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a b s t r a c t

The histone demethylase KDM6A has recently elicited significant attention because its mutations are
associated with a rare congenital disorder (Kabuki syndrome) and various types of human cancers.
However, distinguishing KDM6A mutations that are deleterious to the enzyme and their underlying
mechanisms of dysfunction remain to be fully understood. Here, we report the results from a multi-
tiered approach evaluating the impact of 197 KDM6A somatic mutations using information derived from
combining conventional genomics data with computational biophysics. This comprehensive approach
incorporates multiple scores derived from alterations in protein sequence, structure, and molecular
dynamics. Using this method, we classify the KDM6A mutations into 136 damaging variants (69.0%),
32 tolerated variants (16.2%), and 29 variants of uncertain significance (VUS, 14.7%), which is a significant
improvement from the previous classification based on the conventional tools (over 40% VUS). We further
classify the damaging variants into 15 structural variants (SV), 88 dynamic variants (DV), and 33 struc-
tural and dynamic variants (SDV). Comparison with variant scoring methods used in current clinical diag-
nosis guidelines demonstrates that our approach provides a more comprehensive evaluation of damaging
potential and reveals mechanisms of dysfunction. Thus, these results should be taken into consideration
for clinical assessment of the damaging potential of each mutation, as they provide hypotheses for exper-
imental validation and critical information for the development of mutant-specific drugs to fight diseases
caused by KDM6A dysfunctions.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The KDM6A (Lysine-specific Demethylase 6A) gene encodes a
histone H3K27 demethylase, also known as UTX, which forms part
of the COMPASS complex and serves as a key epigenomic regulator
involved in both normal and abnormal morphogenesis [1,2]. As
such, alterations in this gene are found in Kabuki syndrome [3–5]
and several tumor types, including multiple myeloma, bladder car-
cinoma, breast cancer, renal cell carcinoma, and pancreatic cancer
[6–9]. Due to its key physiologic functions and disease-causal
mutations, KDM6A is an important enzyme to investigate system-
atically, to determine the relative significance and underlying
mechanisms for the wide range of observed genetic variation.
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Due to the medical relevance of KDM6A, several efforts have
been directed toward the development of small molecules that
inhibit the enzymatic demethylase domain of KDM6A [10–12].
These molecules can be chemically modified to fit into functional
active or substrate binding sites. However, it remains unknown
which mutations alter the demethylase domain and render KDM6A
non-functional, defeating the purpose for which the therapy was
developed. Correct annotations of these variations are vital for
understanding its underlying molecular mechanisms and better
diagnostic management and treatment for the patients. Impor-
tantly, only 15 KDM6A variants in the demethylase domain found
to cause Kabuki syndrome have been carefully studied [13,14],
while the complete repertoire of mutations found in cancer is
broad and remains poorly understood. Consequently, this study
was designed specifically to begin filling this knowledge gap in
the field of genomics and precision oncology.

In the current study, we evaluated 197 somatic missense muta-
tions (181 cancer-associated and 16 control variants) that affect
147 residues of the KDM6A catalytic domain, determining their
effect on structural and dynamic properties. Critically, we reclassi-
fied each variant, based on the meta-scores derived from our mul-
tiparametric scoring system, for their effects on structure and
dynamics, which underly their potential to not only alter enzyme
function, but how drugs interact with the protein. Accounting for
both structure and dynamics is critical because motions of the cat-
alytic domain are required for function [15,16]. Our data indicate
that KDM6A cancer variants can display functional disruptions in
various ways. Some have subtle disturbance and alterations, but
many others have severely damaging effects at the level of struc-
ture, dynamics, or both. The most damaging variants that affect
multiple aspects of protein structure and dynamics are concen-
trated around the active site and substrate binding interface of
the Jumonji C domain (JmjC) and the zinc-binding domain, rein-
forcing the known molecular mechanisms of KDM6A. These muta-
tions disrupt the structural integrity, local geometry, chemical
environment, and/or coordinated molecular motions. Together,
the data resulting from these analyses combined with their quan-
titative evaluations provide new knowledge on how genomic vari-
ations impact KDM6A function. Thus, this information will have
useful applications to score variants, to draw mechanistic infer-
ences, and to help interpret results from drug development or
testing.
2. Materials and methods

2.1. Selection of cancer-associated variants for the study

Across the genomic databases, there are over 300 somatic mis-
sense variants within the KDM6A catalytic domain among which
we chose 197 variants on 147 residues. Selection of the cohort
for this study was based on (i) inclusion of all variants listed in
TCGA, (ii) highly expected ‘damaging’ and ‘tolerated’ variants from
the initial structural analysis among additional entries in COSMIC,
(iii) representatives from across the entire topology of the protein,
and (iv) inclusion of all variants at or near the key functional sites.

In addition, a non-damaging control variant (H1060L) was
selected because it was listed in ClinVar as a benign variant and
as a single nucleotide polymorphism (SNP) in the general popula-
tion database (dbSNP) with a high allele frequency (3.07 � 10�4).
Moreover, 13 most common gnomAD variants (with a high fre-
quency greater than 1.5 � 10�5 in the general population) were
added as potentially ‘neutral’ variants as they are expected to have
no appreciable deleterious and pathogenic effects. On the other
hand, two designed (non-natural) mutants, H1146A and E1148A
on the two of the three Fe(II)-coordinating residues, were chosen
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as damaging controls because their loss-of-function activities are
well documented in the literature [17–19]. Furthermore, twelve
cancer somatic variants on 7 residues at the key functional sites
served as additional damaging controls.

2.2. Preparation of the initial structure

High resolution (1.8 Å) crystal structure of a histone H3K27me3
peptide (17–33)-bound form of human KDM6A catalytic domains
(PDB ID: 3AVR) was used in our study. This structure contains a
Ni(II) ion (instead of the enzymatic Fe(II) ion) and the cofactor ana-
log N-oxalylglycine at the active site as well as a structural Zn(II) in
the zinc-binding domain. However, for our studies, the cofactor
analog and the Ni(II) ion were replaced with the natural cofactor
2OG and the Fe(II) ion, respectively, to reconstruct the native-like
active conformation. In addition, this structure is missing two loop
regions (amino acids 902–910 and 1047–1078) due to high mobil-
ity, and they were filled in for our analysis using the Modeller pro-
gram [20]. For missense variant analysis, substitutions were made
within the Discovery Studio suite version 19.1 (Dassault Systèmes
BIOVIA) by mutating the corresponding residue and selecting the
side chain rotamer causing the least steric hindrance with the sur-
rounding residues followed by energy minimization.

