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Inflammation is a response of the body to external stimuli (eg. chemical irritants,

bacteria, viruses, etc.), and when the stimuli are persistent, they tend to trigger

chronic inflammation. The presence of chronic inflammation is an important

component of the tumor microenvironment produced by a variety of

inflammatory cells (eg. macrophages, neutrophils, leukocytes, etc.). The

relationship between chronic inflammation and cancer development has been

widely accepted, and chronic inflammation has been associated with the

development of many cancers, including chronic bronchitis and lung cancer,

cystitis inducing bladder cancer. Moreover, chronic colorectitis is more likely to

develop into colorectal cancer. Therefore, the specific relationship and cellular

mechanisms between inflammation and cancer are a hot topic of research. Recent

studies have identified phosphodiesterase 4B (PDE4B), a member of the

phosphodiesterase (PDEs) protein family, as a major cyclic AMP (cAMP)

metabolizing enzyme in inflammatory cells, and the therapeutic role of PDE4B

as chronic inflammation, cancer. In this review, we will present the tumors

associated with chronic inflammation, and PDE4B potential clinical application.
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1 Introduction

Inflammation is part of the innate immune response to

danger signals, tissue destruction, and/or infection. Short-

term and properly terminated inflammation is beneficial, but

chronic inflammation increases cancer risk (Greten and

Grivennikov, 2019). Cancer is a biologically heterogeneous

disease with distinct genetic abnormalities (Kumar and

Sharawat, 2018), despite progress across the continuum of

cancer research and patient care, remains one of the major

diseases affecting human longevity and quality of life (Liu

and Shi, 2021). In the Lancet, Gilles Dagenais and colleagues

found that cancer is the most common cause of death in high-

income countries and several middle-income countries

(Dagenais et al., 2020; Siegel et al., 2021). The

international agency for research on cancer (IACR)

predicted that by 2040, approximately thirty million

people worldwide will be living with cancer, 60% of whom

will die from cancer or its complications. In addition, the

incidence of cancer is likely to be higher in relatively

underdeveloped countries (Sengupta and Honey, 2019).

Recent studies suggest that the loss of polarity and

adhesion of cancer cells is a key reason for the ease of

metastasis as well as the proliferation of tumor cells

compared to normal cells (Yan et al., 2018), in addition to

complex biological pathways and mechanisms that target

carcinogenesis and maintain cancer phenotypes multiple

studies (Cai et al., 2021). Overall, inflammation recruits a

variety of inflammatory cells, induces cell proliferation, leads

to DNA damage, and increases the risk of cancer (Coussens

and Werb, 2002).

PDE4B is a type IV cAMP -specific cyclic nucleotide PDE

family member (Ahmad et al., 2015). The encoded protein

regulates the cellular concentration of cyclic nucleotides and

thus plays a role in signal transduction of inflammatory

factors. Recent studies have shown that PDE4B expression

is elevated at the transcriptional as well as the translational

level in various cancers (Azevedo et al., 2014). PDE4B is

located on chromosome 1p31, informative SNPs in the gene

cluster encoding PDE4B are located at the 5′ end of the gene

(Bender and Beavo, 2006). The PDE4B gene also encodes

PDE4B monomers known as PDE4B2 and PDE4B5

(Campbell et al., 2017). Among all subtypes of PDE4,

PDE4B is closely associated with cancer and has a major

contribution to the role in hematological malignancies

(Bolger, 2017). Aberrant expression of PDE4B was found

in multiple organs with inflammation, including hematologic

(Jiang et al., 1998; Moon et al., 2002; Nam et al., 2019; Rickles

et al., 2010), colorectal (Kim et al., 2019), liver and other

organs (Hsien Lai et al., 2020).

This review summarizes the relationship between

inflammation and cancer. On this basis, the potential

clinical value of PDE4B is also discussed.

