabolite
analysis, lysine acetyltransferase 2A (KAT2A) is an affirmed
histone acetyltransferase (HAT) that binds to acetyl-CoA
and transfers the acetyl group to histones [28]. As expected,
the results of our data show that the KAT2A gene has high
expression in 9 cancer types, and it may be explained that
KAT2A is important for controlling the gene expression

program for adjusting histone acetylation in these cancer
types. KAT2A over expression increases the extent of histone
acetylation by interacting with E2F1, cyclin D1, and E1
promoters to promote the proliferation of lung cancer cell
lines [29]. KAT2A knockdown leads to a significant re-
duction of DNA synthesis in cervical cancer cells by de-
creasing histone H3 acetylation in the E2F1 promoter [30].
Our data show that the KAT2A has higher expression in 9
cancer types which indicates the increased histone acety-
lation level in specific gene promoters among these cancers
to be involved in the development of cancer. Further study is
needed to investigate ACLY, SLC2A1, and KAT2A in the
histone acetylation function across cancer types.

Another epigenetic modification is the DNA methyla-
tion, changes in transmethylation influenced by altered
methionine, choline, and folate. Unstable methylation
usually relates to altered methyl donor [31]. In trans-
methylation reactions, methyl donor is finally provided by
SAM which is produced from methionine by MAT [32].
Increased adenosylhomocysteinase (AHCY) gene expres-
sion will lead to an increase in SAM and aberrant DNA
methylation [33].AHCY knockdown leads to SAMdepletion
and proliferation rate reduction in hepatocellular carcinoma
cells [34]. SAM is themethyl donor, and suppression of SAM
leads to decreased DNAmethylation and slows the growth of
pancreatic cancer cells [35]. Upregulated AHCY gene ex-
pression is seen in BRCA, COAD, COADREAD, LIHC,
LUAD, LUSC, and STAD that may indicate the trans-
methylation reactions have a more active state in these
cancer types. (e altered expression of DNMTs, encoding
DNMTs (DNMT1, DNMT3a, and DNMT3B) could result in
global changes of methylation in leukemia cells and breast
cancer stem-like cells [36, 37], whileDNMT1,DNMT3A, and
DNMT3B are all upregulated in most cancer types (8, 6, and
9, respectively) in this study. Overexpressed DNMT3A
contributes to the various methylation patterns and is a
consequence of AML progression [37]. DNMT1 promotes
hypermethylation and downregulation of tumor suppressor
gene ISL1 which increases the tumor stem cell population in

Table 2: Continued.

Cancer types Probe Δβ Gene Fold change P value r P value

LIHC

cg21831174 0.218134 MASP1 –2.16898 0 –0.35207 1.19E – 11
cg04951797 –0.28077 SGOL1 19.52393 5.5E – 07 –0.62482 2.7E – 39
cg17336139 –0.25975 PRAME 231.9457 0.018915 –0.36725 1.29E – 12
cg23213217 –0.24898 DEGS1 2.328115 2.56E – 08 –0.33786 8.59E – 11
cg11225751 –0.21878 PRAME 231.9457 0.018915 –0.46426 4.12E – 20
cg06442489 –0.34313 ZSCAN18 1.965757 0.001058 –0.28886 3.75E – 08
cg20441902 –0.22001 FUT2 14.81239 0.012527 –0.54902 6.06E – 29
cg25060890 –0.22045 RPS6KC1 2.58206 2.81E – 11 –0.39031 3.5E – 14
cg03368046 –0.20541 FAM186A 4.276926 0.000748 –0.24311 4.2E – 06
cg23924737 –0.25896 MRPS23 2.825878 4E – 15 –0.40317 4.11E – 15
cg01999046 –0.30348 TRAF2 3.59974 4E – 15 –0.48642 3.45E – 22
cg03212674 –0.22852 CLK2 3.219276 7.32E – 13 –0.26115 7.25E – 07
cg02516101 –0.21135 CSNK1E 2.573716 5E – 09 –0.43473 1.44E – 17
cg07303143 –0.37162 KIAA1143 1.713539 2.33E – 07 –0.4433 2.79E – 18

LUAD
cg04372674 0.214314 AQP1 –2.70913 7.09E – 14 –0.6127 3.66E – 49
cg25075794 0.226309 AQP1 –2.70913 7.09E – 14 –0.60885 2.09E – 48
cg02571816 0.216135 PPP1R14A –3.40955 0 –0.34411 2.41E – 14

BioMed Research International 13



breast cancer cells [38]. However, only DNMT3B higher
expression is correlated with poorer overall survival in
BRCA, KIRP, KIRC, LIHC, and LUAD in the present study.