2.3. Protein folding energy and stability calculation

We assessed the stability of the mutated protein by the variant-
induced changes in folding energy (DDGfold) using FoldX [21] and
the pH-dependent mutation energy protocol [22] implemented in
the Discovery Studio suite (Dassault Systèmes BIOVIA). We used
the energy minimized mutant structures for these calculations at
pH 7.4 using the energy-minimized wild type structure (H3-
unbound form) and introducing each substitution for calculation.
After the preparation phase, the initial structures of the wild type
and the generated mutants were subjected to a two-stage mini-
mization process before being subjected to energy calculation.
The predicted DDG values, using both programs are in fairly good
agreement (Supplementary Table S1 columns J & K).

2.4. Local structure perturbation measurement

We assessed the global and local structure perturbations by
measuring the positional displacement of backbone atoms
between the entire catalytic domains of wild type and mutant (glo-
bal) and only the atoms near the residue of interest (local). For
local structure perturbation, from the energy-minimized struc-
tures, any residues that reside within 10 Å radius from the muta-
tion site were selected using PyMol (Molecular Graphics System,
Schrödinger, LLC) and calculated for least-squared RMSD of the
backbone atoms between the wild type and the mutant using Coot
[23]. For global structure perturbation, entire backbone atoms
were used for RMSD calculation between the structures.

2.5. pKa shift estimation

To investigate the possibility that some titratable residues may
undergo protonation change upon single amino acid substitution
of KDM6A, we performed the pKa calculations at pH 7.0 with Del-
PhiPKa [24] which is a surface-free Poisson-Boltzmann based
approach to calculate the pKa values of protein ionizable residues.
We first calculated the pKa values of titratable residues for the wild
type and each mutant using energy-minimized structures. The pKa
shifts then were calculated by subtracting the pKa values of the
wild type and the mutant residues in both directions and summing
up the differences. Loss or gain of titratable residues at the position
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where cancer mutations occur and could dominate the cumulative
pKa shift amount were not considered in calculations.

2.6. Molecular simulations

MD simulations were performed using the CHARMm36 all-
atom-force-field [25] implemented in the Discovery Studio with
a 2 fs time step. A simplified distance-dependent implicit solvent
environment was used with a dielectric constant of 80 and a pH
of 7.4, and no further parameterization of a non-standard residue
(K27me3), cofactor, and metal centers. All MD simulations were
carried out using periodic boundary conditions. Models were
energy minimized for 5000 steps using steepest descent followed
by 5,000 steps of conjugate gradient to relax the protein structure
that was obtained under the stressed crystal environment. Each
system of 10 replicates of wild type and each variant was indepen-
dently heated to 300 K over 200 ps and equilibrated for 500 ps fol-
lowed by 10 ns production simulation under NPT ensemble by
changing the initial seed (100 ns total). Structures during uncon-
strained dynamics simulation were recorded every 10 ps to give
a total of 1000 frames for analyses. This chemical timescale is
enough for the side chain rearrangements in the protein’s native
state and to facilitate various conformations [26]. Total energy
plots of the trajectories indicate that the systems can reach near
equilibrium towards the end of the simulation. For final data anal-
ysis, one or two outliers (in some cases none) from each data set of
10 replicates that considerably deviate from the rest in RMSD plots
and might represent the minor and rarer form of conformations
(altogether 12% of the entire data) were excluded from averaging,
and only the last 500 frames that have reached the near minimum
total energy state were used. From 10 ns MD simulation, trajectory
files were analyzed for structural impact by root mean squared
deviation (RMSD), root mean square fluctuation (RMSF), and other
measures such as time-dependent molecular interactions, radius of
gyration (Rg), and solvent-accessible surface area (SASA). Trajecto-
ries were aligned to the initial wild type conformation prior to
analysis. RMSD and RMSF values were calculated at the residue
level for all atoms using the tools available within the Discovery
Studio and the algorithms implemented in the Microsoft Excel pro-
gram. Further analyses were carried out in the R programming lan-
guage [27], leveraging the bio3d package [28]. Molecular
visualizations were generated using PyMol (Molecular Graphics
System, Schrödinger, LLC).

2.7. MD-associated parameter measurements

We first considered global changes in structure across our sim-
ulations and the evaluation of the structural drift was monitored
by measuring all atom RMSDs from the initial structures as a func-
tion of time for all replicates and averaged (Supplementary
Table S1). Next, additional information comes from the RMSFs of
each amino acid, which highlights the flexible regions of the sys-
tems. Atomic RMSFs from the average structure in the trajectory
were calculated for each residue and plotted as shown in our pub-
lication [13]. Finally, we computed the time-dependent binding
free energy for all cases as well as radius of gyration (Rg) and
dynamic solvent accessible-accessible surface area (SASA) using
the protocols implemented in the Discovery Studio.

2.8. Identification of an additional effective MD-based metric at the
active site

The lack of correlation of the active site interaction energies
prompted us to seek out alternative MD-based metrics that might
be more closely related to KDM6A catalysis. We focus more on the
local chemical environment and geometry of the key reactive
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groups. The influence of the pKa shift has been already noticed
and presented in our publication [13]. However, the influence of
local geometry has not been explored.

The key rate-determining step in the catalysis of the JmjC-
containing enzymes is the hydrogen atom transfer (HAT) between
the oxidized Fe(IV) of the reaction intermediate and the methyl
group of the substrate [29] (Supplementary Fig. S1). Therefore,
the Fe(II)-Me distance of the resting state plays an important role
in the initiation and overcoming of the energy barrier for the reac-
tion. To test its critical relevance to catalysis and potentiality as a
protein-specific damaging effect metric within the active site, we
monitored the distances between Fe(II) and the closest methyl
group between which HAT must take place. Because there are
three methyl groups in the lysine residue, we only measured the
distance between the closest methyl carbon and the Fe(II) metal
ion. Differences in these distance values between the wild type
and the mutants show notable correlations with other scores (Sup-
plementary Fig. S2), albeit lower than the other two MD-based
scores (substrate/Zn interactions and RMSF), which prove that
indeed HAT is a key molecular event that has been conserved
throughout evolution. The lower correlation values than the other
two might be due to inaccurate measurement of the distances
stemming from the fact that the three equivalent methyl groups
rotate/flip during MD simulation (Supplementary movie M1). The
same behavior of the methyl groups was observed in the simula-
tions of another KDM family member KDM7B [30] (Supplementary
Fig. S2). This metric was included in the overall impact scoring
based on these findings.
2.9. Time-dependent interaction energy calculation and HAT distance
monitoring