2 Overview of inflammation in human
disease processes

Inflammation is a stress response of the organism in the

face of multiple stimuli or infection by foreign substances,

such as physical injury, infection-induced cellular changes

and immune responses present in many disease processes

(Coussens and Werb, 2002), and one of the initiation

processes of cell trafficking to the tumor microenvironment

by specific cytokines called chemokines, which have an

important role in many cellular activities, especially in the

immune system (Guo et al., 2013). If the stimulus that induces

inflammation is persistent, it predisposes to the development

of chronic inflammation. Chronic inflammation results in

persistent tissue damage and stimulates cell proliferation

and tissue repair. Chronic inflammation is manifested by

the release of mononuclear cell infiltration, fibroblast

proliferation, and other releases that induce the formation

of granulation tissue (Gleeson et al., 2011). Inflammation can

trigger tumorigenesis through DNA damage in the absence of

any exogenous carcinogens (Meira et al., 2008). It has been

shown that mouse models of inflammation-associated

tumorigenesis have also been shown to be associated with

sporadic tumorigenesis. After external stimulation of the

body’s own immune system, macrophages and eosinophils

increase, intensifying the oxidative stress process. Cellular

signaling pathway triggered by inflammatory cytokines

promotes tumor development (McGranahan and Swanton,

2017; Li et al., 2022), and it is clear that chronic inflammation

increases cancer risk.

The development of cancer and its prognosis are regulated by

inflammation, which can promote or inhibit tumor progression

and interfere with tumor treatment (Zhao et al., 2021). Tumor

refers to the proliferation of local tissue cells under the action of

many carcinogenic factors. In recent decades, finding new

therapeutic targets or developing more effective treatment

options has been our focus (Vineis and Wild, 2014). In recent

years, the causal relationship between inflammation and cancer

has gradually been recognized as cancer research has intensified.

The hypothesis that chronic inflammation might be the origin of

cancer was proposed in the 19th century, the site that triggers

chronic inflammation induces excessive cell proliferation

(Korniluk et al., 2017). Although only cellular over

proliferation does not cause cancer, during the recovery of

damaged tissues, various cellular molecules such as, growth

factors, activation mechanisms, and DNA are highly activated,

while inflammation triggers reactive oxygen/nitrogen species

against pathogens that damage DNA and other biomolecules,

and intracellular responses to DNA damage promote

inflammation, creating positive feedback and interfering with

repair mechanisms in vivo (Suarez-Carmona et al., 2017). In

conclusion persistent infection in vivo induces chronic

inflammation and increases tumor risk (Singh et al., 2019).
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Cancer, which refers to a group of the world’s most severe and

deadly diagnosed pathophysiological conditions (Diori Karidio

and Sanlier, 2021), is a huge public health challenge, which has

been further exacerbated by the 2019 novel coronavirus

pneumonia (COVID-19) pandemic since March 2020

(Sengupta and Zaidi, 2021; Smith et al., 2021).

Many malignant tumors such as lung cancer (Chen et al.,

2021), colorectal cancer (Yashiro, 2014), and prostate cancer

(Sfanos et al., 2018) are mostly found in chronic inflammation or

infection sites, further demonstrating that persistent

inflammation may induce cancer development (Kay et al.,

2019). Thus it is necessary to elucidate the interaction

between inflammation and cancer, and some biomolecules in

cells play an important role in inflammation-induced cancer. For

example, PDE4 has recently emerged as a key regulator of

carcinogenesis. Studies have shown that PDE4 expression is

elevated in various cancer species (Jacob et al., 2002; Nagy

et al., 2013; Smith et al., 2005). As one of the four isoforms of

PDE4, phosphodiesterase 4A (PDE4A) is associated with

expression in various cancers and its involvement in VEGF-

mediated angiogenesis accelerates epithelial mesenchymal

transformation in cancer (Kolosionek et al., 2009). In

addition, phosphodiesterase 4D (PDE4D) stimulates the

development of lung cancer through TGF-β1 (He et al., 2014).

PDE4B, which was brought to our attention, is also a member of

the PDE4 family.

3 Overview of phosphodiesterase 4B

PDEs are a diverse family of enzymes that have long been

recognized due to their unique tissue distribution, structural and

functional properties, and sensitivity to selective inhibitors,

considered an attractive and excellent therapeutic target

(Azam and Tripuraneni, 2014; Fortin et al., 2009; Komatsu

et al., 2013). PDE4B, a member of the PDE family (Figure 1),

functions to break down cyclic nucleotides such as cAMP and

cyclic guanosine monophosphate (cGMP), thereby reducing the

signaling of these important second messengers in cells. cAMP

has been considered as an inducer of anti-inflammatory

responses, and cAMP-dependent pathways are widely used in

pharmacology for the treatment of inflammatory diseases.

Recently, cAMP has also been indicated as a coordinator of

key steps in the resolution of inflammation (Tavares et al., 2020).