We then analyzed the DNAmethylation level in 5 cancer
types distinguished by high and low expression ofDNMT3B.
(e relation between DNMT3B expression and methylation
sites varies in cancer. Studies have shown that DNMT3B can
induce DNA methylation in specific CpG islands in co-
lorectal cancer [39] and it could also induce the distinct
methylation level in different regions such as CpG and non-
CpG [40]. Both hypermethylation and hypomethylation in
gene promoters between high and low DNMT3B expression
groups are found across cancers, which is consistent with the
previous research [40]. We then choose the overlap genes
which harbor differential methylation and expression;
meanwhile, many of these genes are involved in different
functional annotation that depends on the tissue types,
suggesting that DNA methylation at different loci happens
through DNMT3B in different cancers. Among these genes,
we found numerous genes whose function in tumorigenesis
and their expression associated with promoter hyper-
methylation or hypomethylation were well-documented in
the literature. ZNF154 and AQP1, whose hypermethylated
patterns are biomarkers for distinguishing tumor from
normal samples [41, 42], are downregulated and hyper-
methylated in BRCA and LUAD in our study. In addition,
hypermethylation and downregulation of PPP2R2B, whose
mRNA expression is in a DNMT-dependent manner [43],
were found in BRCA. Loss of DNMT3B in the mouse model
delayed the melanoma formation suggesting that other
DNMTs do not adequately compensate for DNMT3B loss
and suggesting nonredundant roles for DNMTs in mela-
noma and DNMT3B, in particular, may play specific,
nonredundant roles [44, 45]. Inhibitions of DNMT3B as a
novel therapeutic strategy for inhibiting the proliferation of
carcinoma cells are being studied [43]. Together with these
findings, it is suggested thatDNMT3Bwith encoding protein
DNMT3B and its potential methylation substrate genes
would be the effective therapy targets to human cancer.

To understand the factors affecting the expression of
metabolic genes at the present study, we have analyzed the
association between oncogene/tumor suppressor mutation
and metabolic gene expression in each cancer type. Several
metabolic pathways, such as nucleotide, lipid, and amino
acid metabolisms, are associated with specific mutation
patterns across cancer types indicating that metabolic
reprogramming may partly result from diverse oncogene/
tumor suppressor alterations in different tumor contexts,
which is also shown in the previous study [16]. Except for
SLC2A1 and DNMT3B, other genes related to histone
acetylation and DNA methylation mentioned above were
not associated with oncogene/tumor suppressor mutation at
the present study. (ese results suggest that there might be
other factors affecting the expression of metabolic genes, like
TME, rather than just oncogene/tumor suppressor muta-
tion. (e expression of ACLY and ACSS2 is influenced by
glucose concentration [27] and hypoxic conditions [46] in
local microenvironment. TME modulates cancer cell
metabolism and epigenetic modification contributing to

tumor heterogeneity and therapeutic response through
limited nutrient supply, acidic, hypoxia, and other charac-
teristics [47–49]. (erefore, it is necessary to combine
metabolic phenotype, epigenetic modification, genomic
landscape, and local TME to reveal the relationship between
metabolic genes and epigenetics modification in pan-cancer,
which may help overcome therapy resistance in cancer
patients and guide the rational design of combinational
therapies targeting both tumor cells and microenvironment
components.

5. Conclusion

In summary, our research clarifies some key metabolic
genes, ACLY, SLC2A1, KAT2A, and DNMT3B, which are
involved in epigenetic regulation indirectly in tumors. (e
uniqueness of our study is that it is first report that presents
metabolic gene reprogramming as a factor influencing
epigenetic regulation across human pan-cancers. We found
some potential genes’ methylation and expression in dif-
ferent cancer types influenced by DNMT3B whose expres-
sion is strongly relevant to the patient overall survival.
Besides, the connection was identified linking oncogenes
and tumor suppressors with deregulated cancer cell meta-
bolism. (e metabolic phenotype affected by TME should
also be gotten attention. (us, targeting these tumor met-
abolic genes might reverse epigenetic dysregulation and
improve the effect of targeted therapy. Moreover, the
combinational therapies targeting metabolic phenotype and
epigenetic modification with genomic landscape and local
TME can more effectively eradicate tumor cells from the
patients and improve the quality of life.
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