Molecular interaction free energies were measured using the
protocol implemented in Discovery Studio. This was done using
the MD simulation trajectories and by selecting the protein and
the interaction groups of interest. Non-bonded interactions were
monitored and dynamic interaction energies (van der Waals and
electrostatic energies) were calculated from using the CHARMm36
force field and the implicit distance-dependent dielectric solvent
model. Fe(II)-Me distance monitoring was also done within Discov-
ery Studio by selecting those atoms of interest. Because three
methyl groups that rotate/flip during simulation (see the previous
section and the Supplementary movie M1 and Fig. S2), we moni-
tored all three and only took the shortest distance for averaging
for all replicates.
2.10. Further use of the cross-correlation matrix to choose more
appropriate scoring schemes

All MD-based data and the differences between the wild type
and the mutants need to be properly scored for a more accurate
impact assessment. While all measures of RMSD differences
between the wild type and the mutants lack correlations, RMSF dif-
ferences show notable correlations (Supplementary Fig. S3). Vari-
ous measures of RMSF differences can be taken for potential
scoring schemes and the best one needs to be determined. We used
the cross-correlation matrix for this purpose and discover that
either inversed Spearman or Pearson correlation coefficients
between the RMSF plots of the wild type and the mutants (mea-
sures of non-native-like dynamics) show much better congruency
than other measures such as average differences, absolute average
differences, and residual differences (Supplementary Fig. S3, purple
box). Thus, we chose the inversed Spearman correlation coeffi-
cients as the best scoring scheme for this metric for overall
integration.
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The cross-correlation matrix also helped to determine better
scoring schemes for other metrics. For example, while decreases
in folding/stability energy (destabilization) correlates well with
other scores (thus, mono-directional), pKa shifts in either direction
(bi-directional) correlate much better with the other scores.
Because the raw differences (both positive and negative differ-
ences) show poor congruency, we used absolute pKa shift amounts
as proper damaging scores [13]. Likewise, interestingly, substrate/
Zn interaction energies show better correlations with other scores
when the absolute differences are used (Supplementary Fig. S4).
This indicates that the wild type exerts the optimal interactions
with the substrate and any alterations (either loosening up or
tightening the substrate binding) would disrupt the concerted
dynamics during the catalysis (transition state formation) and
the product release during the post-catalytic stage. On the other
hand, the mutational effect of folding/stability and RMSD/RMSF
seem to have only one-directional damaging effects. Similarly,
we tested both possibilities for all other metrics and determine
the proper scoring schemes that can be used for overall damaging
impact assessment.
2.11. Overall impact classification of the variant

For overall impact scoring, we tentatively label ‘benign’, ‘VUS’
(variant of uncertain significance), or ‘damaging’ by referring to
the control values and suggested threshold values for pre-
classification (Supplementary Table S1). GnomAD variants with
high allele frequency do not serve well as ‘tolerated’ or ‘neutral’
variants (see the main text). Using the suggested thresholds for
sequence-based prediction tools as guidelines, we reclassified the
variants based on meta-scores (0–0.2: tolerated, 0.2–0.3: uncer-
tain, and 0.3–1.0: damaging). This results in a similar number of
the tolerated variants with the sequence-based pre-classification
(24 and 29 for pre-classification and reclassification, respectively).
Moreover, all the damaging controls including the key functional
disruptors can be classified as damaging variants, except one. Like-
wise, for ‘molecular fitness’ scores (without the sequence-based
scores), the same threshold values were used, except that ‘uncer-
tain’ ones were also regarded as damaging for a more complete
cross-check with the pre-classified scores. Any variants that are
predicted to be damaging at either category (structure or dynam-
ics) or both would be ultimately assigned as damaging for ‘molec-
ular fitness’ classification. More quantitative overall scoring
schemes or a machine learning model will be considered when
we have enough training sets from various proteins and supportive
experimental data.
3. Results

3.1. Mutational landscape of KDM6A and its widespread genetic
alterations in human cancers

Here, we describe the extended KDM6A mutational landscape
across various human cancer types. First, we evaluated the KDM6A
expression levels in cancer cells and generally they are lower or
roughly equal to normal cells of these organs (Fig. 1A), suggesting
that the dysfunction of this protein is not through aberrant expres-
sion but rather mutation-associated mechanistic alterations. For
this study, we collected, organized, and pre-classified KDM6A vari-
ants by filtering somatic missense mutations reported in the public
repositories, such as the Catalogue of Somatic Mutations in Cancer
(COSMIC) [31] and the Cancer Genome Atlas (TCGA) [32], against
the Genome Aggregation Database (gnomAD) [33] as a general
population reference. KDM6A mutations are more common in
bladder, lung, uterine, ovary, breast, and stomach tumors
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(Fig. 1B). Among the various mutations, we are focusing on the
missense mutations as point mutations can be very instructive as
to the functional/structural roles played by individual residues
and provide critical information that can be utilized for selective
therapeutic intervention. Indeed, over 60% of all somatic cancer
variants contain missense or nonsense mutations (Fig. 1C).

In total, we report results derived from studying 197 variants on
147 residues within the catalytic domain (Fig. 2). These mutants
consist of 181 cancer somatic variants, 3 control variants
(H1060L benign, H1146A and E1148A damaging), and 13 neutral
variants derived from the general population reference reported
in gnomAD (Supplementary Tables S1–3). Distribution, frequency,
and database sources (TCGA, COSMIC, and ClinVar entries) for all
181 cancer-related variants under study are shown in Fig. 2A and
their locations mapped onto the KDM6A molecular structure are
shown in Fig. 2B. Among these variants, twelve have been also
reported in ClinVar [34], annotated as likely causes of Kabuki syn-
drome or ‘not-specified’ conditions (Fig. 2A). We did not find muta-
tional ‘hot-spot’ regions affecting the sequence or the structure,
regardless of cancer types (Fig. 2A-B). However, these cancer muta-
tions in the KDM6A catalytic domain disrupt its histone demethy-
lase activity, thereby leading to epigenomic alterations that
contribute to cancer development [6–9]. Thus, to investigate their
deleterious effects, we implemented a comprehensive sequence
analysis (2D) combined with structural (3D) and dynamic-based
(4D) approach to score the damaging impacts and lend insights
into their mechanism of dysfunction.

