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unbiased prediction in Hanwoo beef cattle
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Abstract

Background: Recently, there has been a growing interest in the genetic improvement of body measurement traits
in farm animals. They are widely used as predictors of performance, longevity, and production traits, and it is
worthwhile to investigate the prediction accuracies of genomic selection for these traits. In genomic prediction, the
single-step genomic best linear unbiased prediction (ssGBLUP) method allows the inclusion of information from
genotyped and non-genotyped relatives in the analysis. Hence, we aimed to compare the prediction accuracy
obtained from a pedigree-based BLUP only on genotyped animals (PBLUP-G), a traditional pedigree-based BLUP
(PBLUP), a genomic BLUP (GBLUP), and a single-step genomic BLUP (ssGBLUP) method for the following 10 body
measurement traits at yearling age of Hanwoo cattle: body height (BH), body length (BL), chest depth (CD), chest
girth (CG), chest width (CW), hip height (HH), hip width (HW), rump length (RL), rump width (RW), and thurl width
(TW). The data set comprised 13,067 phenotypic records for body measurement traits and 1523 genotyped animals
with 34,460 single-nucleotide polymorphisms. The accuracy for each trait and model was estimated only for
genotyped animals using five-fold cross-validations.

Results: The accuracies ranged from 0.02 to 0.19, 0.22 to 0.42, 0.21 to 0.44, and from 0.36 to 0.55 as assessed using
the PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods, respectively. The average predictive accuracies across traits
were 0.13 for PBLUP-G, 0.34 for PBLUP, 0.33 for GBLUP, and 0.45 for ssGBLUP methods. Our results demonstrated
that averaged across all traits, ssGBLUP outperformed PBLUP and GBLUP by 33 and 43%, respectively, in terms of
prediction accuracy. Moreover, the least root of mean square error was obtained by ssGBLUP method.

Conclusions: Our findings suggest that considering the ssGBLUP model may be a promising way to ensure
acceptable accuracy of predictions for body measurement traits, especially for improving the prediction accuracy of
selection candidates in ongoing Hanwoo breeding programs.
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Background
Improving meat production in beef cattle is an important
breeding goal throughout the world because it has a con-
siderable effect on the profitability of the beef industry.
Linear body measurement traits are important economic
traits in beef cattle, as they provide useful information for
understanding the growth and frame size of the animals.
The relationship between the linear type traits and eco-
nomically important traits, such as reproductive traits
[1, 2], longevity [3, 4], lifetime production efficiency
[5], and growth traits [6, 7], have been extensively
researched in both dairy and beef cattle.
Hanwoo cattle are unique to Korea and popular for

meat owing to their rapid growth and high quality beef.
Body measurements have become routinely collected
traits over the last three decades in this breed, which pro-
vide valuable resources to study the complete growing
period [8]. Moreover, these traits have been proposed as
indirect selection criteria for the genetic improvement of
meat production in beef cattle [9, 10], and can be har-
nessed to accelerate the breeding progress. Improving the
accuracy of selection for body measurement traits will
benefit the beef cattle industry; consequently, these traits
are often included in multi-trait genetic evaluations as
predictors of performance in beef cattle [11, 12]. To this
end, the application of genomic selection could be a
promising tool to improve the accuracy of estimation of
breeding values of body measurement traits. It refers to
selection based on genomic estimated breeding values
(GEBV) using genome-wide marker information [13] in-
stead of the traditional selection which uses pedigree-
based BLUP [14]. Several statistical methods were devel-
oped to predict GEBV from 2001 onwards, among which
the genomic best linear unbiased prediction (GBLUP)
models and Bayesian variable selection or variable shrink-
age models have been widely used [13, 15, 16]. The main
differences between these models are the assumptions of
the distribution of single nucleotide polymorphism (SNP)
effects. Nonetheless, the GBLUP method has become a
popular approach for practical genomic evaluations be-
cause most traits in livestock species have polygenic na-
ture [17–20], and also because of its simpler and lower
computational demand than other methods [21]. A dec-
ade ago, a method based on the GBLUP framework was
proposed by Misztal et al. [22], termed the single-step
genomic best linear unbiased prediction (ssGBLUP),
which uses simultaneously all pedigree, genotypic and
phenotypic information from both genotyped and non-
genotyped individuals. In this method, the pedigree-based
numerator relationship matrix (A) and relationship matrix
based on genomic information (G) are combined into a
single matrix (H) [22, 23]. The use of ssGBLUP increases
the accuracy of genomic prediction compared to the
methods using only genotyped individuals [24]. In this