Apart from that, cAMP is a secondary messenger responsible for

regulating cellular metabolism by activating protein kinase A

(PKA) and targeting exchange proteins directly activated by

cAMP. cAMP may be involved in controlling a variety of cell

functions that are significant in all cell types. It has been shown

that PDE4B knockdown effectively inhibit Lipopolysaccharide

(LPS)-induced nuclear factor kappa-B (NF-κB) activation and

inflammatory responses in multiple cell types, and, PDE4B

deletion impairs LPS-induced reactive oxygen species (ROS)

generation (Tavares et al., 2020). Analysis of all relevant

literature on PDE4B so far revealed that the expression of

PDE4B was upregulated in the majority of tumor tissues.

Further studies revealed that PDE4B mostly regulates the

development of various cancers through the regulation of

cAMP. In conclusion, we should pay attention to the

regulatory role of PDE4B in tumors.

4 Functional regulatory role of
phosphodiesterase 4B in human
inflammatory diseases

4.1 Hematological

The blood system includes several blood-forming organs and

various blood cells, and is one of the systems that make up the

FIGURE 1
Cyclic nucleotide phosphodiesterase (PDE4) family. PDE4 enzymes are usually divided into four isoforms (PDE4A, PDE4B, PDE4C, PDE4D),
where each isoform has multiple transcription products.
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body. Inflammation, especially chronic inflammation, is an

important factor in promoting the development of tumors. At

some levels, abnormal peripheral blood counts in the organism

due to inflammatory responses are associated with cancer

development to some extent (Diakos et al., 2014; Ocana et al.,

2017). Some studies have shown that many inflammatory

indicators have clinical importance in the prognosis of

patients with tumors (Rambaldi et al., 2013; Annibali et al.,

2019). Diffuse large B-cell lymphoma (DLBCL) is a common

and often fatal malignancy, with an estimated more than

100,000 new cases annually worldwide. Since DLBCL is a

genetically heterogeneous disease, the search for new

therapeutic targets is important for the treatment of this

disease (Schmitz et al., 2018). It is worthy of note that PDE4B

is overexpressed in lethal/refractory tumors (Schick and Schlegel,

2022). PDE4B inactivates the second messenger cAMP and

abrogates its inhibitory effect in B lymphocytes. cAMP is a

ubiquitous second messenger that regulates multiple cellular

processes by activating PKA, an exchange protein that is

activated directly by cAMP, and other less well-characterized

effector proteins following B cell receptor activation, cAMP

downregulates signaling pathways responsible for cell

proliferation (Kim et al., 2015; Zhang et al., 2020). Since

PDE4B terminates cAMP activity, the growth inhibitory effect

of cAMP signaling is limited. Thus, DLBCs expressing high

PDE4B levels may be resistant to cAMP-induced apoptosis

[55, (Kim et al., 2009)]. In summary, PDE4B is an important

upstream regulator of cAMP, which provides a new idea for the

clinical treatment of DLBCs.

Hany Ariffin et al. (2017) found that the pathogenesis of

childhood acute lymphoblastic leukemia (ALL) patients and the

prognosis of the organism’s performance profile are biologically

similar to the process of accelerated cellular senescence (eg:

chronic inflammation as well as telomere depletion). ALL is

characterized by an excess of immature lymphocytes, which are

more common in children between the ages of 2 and 5 years than

in adults (Medinger et al., 2019). Rennan Garcias Moreira et al.

(2022) found that PDE4B promotes tumor angiogenesis in ALL.

Notably, in Native Americans, the PDE4B allele

rs6683977 variant is associated with ALL relapse (Chen et al.,

2020). After B cell receptor activation, cAMP downregulated

signaling pathways responsible for cell proliferation, and cAMP-

mediated life activities were mostly inhibitory, including cell

cycle arrest and apoptosis. In conclusion, PDE4B overexpression

abrogates cAMP inhibition of cell proliferation (Ahlström et al.,

2005; Zhao et al., 2016), providing theoretical support for clinical

application in the treatment of ALL.

4.2 Colon and rectum

The colon and rectum are important components of the

human intestinal tract. Chronic inflammation induced by

chronic inflammatory bowel disease or poor dietary habits of

organisms are more likely to develop colorectal cancer (CRC)

(Schäfer and Werner, 2008), The main causative factor of

colorectal inflammation-induced cancer may be the

inflammatory intervention of one or more signaling pathways

in regulating tumor progression. CRC is the third most common

cancer in bothmen and women and has one of the lowest survival

rates of all cancer types (Biller and Schrag, 2021). Chronic

inflammation triggered by external factors may increase the

chances of tumorigenesis (Quail and Joyce, 2013). Badar

Mahmood et al. (2016) found that lower PDE4 activity

detected in functional assays of CRC biopsies contradicted the

observations of increased tissue expression and abundance of

PDE4B, speculating that CRC disease may produce

nonfunctional PDE4B protein with disease-induced frugality.