3.2. Initial scoring of KDM6A variants using 2D sequence-based
methods from clinical classification guidelines

Sequence-based annotation of pathogenicity is part of standard
clinical practice, underlies information from genome variation
databases, and is recommended by professional variant interpreta-
tion guidelines [35,36]. Thus, we initiated our studies in agreement
with these guidelines, which we refer to as pre-classifications,
using the widely available tools SNPs&Go [37], MutPred2 [38],
PolyPhen2 [39], and Rhapsody [40], due to their proven performing
rates in benchmark datasets [40–42]. PolyPhen2 combines
sequence-based information with local structural features while
Rhapsody incorporates structure-dependent properties and intrin-
sic dynamics derived from coarse-grained elastic network models.
Although the results predicted by these algorithms are, for the
most part, concordant, we find that there is a considerable degree
of disagreement; over 40% of the variants (73 of 181 cancer vari-
ants and 79 of all 197 variants under study) show conflicting clas-
sifications (Fig. 2A and 2C). For example, SNPs&Go predicts that
49.7% of the cohort (98 of 197) are damaging while MutPred2 sug-
gests that 79.2% of the cohort (156 of 197) are damaging, using
their suggested threshold values (0.5 for both SNPs&Go and
MutPred2). We also observe smaller, yet notable, discrepancies
between the results obtained by PolyPhen2 and Rhapsody when
their suggested threshold values are used (0.446 for PolyPhen2,
and 0.5 for Rhapsody) (Supplementary Table S1). As shown in
Fig. 2C, 47.7% (94 of 197 variants) are consensually predicted to
be damaging and 12.1% (24 variants, not included in the diagram)
are consensually predicted to be tolerated by these programs while
40.1% (79 variants) have conflicting predictions, thus considered to
be variants of uncertain significance (VUS).

These conventional methods do not allow extensive evaluation
of a mutated gene product in 3D nor account for the molecular
dynamic environment (4D). Thus, we set out to study and establish
a multi-parametric mechanistic-based assessment of the structural
and dynamic features of the gene product with the goal of improv-
ing damaging predictions and gaining insights on molecular dys-
function at the atomic level (Supplementary Fig. S5).



Fig. 1. KDM6A tissue-specific expression profile and cancer somatic mutation types. (A) KDM6A gene expression profile across all tumor samples and paired normal tissues.
These data were extracted from the Genotype-Tissue Expression (GTEx) and Gene Expression Profiling Interactive Analysis (GEPIA) portals. TPM: Transcripts Per Million (B)
Primary tissue types associated with KDM6A cancer mutations. A wide range of cancer types are observed with unequal prevalence. Although the figure was prepared with
the TCGA data, similar distribution patterns of cancer types are observed in the COSMIC database. (C) Mutation types of KDM6A cancer somatic variants.
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3.3. 3D structure-based scoring of KDM6A variants – defining
structural variants (SVs)

To both complement and extend the results derived from
sequence-based (2D) analytical tools, we leveraged the data
derived from the high-resolution crystal structure for the KDM6A
catalytic domain (PDB ID: 3AVR). This 3D genomics approach
applies distinct analytical tools to evaluate structure-related fea-
tures, both universal and protein-specific. In addition, we consid-
ered the contribution of both global and local features to
compute damaging effects through the integration of variously
scored biophysical properties. These features include key struc-
tural elements, such as altered protein folding, protein stability,
local/global conformations, and pKa values of the ionizable resi-
dues from the static structure because KDM6A is an oxidative
enzyme whose catalytic activities are very sensitive to local pH
and oxygen concentration [43,44]. Combined, these parameters
offer insight into the parameters related to protein structure and
dynamics (biophysical mechanisms) and other parameters related
to its enzymatic function (biochemical mechanisms).

Within the catalytic domain, the key functional sites, such as
the active site (Fig. 2D), and the substrate binding interface
(Fig. 2E) including the zinc-ligations (Fig. 2F), can be identified
and several cancer mutations are found within them. First, as an
oxidative enzyme, KDM6A uses 2-oxoglutarate (2OG) and the
metal iron as cofactors for catalysis. Nine key residues participate
in the interactions with these cofactors and the methylated histone
H3 K27 residue (H3K27me3) of the substrate, among which three
residues (Y1135, K1137, and N1156) are mutated in cancer
patients (Fig. 2D). Secondly, like any other enzyme, specific H3
substrate binding plays an essential role in the initiation and faith-
ful execution of catalysis [29,45]. While many backbone atoms also
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participate in substrate recognition, four key residues are involved
in sequence-specific side chain interactions (substrate specificity),
among which one residue (E999) is mutated in cancer patients
(Fig. 2E). Finally, the zinc-binding domain plays a critical role in
selective substrate recognition as it goes through a substantial
local conformational change when the histone substrate is bound
[46]. Among the four Zn-coordinating residues, three (C1334,
C1358, and C1361) are mutated in cancer patients (Fig. 2F). Collec-
tively, these variants on the key functional residues served as addi-
tional damaging controls to evaluate the performance of the
metrics that are being tested in the current study. No other critical
functional elements or sites within the catalytic domain were rec-
ognized by conventional bioinformatics tools such as linear motif
analysis or protein–protein interaction knowledge databases.

One of the main effects that a mutation can have on a protein is
to alter its structural stability, causing local misfolding and a
higher propensity for the variant to be targeted by degradation
pathways [47]. Thus, we used FoldX [21] and Mutational Energy
(Stability) calculation of the local protein structure [22] to estimate
the energy differences between the wild type and each variant. As
expected, the largest differences are observed in the well-folded
regions of the structure (both the core and surface residues), such
as the JmjC and the zinc-binding domain (Supplementary Fig. S6).
Next, we measured structural perturbation (both global and local
within a 10 Å radius), and pKa shift amount (both global and locally
around the active site) by amino acid substitution to assess impact.
They all served well as effective measures of functional disruption.
The comprehensive results for these measurements are provided in
Supplementary Table S1 and graphically represented in Fig. 3A.
Thus, through these approaches, we define a sub-class of genetic
variants that damage enzyme function by changing properties of
the protein structure, which we term structural variants (SVs).