line, previous studies have demonstrated that the accuracy
of genomic evaluation in many species could be increased
by using ssGBLUP compared with pedigree-based BLUP
or genomic BLUP [25–32]. Besides, the literature on pre-
diction of the breeding values of linear body measurement
traits using genomic evaluations in field data of dairy cat-
tle [25, 33, 34], beef cattle [35–37], goats [38–40], sheep
[41], and pig [42] have been previously reported.
Since there is sufficient pedigree information available

in Hanwoo cattle [31, 32], it is expected that the use of
ssGBLUP can be influenced to improve genomic predic-
tion accuracy for body measurement traits. Nonetheless,
these traits have not yet been investigated in breeding
programs for this breed. Therefore, the aim of this study
was to evaluate the accuracy of breeding values for linear
body measurement traits using conventional BLUP only
on genotyped animals (PBLUP-G), conventional BLUP
with all animals, GBLUP, and ssGBLUP methods, which
provide valuable insights into the application of genomic
selection for the studied traits in Hanwoo beef cattle.

Results
Descriptive statistics and estimates of variance components
The number of animals with records, means, minimum,
maximum, standard deviations, and phenotypic coeffi-
cient of variation for the 10 body measurement traits are
shown in Table 1. The mean values of body measure-
ment traits ranged from 21.38 to 165.95 with standard
deviation between 2.71 and 9.48. Variance components
and heritability estimates for the studied traits are pre-
sented in Table 2. The range of heritability for the 10
traits was between 0.11 and 0.40. Among all investigated
traits, the estimated heritability of BH was the highest
(0.40) and the lowest was for CW and HW (0.11). The
standard error for all heritability estimates was less than
0.03 (Table 2).

Table 1 Summary statistics for linear body measurement traits
used to estimate variance components in Hanwoo cattle

Trait a (Unit) No. records Mean (SE)b Min. Max. SD CV%

BH (cm) 13,066 119.27 (0.04) 84 138 5.06 4.24

BL (cm) 13,024 132.69 (0.06) 85 150 7.18 5.41

CD (cm) 13,061 61.38 (0.03) 27 77 3.40 5.54

CG (cm) 13,066 165.95 (0.08) 101 202 9.48 5.72

CW (cm) 13,065 37.33 (0.04) 20 67 4.29 11.49

HH (cm) 13,064 121.64 (0.04) 84 141 5.00 4.11

HW (cm) 13,067 21.38 (0.02) 8 40 2.71 12.66

RL (cm) 13,065 44.41 (0.03) 24 63 3.49 7.85

RW (cm) 13,066 39.37 (0.03) 21 58 3.11 7.90

TW (cm) 13,065 37.19 (0.03) 4 68 3.10 8.33
a BH Body height, BL Body length, CD Chest depth, CG Chest girth, CW Chest
width, HH Hip height, HW Hip width, RL Rump length, RW Rump width, TW
Thurl width, b SE Standard error
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Comparison of accuracy and bias for the four models
The predictive accuracies for the 10 traits obtained using
PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods are
shown in Fig. 1. The accuracies determined using
PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods
ranged from 0.02 to 0.19, 0.22 to 0.42, 0.21 to 0.44, and

0.36 to 0.55, respectively. The average predictive accur-
acies across traits were 0.13 for PBLUP-G, 0.34 for
PBLUP, 0.33 for GBLUP, and 0.45 for ssGBLUP
methods (Fig. 1). The results showed that the average
magnitude of improved accuracy from PBLUP to
ssGBLUP was 33%, followed by changing the model

Table 2 Pedigree-based BLUP variance component estimations and heritability of linear body measurement traits in Hanwoo cattle

Trait a Additive genetic variance (SE)b Residual variance (SE) Phenotypic variance (SE) Heritability (SE)