Compensatory mRNA and protein elevations result in higher

expression of PDE4B in patients with colorectal tumors. In

conclusion, it is necessary to pay attention to the regulatory

role played by elevated transcriptional levels of PDE4B in chronic

inflammation of the colorectum and colorectal cancer.

4.3 Lung

The lung is an important organ of the human body. The

unique physiological structure of the lung makes the lung tissue

susceptible to bacteriological inflammatory damage when

attacked by pathogenic microorganisms, which gradually

accumulates and leads to the development of lung cancer

(Jacobs and Kligerman, 2019). In response to external stimuli,

inflammation in the lung produces excess ROS and chronic

inflammation of the lung predisposes to lung cancer (Kachuri

et al., 2020). With approximately two million new cases of lung

cancer worldwide each year, lung cancer is one of the cancers

with a high incidence as well as a high mortality rate worldwide

(Thai et al., 2021). With approximately two million new cases of

lung cancer worldwide each year, lung cancer is one of the

cancers with a high incidence as well as a high mortality rate

worldwide (Thai et al., 2021). Miyako Ariga et al. demonstrated

that PDE4B regulates neutrophil much more than previously

known. Therefore the role of PDE4B in lung cancer cannot be

ignored (Jin et al., 2005). Similar to other tumors, PDE4B is also

involved in the growth of lung cancer cells through cAMP, and

cAMP acts as a second messenger that can regulate cellular

responses through activated effectors (Rahamim Ben-Navi et al.,

2016; Blommaert et al., 2019). cAMP plays an important

regulatory function in almost all cell types involved in the

airway pathogenesis of asthma and other chronic

inflammatory diseases. Rong-quan He et al. found that the

expression of PDE4B is increased in Non-small cell lung

cancer (NSCLC), proving that PDE4B has cytotoxicity in lung

cancer cells. The best known effector of cAMP is PKA. Shaikh

et al. (2012) found that inhibition of PKA could regulate the
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invasion and migration of human lung cancer cells. Therefore,

PDE4B is likely to be a regulator of the occurrence and

development of lung cancer.

4.4 Prostate gland

The prostate gland is located between the bladder and the

original genital diaphragm and is a uniquely male organ (Prostate

cancer, 2016). The altered genetic material triggered by chronic

inflammation also promotes tumor transformation. Acute/

chronic prostatitis in is one of the most prevalent diseases in

adult men worldwide (De Marzo et al., 2007; Sfanos and De

Marzo, 2012). The series of reactions triggered by prostate

inflammation and the release of its other cytokines is one of

the main causes of prostate cancer (PC) induction. Chronic

prostatitis can make inflammatory cells infiltrate and

subsequently worsen prostate disease and even develop into

PC (Gurel et al., 2014). PC is the second most common

malignant tumor in men worldwide, and patients with

advanced PC almost always develop castration-resistant

prostate cancer (CRPC), resulting in patient death (Siegel

et al., 2022). It is worth noting that Rodrigo B de Alexandre

et al. found that low expression of PDE4B in advanced PC, which

is contrary to the high expression of PDE4B in other cancers,

should be taken seriously (Azevedo et al., 2014). Eiji Kashiwagi

et al. (2012) found that PDE4B downregulation leads to

activation of the PKA signaling pathway. Studies have shown

that the PKA signaling pathway was a key mediator of cell

proliferation and differentiation in various normal and cancer

cells, and oxidative stress in tumor cells inhibited PDE4B

expression and activated PKA path. The PDE4B/PKA

signaling pathway contributes to androgen-dependent prostate

cancer progression to PC. This suggests that PDE4B is likely to be

a potential target for the treatment of PC.

5 Regulation mechanisms of
phosphodiesterase 4B in
inflammation-mediated human
disease

PDE4s are the predominant cAMP degrading isozymes in

most immune and inflammatory cells, the PDE4B isoform is

expressed in a variety of immune and inflammatory cells,

differentially regulated by various inflammatory stimuli (Peter

et al., 2007). In addition, LPS has been shown to selectively

induce PDE4 expression, which is consistent with elevated

PDE4B expression in a variety of tumors (Jin and Conti,

2002). Numerous studies have shown that PDE4B played an

important role in cancer progression. PDE4B participates in

tumorigenesis and development mostly through two signaling

pathways, one is through the PI3K/AKT/mTOR signaling

pathway, and the other is through the specific hydrolysis of

cAMP, which activates the PKA signaling pathway (Figure 2).