Fig. 2. Pre-classification of cancer-associated missense mutations and protein architecture reveal a diffuse landscape. (A) Sub-domain structure and distribution KDM6A
missense mutations within the catalytic domain. The number of independent samples across TCGA, COSMIC, or ClinVar databases, harboring each missense mutation reveals
that mutations spread out throughout the sequence, and the three mutations (L1100P, R1111C, and R1255W) have a high number of incidents. The impact predictions made
by the genomics tools SNPs&Go, MutPred2, PolyPhen2, and Rhapsody are shown by small bars in the order of effect (damaging red to tolerated white). (B) Mapping of cancer-
associated missense variants onto the KDM6A molecular structure. The catalytic domain is divided into the JmjC (blue) flanked by two additional sub-domains (helical
domain: magenta and the zinc-binding domain: green) and a long flexible linker (yellow). The bound substrate is shown as ball-and-sticks while the catalytic domain is
shown as ribbons. The color codes are identical to the ones used in Fig. 2A. (C) Venn diagram of the damaging variants predicted by each prediction tool, using the threshold
value suggested by each program. Numbers of the damaging variants predicted by each program are indicated in parentheses. 47.7% variants (94 out of 197) share consensual
damaging predictions while 40.1% (79 of 197) have conflicting predictions. The consensual tolerated variants (12.2%, 24 of 197) are not shown in this diagram. (D-F) Zoomed
views of the key functional regions of KDM6A: the active site (D), the substrate binding interface (E), and the zinc ion binding site (F). Several key interaction residues (pink)
are mutated in the cancer patients and they were used as additional damaging controls in the study. Within the active site, two non-natural damaging control residues
(H1146 and E1148) are also labeled in red. H3 histone peptide residues (orange) are shown as sticks. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Young-In Chi, T.J. Stodola, T.M. De Assuncao et al. Computational and Structural Biotechnology Journal 20 (2022) 2200–2211
3.4. 4D dynamics-based scoring of KDM6A variants – defining
dynamics variants (DVs)

We further complemented sequence- and structure-based ana-
lytical tools with the algorithms that can reveal the key molecular
motions of distinct mutants, with the goal of mechanistic-based
dysfunction predictions. For this purpose, we performed all-atom
molecular dynamics (MD) simulations and probed the unique
time-dependent molecular motions. We previously characterized
the dynamic properties of the wild type KDM6A, revealed that
the overall structure displays plasticity and a coordinated move-
ment while maintaining the compact arrangement of the subdo-
mains [13]. The conformational ensemble during the simulation
reveals that the core JmjC containing the active site remains rela-
tively still (less than 0.7 Å displacement), while the surrounding
regions display more active motions (Supplementary movie M2).
In addition to the mobile loops, the zinc-binding domain exhibits
highly dynamic motions thought to be critical for substrate recog-
nition and binding [13,46]. Furthermore, substrate binding is
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highly coordinated with the active site dynamics and synergisti-
cally influences the catalytic activities. In our simulations, metal
ions and cofactors retain their bound state and ideal geometry with
the ligating residues. Thus, there are protein-agnostic and protein-
specific measures that we track over time to identify a set of muta-
tions that we refer to as dynamics variants (DVs).

For MD-based analysis of the mutants, we measured (i) overall
root-mean-square deviation (RMSD) of the conformations, (ii)
root-mean-square fluctuation (RMSF) for individual residues, (iii)
time-dependent interaction energies between the protein and the
reactive groups at the active site or the substrate, (iv) dynamic dis-
tance calculations between the atoms involved in the rate-limiting
catalysis, and (v) other parameters such as radius of gyration (Rg)
and dynamic solvent-accessible surface area (SASA) (Supplemen-
tary Fig. S5). For example, we computed interaction energies (or
energy changes due to mutations) between the protein and the
reactive groups in the active site as well as the substrate. We found
that grouping interaction energies into two key functional sites
(active site cofactors and methyl group interactions, or substrate



Fig. 3. Initial scoring and identification of congruent and more functionally relevant MD-based metrics by the cross-correlation matrix of the impact scores. (A) Heatmap of
the initial raw scores by individual metrics. Because the original scores have different units and ranges in each column, they have been simply ranked to be equally scaled.
Damaging scores are indicated by the intensity of red color. The controls are listed in the order of two well-known damaging and one benign mutant. The twelve key
functional disruptors refer to mutations found right at the key functional residues. The contrast between the key functional disruptors and the gnomAD general population
references are quite noticeable for sequence- and structure-based scores, but only for some selective MD-based scores that were identified by the subsequent congruency
analysis. (B) Inter-relationship or dependence among protein sequence, structure, and dynamics for proper function. (C) Cross-correlation matrix of the scores from a
comprehensive assessment. Among the MD-based scores, time-dependent substrate interaction-zinc ligation energy and RMSF (indicated by arrows) initially stand out to
have notable congruencies with other sequence- and structure-based scores. (D) Cross-correlation matrix of the scores from the finally chosen metrics for meta-score
calculations that are concordant and functionally relevant, thus have been evolutionally conserved. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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and Zn interactions), instead of individual interactions, showed
more consistent values among technical replicates and better cor-
relations with other scores, presumably due to their coupled and
coordinated nature. The largest differences in substrate/Zn interac-
tions were detected in the zinc-binding domain (Supplementary
Fig. S7), which is critical for substrate recognition and binding
[46]. Additional minor changes were also observed around the
active site, reinforcing the fact that substrate binding is highly cou-
pled to the active site dynamics (Supplementary Fig. S7). The lar-
gest differences in molecular fluctuations were found near the
active site although the active site has an overall rigid structure
with peripheral regions have higher mobilities (Supplementary
Fig. S8). The sensitivity of these residues to protein dynamics alter-
ations heightens the importance of the residues peripheral to the
active site to protein function. Among all MD-based metrics, more
congruent and functionally relevant metrics were identified and
used for overall impact scoring of each mutation on protein
motions, leading to the classification of a subset of mutations as
2206
dynamics variants (DVs; Supplementary Table S3). This advance
in ‘molecular fitness’ scores enables further classification of geno-
mic variants with more mechanistic details.

3.5. Integration of individual scores using a multi-parametric meta-
scoring approach

Although we used various metrics and measurements to gauge
the damaging impact of genomic changes, we predict that not all
structure- or dynamics-based metrics are directly related to molec-
ular function. Thus, we used a cross-correlation matrix among the
scores as a guidance to choose more effective and functionally rel-
evant metrics for integration (Supplementary Text S1). This is
based on the axiom that because protein sequence, structure, and
dynamics are highly coupled for molecular function, those features
affecting protein integrity and dynamics and critically needed for
protein function more likely have undergone evolutionary conser-
vation [48,49] (Fig. 3B). Indeed, our cross-correlation matrix of the
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individual scores demonstrates there is a considerable degree of
congruency among the measurements, indicating that collective
interplay exists among all layers including dynamics to have led
protein evolution and function (Fig. 3C). Structure-based scores
show substantial congruency with sequence-based scores; how-
ever, not all MD-based scores display notable congruency with
other scores. Strikingly, among the MD-based measurements, only
substrate/Zn interaction energies and RMSF stand out as clearly
congruent and functionally relevant metrics (see ‘Materials and
Methods’ for the description of an additional effective MD-based
metric identification and appropriate scoring schemes). RMSD
and the active site interaction energies showed very little congru-
ency, and their correlation values were close to zero (background
noise appeared to be canceled out as more variants were added
into the pool; see Supplementary Movie M3 for the progression
of the matrix over time). When the data from all 197 variants were
added into the pool, the correlation coefficients for substrate/Zn
interaction energies and RMSF noticeably improved while those
for the active site interaction energies, RMSD, Rg, and SASA came
down to nearly zero, indicating that these numbers have con-
verged to statistically significant values and no congruency exists
for the latter four metrics.