BH 5.61 (0.47) 8.40 (0.34) 14.01 (0.22) 0.40 (0.03)

BL 4.63 (0.56) 20.17 (0.49) 24.80 (0.34) 0.19 (0.02)

CD 1.13 (0.13) 4.61 (0.12) 5.74 (0.08) 0.20 (0.02)

CG 5.89 (0.77) 29.48 (0.69) 35.37 (0.48) 0.17 (0.02)

CW 0.87 (0.14) 6.74 (0.14) 7.61 (0.01) 0.11 (0.02)

HH 5.55 (0.46) 8.60 (0.34) 14.15 (0.22) 0.39 (0.03)

HW 0.28 (0.04) 2.30 (0.04) 2.59 (0.03) 0.11 (0.02)

RL 0.91 (0.12) 4.52 (0.10) 5.42 (0.07) 0.17 (0.02)

RW 0.80 (0.10) 4.14 (0.09) 4.94 (0.07) 0.16 (0.02)

TW 0.73 (0.10) 4.82 (0.10) 5.55 (0.07) 0.13 (0.02)
a BH Body height, BL Body length, CD Chest depth, CG Chest girth, CW Chest width, HH Hip height, HW Hip width, RL Rump length, RW Rump width, TW Thurl
width, b SE Standard error

Fig. 1 Accuracy of breeding values obtained using PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods. The means and standard errors for body
height (BH), body length (BL), chest depth (CD), chest girth (CG), chest width (CW), hip height (HH), hip width (HW), rump length (RL), rump
width (RW), and thigh width (TW) in Hanwoo cattle. The white numbers represent standard error (SE). PBLUP-G, pedigree-based best linear
unbiased prediction only on genotyped animals; PBLUP, pedigree-based best linear unbiased prediction with all animals; GBLUP, genomic best
linear unbiased prediction; ssGBLUP, single-step genomic best linear unbiased prediction
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from GBLUP to ssGBLUP was 43% for the 10 traits.
Using data from only genotyped animals, prediction ac-
curacies of the GBLUP method were considerably higher
than those of the PBLUP-G method for all traits,
whereas the average accuracies using GBLUP were
slightly lower than PBLUP method. The results also in-
dicated that when phenotypic data from only genotyped
individuals were used, prediction accuracies of the
PBLUP-G method were considerably lower than those of
other methods for all traits. Furthermore, the ssGBLUP
method provided higher accuracies of prediction than
both PBLUP and PBLUP-G methods in all body meas-
urement traits. The highest and lowest improvement of
accuracy in ssGBLUP over PBLUP was obtained for HW
(61%) and CG (14%) traits, respectively.
The scale of predictions is an important factor that

determines the use of estimated breeding values for gen-
etic evaluation. The regression coefficient of adjusted
phenotypes was calculated as a measure of prediction
bias (Table 3). The regression coefficients of prediction
determined using PBLUP-G, PBLUP, GBLUP, and
ssGBLUP methods ranged from 0.01 to 0.85, 0.69 to
1.05, 0.95 to 1.43, and 0.96 to 1.24, respectively, for all
traits. The average regression coefficients across the
traits were 0.54, 0.96, 1.13, and 1.12 using PBLUP-G,
PBLUP, GBLUP, and ssGBLUP methods, respectively.
There was no clear trend demonstrating that a model
was better than the others regarding unbiased predic-
tions for most traits. In addition, the average absolute
deviation of regression coefficients from 1.0 was 0.46,
0.07, 0.15, and 0.13 for PBLUP-G, PBLUP, GBLUP, and
ssGBLUP, respectively, indicating that the PBLUP
method was the least biased, whereas the predictions
from GBLUP and ssGBLUP methods tended to be
slightly deflated for most traits (Table 3). However,
RMSEs obtained using the ssGBLUP method were lower

than those obtained by the PBLUP-G, PBLUP and
GBLUP methods for all traits of interest (Table 4).