The PI3K/AKT/mTOR signaling pathway targets are among

the most frequently activated signaling pathways in human

cancers, and inhibitors represented by this signaling pathway

have been successfully used for the treatment of primary and

metastatic colorectal cancer (Narayanankutty, 2019), and anti-

lung cancer drug development has been in the early trial stage

(Tan, 2020). The PIK3CA gene is aberrantly expressed in human

tumors. Akt is downstream of PI3K, and overexpression and

mutation of its multiple isoforms are commonly associated with

human disease processes. Overactivation of PI3K/AKT/mTOR

signaling pathway has been found to be commonly associated

with epidermal growth factor receptor (EGFR) mediated

resistance to endocrine therapy and targeted therapies (Lian

et al., 2019). Summarizing all previous studies, cAMP/PDE4B

may regulate mTOR signaling pathway by modulating PI3K/

AKT activity. Based on these observations, more attention should

be paid to the progress of PDE4B inhibitors in the medical field.

In the absence of cAMP, PKA is an enzymatically inactive

tetrameric holoenzyme consisting of two catalytic subunits

dimerized with regulatory subunits. The PKA signaling

pathway was a key mediator of cell proliferation and

differentiation in various normal and cancer cells. Previous

results have shown that the cAMP/PKA signaling pathway is

activated by many different receptors and then coupled with G

proteins to participate in signal transduction at the cell

membrane (Hoddah et al., 2009). G proteins interact with the

endosomal surface and are involved in the secretion of cAMP. In

addition, PKA overexpression is associated with poor prognosis

in several tumor types, including colorectal, breast and prostate

cancers. Inhibition of PKA prevents proliferation and

progression of lung and prostate tumor cells (Skoda et al.,

2018). The above studies found that PDE4B specifically

hydrolyzes cAMP, activates the PKA signaling pathway, and

promotes prostate cancer development.

Overall, PDE4B is involved in the regulation of cellular

signaling pathways and plays an important role in the

development and clinical manifestations of inflammation as

well as inflammation-induced cancer in multiple organs,

suggesting PDE4B as a potential target for clinical therapy.

6 Future expectations

The results of previous studies have demonstrated that high

expression of PDE4B was involved in inflammatory processes in

several organs of the body and thus in the development of cancer,

including hematologic malignancies (Kim et al., 2019), colon

(Komatsu et al., 2013), and lung (Azam and Tripuraneni, 2014),

and related results have demonstrated the important role of

PDE4B in inflammation (Ma et al., 2014) (Table 1). With in-

depth studies, the more attention was paid to the role of PDE4B
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in inflammatory. PDE4 inhibitors have been found to treat a

variety of inflammatory diseases; for example, roflumilast can be

used to block the inflammatory response and has a wide range of

anti-inflammatory effects. Cyclamides (Zheng et al., 2019),

dazinone derivatives (Allart-Simon et al., 2021), and

triazolamide derivatives can inhibit the synthesis of PDE4 and

subsequently exert anti-inflammatory effects, but PDE4B

inhibitors, as highly selective PDE inhibitors, have a

therapeutic function in inflammation while mitigating the side

effects associated with the drugs. In addition, PDE4B was also

found to have a positive effect on hematological tumor (Nagy

et al., 2013), colon cancer (Nishi et al., 2017), lung cancer

(Pullamsetti et al., 2013), liver cancer (Ding et al., 2012), etc.

The only special case so far is the reduced expression of PDE4B in

prostate cancer (Henderson et al., 2014). High expression levels

of PDE4B promote the development of certain cancers and their

subsequent invasion and metastasis. In addition, numerous

studies have shown that PDE4B may be an oncogene in

certain cancers and is closely associated with cancer

pathogenesis through certain signaling pathways. Therefore, it

is expected that PDE4B may be a potential target for cancer

therapy. This section combines the latest technologies and

research results in life sciences and medicine to look into the

future of PDE4B. Cancer is one of the leading causes of death

worldwide, and researchers are committed to investigate new

therapeutic approaches. In recent years, many treatment

concepts have emerged in addition to traditional radiotherapy

and chemotherapy. Researchers have shifted the direction of

treatment to the genetic level, the underlying mechanism of

cancer pathogenesis, in order to improve the treatment

FIGURE 2
Molecular mechanisms of the signaling pathways involved in PDE4B. PDE4B is involved in the PI3K/AKT/mTOR signaling pathway and the other
is through specific hydrolysis of cAMP followed by activation of the PKA signaling pathway.