These differences were quite striking and have several impor-
tant implications. First, among the key interactions, only sub-
strate/Zn interaction energies show congruency with other scores
because, for JmjC-containing enzymes, only the substrate recogni-
tion dynamics serve as a rate-determining step [29,45]. Once the
substrate is presented to the active site, catalysis readily takes
place [50]. Moreover, the local conformations between the
substrate-unbound and substrate-bound structures are nearly
identical [46] and the catalytic mechanism of these proteins does
not require additional regulatory elements near the active site.
Thus, physical interactions within the active site might play a les-
ser role as the cofactors are firmly coordinated and the methylated
lysine residue is readily presented to the active site once the sub-
strate is bound. Instead, local chemical environment, such as pKa

and oxygen concentration, and local geometry, such as the distance
between the key reactive groups, likely play more critical roles in
catalysis [29] (see ‘Materials and Methods’ for the identification
of Hydrogen Atom Transfer (HAT) distance as an additional effec-
tive MD-based metric). Although both global and local structure
perturbations and pKa shifts showed comparable congruency, only
the ones with higher correlations (global measures) were chosen
for final integration (Fig. 3C-D). Secondly, we reason why only
RMSF differences and not RMSD differences show congruency is
that the dynamic fluctuations or the protein-specific pattern of
concerted and coordinated motions, rather than static measures
of conformational deviations, are more closely related to protein’s
molecular function and conserved throughout evolution [51,52].
These results demonstrate that anomalous fluctuations of KDM6A
can lead to non-active states and dysfunction. Overall, these find-
ings indicate that the dynamic properties of the protein and its
related protein-specific metrics, if chosen correctly, can serve as
reliable indicators of protein function and dysfunction by disease
mutations.

Based on these findings, for final integrated overall scoring, we
chose four 2D sequence-based (SNPs&Go, MutPred2, PolyPhen2,
and Rhapsody), four 3D structure-based (FoldX, stability, global
structural perturbation, and overall pKa shift), and three 4D
dynamics-based metrics (molecular dynamics fluctuations,
substrate/zinc-binding interactions, and HAT distances) that show
notable congruency with sequence-based scores as shown in
Fig. 3D. We limited the number of metrics to four to ensure that
balanced contribution from each protein layer is given to the over-
all assessment although we found only three congruent metrics
from the dynamics layer. For meta-scoring, because the impacting
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measurements for individual metrics are typically given in differ-
ent units and have different ranges, we used Z-scores of the indi-
vidual calculations and convert them into a zero to one scale that
is commonly used by many sequence-based tools [53] before com-
bining them (all eleven sequence-, structure-, and dynamics-based
scores) with equal weights and averaging them for the final scores
(Supplementary Table S2). These final meta-scores were used for
the reclassification of the variants.

3.6. Reclassification of KDM6A genomic variants

Using the suggested thresholds for each prediction tool as
guidelines, we reclassified the variants (0–0.2: tolerated, 0.2–0.3:
uncertain, and 0.3–1.0: damaging, Supplementary Tables S2-3).
The use of these criteria resulted in a similar number of the toler-
ated variants with the sequence-based pre-classification (24 and
32 for pre-classification and reclassification, respectively). The
well-known damaging controls, H1146A and E1148A had meta-
scores of 0.426 and 0.423, respectively while the benign control,
H1060L had a meta-score of 0.095. Moreover, the key functional
disruptors were all classified as damaging variants (meta-scores
ranging from 0.395 to 0.650), except E999D (meta-score 0.295,
thus still uncertain), perhaps due to the relatively conservative nat-
ure of this substitution. When these new threshold values were
used, 69.0% (136 of 197) of variants belong to the damaging group
and 16.2% (32 of 197) to the tolerated group while 14.7% (29 of
197) remain as VUS (Supplementary Table S2). This is a significant
improvement from 40.1% VUS (79 out of 197) at pre-classification.
Interestingly, however, relatively common variants from gnomAD
with allele frequency greater than 1.5 � 10�5 in the general popu-
lation [54] do not re-classify as ‘tolerated’ or ‘neutral’ variants wtih
5 out of 13 general population controls predicted to be damaging
by our analyses (Supplementary Table S2). Perhaps, a higher allele
frequency should be considered for any variants to represent the
normal ‘tolerated’ or ‘neutral’ variants.

The reclassified variants were mapped onto the KDM6A molec-
ular structure (Fig. 4A-B) and the aligned sequence of the KDM6
family members (Supplementary Fig. S9). While predicted damag-
ing variants are concentrated near the active site within the JmjC
and the substrate binding interface (Fig. 4A), the predicted toler-
ated or uncertain variants are mostly found on the fringe of the cat-
alytic domain, away from the active site (Fig. 4B). However, we also
discovered that the variants located immediately distant away
from the active site and the substrate binding interface can impact
protein function as they are known to serve as the ‘second sphere’,
third, and beyond residues for enzymatic activities [29,55]. Coordi-
nated functional motions through the physically neighboring resi-
dues are critical for this protein since multiple interactions at the
active and substrate binding sites appear highly coupled. This
inference is derived from the fact that disturbance by many muta-
tions, including the damaging controls, had further rippling effects
at the remote functional sites [13]. We found that the zinc-
coordination disruptor C1334Y appeared to be the most deleteri-
ous one, having the highest meta-score of 0.65 as the zinc-
binding domain plays a key role in the structural integrity and sub-
strate binding. In addition, frequently observed variants from a
wide range of cancer patients, such as L1100P, R1111C, and
R1255W (Fig. 2A), also had relatively high meta-scores of 0.4613,
0.3531, and 0.5299, respectively. More importantly, when mapped
onto the sequence alignment, 92% of all 102 damaging residues
(136 variants) coincided with strictly conserved residues among
the KDM6A family members (Supplementary Fig. S9). Only 8 dam-
aging residues were found on the variable residues, and they can
be explained by relatively drastic substitutions of the cancer vari-
ants (S893L, D980Y, K1053I, T1104P, V1205G, L1306S, D1340H,
and D1382G). On the other hand, 25 tolerated residues (32 vari-