Discussion
The heritability estimates for the 10 body measurement
traits in this study were low to relatively high, ranging
from 0.11 to 0.40. In the same breed, Choy et al. [43] re-
ported heritability estimates for BL (0.23), CD (0.28), CG
(0.27), CW (0.21), HW (0.20), and RW (0.26) at 12
months of age, which were somewhat higher than those
seen in our study. These discrepancies could be due to
the difference in the numbers of animals measured (ap-
proximately 32% more in this study than their study on
Hanwoo cattle) and statistical models used for variance
component estimations. The estimated heritability of
HH was consistent with the study by Zhang et al. [44],
where the estimates of heritability for HH at yearling age
was 0.38 in Chinese Holstein. The estimate of the herit-
ability of CW in our study was lower than those re-
ported previously for Holstein in the literature [33, 34].
Moreover, our heritability estimates for CD, CW, HW,
and TW are within the ranges of the heritability esti-
mates reported by Doyle et al. [45] in Angus, Charolais,
Hereford, Limousin, and Simmental cattle.
In this study, we investigated the accuracy of the

breeding values for linear body measurement traits using
four models, pedigree-based BLUP only on genotyped
animals (PBLUP-G), pedigree-based BLUP with all ani-
mals (PBLUP), genomic BLUP (GBLUP), and single-step
genomic BLUP (ssGBLUP) in Hanwoo beef cattle. Ac-
curacies of obtained breeding values from these models
were compared. To maximize the profitability of the beef
cattle industry, selection for economically important
traits is desirable. Estimations of breeding values for
body measurement traits are most important because
they are widely used as predictors of growth [7], meat

Table 3 Regression coefficients of the adjusted phenotypes of
EBV/GEBV for PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods

Trait a PBLUP-G PBLUP GBLUP ssGBLUP

BH 0.56 (0.30) 1.04 (0.12) 1.17 (0.10) 1.19 (0.08)

BL 0.85 (0.55) 1.02 (0.10) 1.12 (0.39) 1.11 (0.14)

CD 0.76 (0.30) 1.05 (0.17) 1.22 (0.28) 1.24 (0.17)

CG 0.72 (0.24) 1.05 (0.28) 0.96 (0.22) 1.05 (0.19)

CW 0.71 (0.24) 0.99 (0.32) 0.99 (0.27) 1.07 (0.14)

HH 0.55 (0.29) 1.00 (0.12) 1.12 (0.14) 1.18 (0.07)

HW 0.01 (0.54) 0.69 (0.15) 0.95 (0.24) 0.96 (0.19)

RL 0.36 (0.37) 1.01 (0.30) 1.22 (0.25) 1.17 (0.25)

RW 0.62 (0.27) 0.99 (0.17) 1.43 (0.18) 1.24 (0.07)

TW 0.32 (0.55) 0.81 (0.25) 1.09 (0.37) 1.03 (0.17)
a BH Body height, BL Body length, CD Chest depth, CG Chest girth, CW Chest
width, HH Hip height, HW Hip width, RL Rump length, RW Rump width, TW
Thurl width

Table 4 Root of mean square error (RMSE) of EBV/GEBV for
PBLUP-G, PBLUP, GBLUP, and ssGBLUP methods

Trait a PBLUP-G PBLUP GBLUP ssGBLUP

BH 4.03 (0.06) 3.94 (0.08) 3.89 (0.05) 3.83 (0.08)

BL 5.42 (0.12) 5.37 (0.13) 5.39 (0.13) 5.33 (0.14)

CD 2.32 (0.08) 2.30 (0.09) 2.31 (0.08) 2.27 (0.09)

CG 5.92 (0.19) 5.87 (0.18) 5.94 (0.16) 5.86 (0.18)

CW 2.98 (0.07) 2.96 (0.07) 2.98 (0.06) 2.95 (0.07)

HH 4.12 (0.07) 4.03 (0.10) 3.99 (0.07) 3.92 (0.10)

HW 1.68 (0.10) 1.68 (0.10) 1.68 (0.10) 1.67 (0.10)

RL 2.60 (0.03) 2.57 (0.03) 2.58 (0.03) 2.55 (0.03)

RW 2.28 (0.03) 2.25 (0.04) 2.25 (0.03) 2.22 (0.04)