TABLE 1 The relationship between abnormal PDE4B expression and inflammatory processes demonstrates the important role of PDE4B in
inflammation.

Cancer type Expression Function Refernces(PMID)

Diffuse large B-cell lymphoma
(DLBCL)

+ Phosphodiesterase PDE4B restricts cAMP-associated PI3K/AKT-dependent apoptosis in
diffuse large B-cell lymphoma

15331441

Acute Lymphoblastic
Leukemia (ALL)

+ The effect of PDE4B on the treatment junction of ALL may be related to its overexpression
and glucocorticoid resistance

35266293

Colorectal Cancer (CCa) + PDE4B can show tumor suppressive effects by inhibiting the mTOR-Myc axis 30528730

Lung Cancer (LUNG) + PDE4B is involved in the development of lung Cancer by affecting the cAMP-dependent
protein kinase (PKA) activity

22954688

Prostate Cancer (PCa) — PDE4B downregulation leads to activation of the PKApathway pathway, and oxidative stress
in tumor cells inhibits PDE4B expression and activates the PKA pathway pathway, thereby
inhibiting prostate development

22529021
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outcome and prognosis of cancer. In the past, the traditional

treatments for tumors were mostly surgery, radiotherapy, and

chemotherapy. Previously, RNA was often used in basic

experiments to interfere with the expression of target genes in

order to achieve targeted regulation of genes. Since 2001, the

huge project of sequencing the human genome, together with the

development of CRISPR-Cas9 technology, gene editing is

expected to become a viable biomedical tool (Cheng et al.,

2020). In summary, PDE4B can not only be the focus of life

science and medical research, but also can be connected with

many other cutting-edge research results in related fields, and

PDE4B can undoubtedly be a promising research direction.

Accumulating evidence suggests that PDE4B plays an important

role in the pathogenesis and clinical manifestations of cancer,

including proliferation, migration, and drug resistance. In

addition, PDE4B is involved in the regulation of multiple

signaling pathways in cancer cells. For example, PDE4B can act

as a target that modulates cAMP signaling pathway and plays a key

role in maintaining the stemness of ovarian cancer (Huang et al.,

2020), while cAMP/PDE4B signaling pathway can alsomodulate the

malignant phenotype of CRC cells (Kim et al., 2019). PDE4B

promotes melanoma invasion and metastasis by inhibiting the

cAMP signaling pathway. PDE4B promotes cancer progression

in diffuse large B-cell lymphoma (Smith et al., 2005; Suhasini

et al., 2016), colorectal cancer (Pleiman et al., 2018), breast

cancer (Luo et al., 2021), lymphoid carcinoma (Nagy et al., 2013)

and liver cancer (Ding et al., 2012; Sung et al., 2012), whereas in

prostate cancer (Kashiwagi et al., 2012), down-regulation of PDE4B

contributes to the occurrence and development of prostate cancer.

There is growing evidence that increasing intracellular cAMP levels

may be one way to improve chronic inflammation. One of the

means of increasing the level of cAMP is to inhibit its degradation,

from which small molecule inhibitors of PDE4 were developed.

PDE4 inhibitors have been found to reduce the level of

inflammatory response for the treatment of inflammatory bowel

disease, atopic dermatitis, rheumatoid arthritis and other diseases,

such as Apt can be used for psoriatic arthritis, and rofluskast can be

used to treat asthma. A series of PDE4 inhibitors, such as roromeste,

oglemilast, GSK256066, CHF6001, YM976, GS-5759, etc., have been

in development to improve the selectivity of drugs to reduce adverse

reactions, such as inhibitors that specifically target PDE4B in the

treatment of inflammation (Tralau-Stewart et al., 2011), colorectal

diseases, and cancer (Nose et al., 2016)have shown a promising

therapeutic future.

7 Conclusion

In summary, PDE4B is involved in several mechanisms of the

organism, and from laboratory discovery to clinical application,

PDE4B has shown its potential application. In future studies, with

the increase of clinical sample size and the clarification of PDE4B-

related regulatory mechanisms, PDE4B will definitely provide new

ideas for the diagnosis and treatment of human diseases.
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