Fig. 4. Mapping of reclassified KDM6A cancer variants and comparison of conventional prediction tools to our comprehensive ‘molecular fitness’ assessment. (A-B) Damaging
variants (A) and tolerated variants (B) based on meta-scoring reveal that the damaging variants (red) are concentrated near the active site (the jellyroll fold of the JmjC
domain) and the substrate binding interface while the predicted tolerated variants (teal) are mostly found in the fringe of the catalytic domain. (C) Venn diagram of the
tolerated (TV: green) and sub-grouped damaging variants, such as structural (SV: orange), dynamics (DV: pink), and structural & dynamics variants (SDV: red) based on our
meta-scoring of all 197 variants. (D) Mapping of the sub-grouped damaging variants. The color codes are identical to the ones used in Fig. 4C. The most damaging variants
(SDV) are all concentrated in the JmjC and the zinc-binding domains. (E) Comparison of conventional (sequence-based) prediction tools and comprehensive ‘molecular
fitness’ (structural and dynamics-based) assessment for each pre-classified group. We compare the two classification results using a pie chart that indicates damaging versus
tolerated for our new classification results, for each of the three pre-classification categories. The inset bar chart shows the balance between our three damaging categories.
Overall, comprehensive assessments are in good agreement with the pre-classifications, but provide information of more specific mechanistic value. Confirmed damaging
variants among the consensus damaging group by pre-classification (left chart) are altered in structure, dynamics, or both, while confirmed damaging variants among the
consensus tolerated group (right) primarily affect protein dynamics. These types of mechanism-based interpretations should enable to resolve the conflicting variants
(middle). Numbers of the variants in each group are indicated in parentheses. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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ants) mostly coincided with the variable residues, and only 5 toler-
ated variants (on 4 residues) were found on the strictly conserved
residues (I1020M, S1071F, S1284L, and P1286S/L). Altogether,
these findings support the overall effectiveness of our impact
assessment scores.

3.7. Subgrouping of potentially damaging variants

Lastly, we also calculated ‘molecular fitness’ scores by consider-
ing only the structure- and dynamics-based scores (Supplementary
Table S3), and benchmarked them against sequence-based scores
(see the next section). Using individual ‘molecular fitness’ scores,
we further classified the damaging variants into structural (SV),
dynamics (DV), and structural & dynamics variants (SDV), as
shown in Fig. 4C-D. The SVs are assigned using combined scores
from protein folding/stability, structural perturbation, and pKa

shift while the DVs are assigned to those that represent sub-
strate/Zn interactions, HAT distance monitoring, and RMSF scores.
Altogether, our ‘molecular fitness’ evaluation shows that 48 vari-
ants disrupt at least one of the structural features and 118 variants
disrupt at least one of the dynamic features (Fig. 4C and Supple-
mentary Table S3). Among these, 33 variants (on 28 residues) dis-
rupt both structural and dynamic properties of the protein. These
33 SDVs are predicted to be the most damaging variants, and
among them, 28 (85%) are located within the JmjC and the remain-
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ing 5 (15%) are located within the zinc-binding domain (Fig. 4D),
underscoring the key functional roles of these domains. Mapping
of these most damaging variants onto the structure is shown in
the Supplementary movie M4. No additional damaging sites such
as remote allosteric sites were found. These findings highlight that
KDM6A-specific conformational changes that are responsible for
its function can be revealed by these measurements.

3.8. Comparison of the current biophysically enhanced approach with
conventional sequence-based predictions

The ultimate question for the current study is how much addi-
tional prediction value we gain by including 3D structural- and 4D
dynamics-based scores. Without actual wet bench experimental
data, phenotypic information, or benchmarking data sets, we can
tentatively evaluate how well the ‘molecular fitness’ scores match
with the sequence-based scores by cross-checking them against
each other. ‘Molecular fitness’ scores are calculated by integrating
the structural and dynamics scores only (Supplementary Table S3).
These two scores truly represent independent and unbiased mea-
sures as the 2D sequence-based scores represent mere predictions
without offering mechanistic explanations for likely aberrant dys-
function. On the other hand, the ‘molecular fitness’ scores not only
provide metric estimations but also yield interpretations or expla-
nations underlying the mechanisms of variant dysfunction.
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Our initial distribution of pre-classifications based on the
sequence-based scores was depicted in Fig. 2D, in which 94 vari-
ants are consensually predicted to be damaging and 24 variants
are consensually predicted to be tolerated. The remainder 79
(40.1% of all variants) have conflicting predictions, thus are
regarded as VUS, representing the group where our approach has
resolved the uncertainties and provided more accurate interpreta-
tions. The cross-checking results in each of the three pre-
classification groups are shown in Fig. 4E. Overall, we observed a
reasonable agreement of our ‘molecular fitness’ assessments with
the pre-classifications, with some distinct differences. For instance,
18.1% and 25.0% of the damaging and tolerated consensus groups,
respectively, displayed differences in predictions and structure/
dynamics-based scores. This could be due to false predictions by
the available sequence-based prediction tools or incomplete/incor-
rect interpretations by our current analyses. Mapping of the mis-
matched variants onto the structure did not hint at any salient
causes. However, some pre-classified damaging variants, yet pre-
dicted to be tolerated by our ‘molecular fitness’ analysis such as
Y1201H, A1203P, V1205G, R1213Q, G1215A, and D1216N are sur-
face residues whose local properties or alterations thereof have not
been thoroughly examined by our analyses. Furthermore, some
other essential mutational impact assessments such as protein–
protein interactions, protein expression, translocation, or post-
translational modifications are not included in our current work-
flow. On the other hand, ‘damaging’ within the consensual pre-
classified tolerated group could be due to insensitivity of sequence
conservation enforced by functional dynamics. The mismatched
variants turn out to be all dynamics disruptors (Fig. 4E third panel
inset). For example, R922K and S925T mutations can be considered
as conservative substitutions; however, our analyses confirm that
their location in the proline-rich linker region can cause dynamics
disturbance with loss-of-function effects [14] and thus, missed by
sequence-based predictions. Therefore, while often regarded as tol-
erated, conservative substitutions can be more effectively scored if
we consider their molecular dynamics. Overall, these data demon-
strate the power of adopting an integrative approach over single
amino acid conservation properties and these findings illustrate
the potential benefits of our analyses although validation and fur-
ther improvements are needed for more reliable predictions and
interpretations.
4. Discussion

A preeminent challenge in human genetics remains the ability
to accurately predict the molecular effects of genetic variants, as
well as understand their impact on molecular and cellular func-
tions. Current genomic guidelines for variant interpretation heavily
rely upon co-observation, inheritance patterns, and evidence based
on sequence and limited functional data [35]. However, the com-
putational tools that lend supportive information to clinical classi-
fications tend to produce high rates of false predictions [56], and
their sensitivity and specificity suffer from the lack of mechanistic
interpretations and insufficient data availability of their genotype-
phenotype relationship [57]. Thus, there is an urgent need for
improvement in computational approaches, and we aim to harness
a more comprehensive and mechanistic-based computational
assessment that is based on the overall ‘molecular fitness’ of the
protein bearing the mutation.

In this study, we applied a mechanistic-based comprehensive
approach that incorporates multiple aspects of protein structure,
function, and dynamics of KDM6A. Nearly 200 cancer-associated
missense variants within the catalytic domain, along with 16
selected controls, were chosen and characterized for structure-
and dynamics-based impact predictions and interpretations. We
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analyzed each variant independently to offer a detailed picture of
how curated missense variants may affect KDM6A enzymatic
activities. Broader characterization of genomic variants with
dynamic modeling, such as those identified in our cohort, has not
been previously performed and represents a novel approach to
understanding the functional effects of these changes. This level
of detail is rarely considered in clinical genomics decision-
making but is accessible to the computational technique of MD
simulations in the lab and can lead to major strides within the field
of medical genetics and genomic data science.

Our data indicate that KDM6A cancer variants display mecha-
nistic disruption in various ways. Some have subtle disturbance
and alterations, but many others have severely damaging effects
at the structural or dynamics-level, or both. Overall, the pattern
of functional evolution and functional disruption by these muta-
tions reinforce the known molecular mechanisms of KDM6A. The
most damaging ones that affect multiple aspects of protein struc-
ture and dynamics (33 SDVs of 197) are mostly concentrated
around the active site and the substrate binding interface of the
JmjC and the zinc-binding domain. These variants could be delete-
rious and contribute to tumorigenesis and progression as they can
render the protein less functional and provide a selective growth
advantage to cancer cells, although not all damaging variants are
surely translated into pathogenic ones. On the other hand, most
variants predicted to be tolerated are found distant from the key
functional regions. These tolerated ones not observed in a gener-
ally healthy population may represent polymorphism or ‘passen-
ger’ mutations in cancer patients with little or no effect in tumor
progression. In other words, these mutations may occur as a conse-
quence of tumorigenesis rather than a cause [58]. They could also
represent polygenic mutants and accompany cooccurring cancer
driver mutations in other related genes. Overall, cancer-
associated mutants and their structure-dynamics-function rela-
tionships are well represented in the landscape of KDM6A genome
variations.

The selected metrics and scoring schemes used in the current
study produce scores that are in good agreement with the pre-
classified scores and the expected values for various controls
including the key functional disruptors. The cross-correlation
matrix of the individual scores is very useful in identifying more
effective/relevant metrics and scoring schemes. However, more
reliable correlations of MD-based scores critically require enough
samples (number of variants) and high-quality data (enough repli-
cates and proper handling of the data). We did not notice any large
differences in cross correlation values among the scores between
the protein core residues and surface residues. From the static
structure-based analysis, protein folding/stability and global/local
structural perturbation are effective universal measures of damag-
ing impacts. In addition, as a protein-specific measure, pKa shift
analysis is particularly useful for oxidative enzymes such as
KDM6A. Likewise, from the dynamics-based analysis, time-
dependent substrate/Zn interaction energy, HAT distance, and
functional fluctuations are more closely tied to the molecular func-
tion as well as the sequence and structure conservation of KDM6A.
Consequently, these measurements can serve as more reliable indi-
cators of functional disruption. In the case of an enzyme, struc-
turally coordinated dynamics enable the adaptation of the
protein to binding substrates and to undergo allosteric transitions,
while maintaining the native fold [16,59]. Thus, our findings rein-
force the notion that fluctuations of the protein more strongly cor-
relate with biological function (enzymatic properties) and have
been evolutionally conserved.

Our findings also reaffirm the collective interplay among pro-
tein sequence, structure, and dynamics for protein function. Each
layer exerts selective pressures on protein sequence that has main-
tained all aspects of protein structure, dynamics, and function.
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More importantly, our data indicate that molecular dynamics-
based evaluation is crucial to unveil the unique time-dependent
information of mutations on functional mechanisms and dysfunc-
tion, which complement results obtained using existing tools.
Thus, MD simulations, or other methods to calculate mutation-
specific changes to protein motions, should become an integral
part of genetic variation interpretation and meta-prediction
approaches as recent years have seen its incorporation into
advanced genomics analysis [60,61]. Due to their ability to simu-
late biochemical functions in time, unlike the 2D sequence-based
scores, the specific qualities of the protein derived by our 3D and
4D genomics approach can be used in hypothesis driven testing.
Although we have harnessed a limited set of MD-based metrics
for the current studies, our results demonstrate that more effective
and protein-specific metrics can be identified, and selected param-
eters can be used for each protein to probe protein-specific func-
tion. Additional standardized metrics such as protein surface
features, protein network analysis, and principal component anal-
ysis can be added to expand the breadth of properties after testing
their effectiveness on different proteins. Further optimization of
MD simulation protocols, such as a better description of solvent
environment and exploration of various production times and run-
ning parameters, will enhance the effectiveness of MD-based
scores and the congruency with other scores.

Finally, it is likely that some genomic mutations will not affect
the encoded 3D molecule but will instead be damaging due to
altering transcription or translation. Further layers of information
such as multi-tissue gene expression, protein abundances, post-
translational modification, protein localization, etc., are not fully
explored by the current approaches. Thus, studies, such as the cur-
rent one, provide additional layers of information that need to be
considered for enhancing our ability to interpret the effects of
human genetic information. The inclusion of more effective met-
rics and scoring schemes and exploring multi-layered protein func-
tions such as protein–protein interactions can improve the
accuracy and sensitivity of the overall scores.
5. Conclusion

The current study significantly advances our understanding of
precision oncology by providing insights into the damaging poten-
tial and mechanisms underlying the dysfunction of KDM6A muta-
tions found in human tumors. This new knowledge will find
application to diagnosis in precision oncology, mechanistic studies
in cancer, and likely support a better understanding of epigenomic
therapeutics. This type of analysis and nomenclature can be
applied to other proteins and help better annotate the pathogenic-
ity that can be curated into the public archives of human genetic
variations for clinical applications. As more protein and protein
complex structures become available, the widespread adoption of
this approach will provide better diagnosis, risk assessment, and
clinical guidelines for the observed mutants within the context of
individualized medicine.
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