TW 2.47 (0.04) 2.45 (0.04) 2.46 (0.05) 2.44 (0.04)
a BH Body height, BL Body length, CD Chest depth, CG Chest girth, CW Chest
width, HH Hip height, HW Hip width, RL Rump length, RW Rump width, TW
Thurl width
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production and longevity [3] traits in the beef cattle
industry. Several previous studies on Hanwoo cattle
[31, 32] and on other beef cattle breeds [28, 29] have
shown that the ssGBLUP outperformed GBLUP or
pedigree-based BLUP methods for the prediction of
breeding values in carcass and growth traits.
According to our results, the average predictive accur-

acies of 10 traits obtained using the ssGBLUP model
were approximately 33% higher than those obtained
using the PBLUP model, which ranged from 14% for CG
to 61% for HW trait. The explanation of the observed
gain in the accuracy is that the simultaneous use of pedi-
gree, phenotypic, and genomic information in the single-
step method provides additional information for estimating
breeding values compared to traditional pedigree-based
models, which are based on capturing the variation in Men-
delian sampling [27]. Moreover, the average gain in accur-
acy across traits using the ssGBLUP method was
approximately 43% higher relative to GBLUP method that
only uses data from genotyped animals for all traits, which
may reflect the fact that the use of additional phenotypic in-
formation from including non-genotyped animals along
with a relatively deep pedigree, was available on Hanwoo
cattle. On average, the GBLUP method was slightly less ac-
curate than the PBLUP method, which could be attribut-
able to a small number of genotyped reference animals.
Another reason is that the PBLUP method utilizes all
phenotypic data and pedigree information from all genera-
tions to predict breeding values, whereas the GBLUP model
uses information only from genotyped animals in the
current generation. Based on our results, the GBLUP
method considerably outperformed the PBLUP-G model
with the same phenotypic data for all traits. Similarly, Lee
et al. [31] indicated that methods using genomic informa-
tion from only genotyped animals performed better than
PBLUP and PBLUP-G for carcass traits in Hanwoo cattle.
It is important to note, however, that the accuracy of
GBLUP using only genotyped animals available on the
current generation was 96% of the prediction accuracy of
pedigree-based BLUP over all generations. Therefore, it can
be argued that the GBLUP method is highly beneficial
when pedigree information is unavailable. For instance, in
other species such as fish [46] and wild species [47], in
which the information on the relationship is not available
or can be difficult to keep track of, the GBLUP method can
be a useful strategy for improving the accuracy of
prediction.
Consistent with our results, Song et al. [42] achieved a

lower accuracy with GBLUP method than PBLUP and
ssGBLUP methods for all seven body measurement traits
in pigs. They also demonstrated that on average, the ac-
curacies of genomic prediction using the ssGBLUP
method were higher by 86 and 1% than those using
GBLUP and PBLUP, respectively. In another study,

Lourenco et al. [48] also showed that GBLUP method
was less accurate than PBLUP method for fat percentage
trait in all parities using a small number of genotyped
animals in the dairy population. Similarly, Abo-Ismail
et al. [34] reported that the average reliabilities of EBVs
was higher than the average reliabilities of direct gen-
omic breeding values (DGV) using different SNP sets for
body conformation traits in the validation population of
Holstein cattle.
Some studies have been undertaken to investigate the

prediction accuracy of evaluations using the ssGBLUP
method for linear type and body measurement traits on
different animals such as dairy cattle [25, 33], dairy goat
[38–40], dairy sheep [41], and pig [42], which highlights
that the ssGBLUP method is as accurate as or more ac-
curate than either the PBLUP or GBLUP method for the
traits of interest. For instance, Tsuruta et al. [25] exhib-
ited that ssGBLUP method was more accurate than the
PBLUP method for 18 linear-type traits in Holsteins.
Their results showed that the average reliabilities of 18
traits from the single-trait ssGBLUP model were 86%
higher than those from the single-trait BLUP model, and
the gain in the reliability of breeding values determined
using the multi-trait ssGBLUP model was, on average,
84% compared with that obtained using the multi-trait
BLUP for all traits. Similarly, the superiority of ssGBLUP
over PBLUP was reported in the estimation of the breed-
ing values for 20 linear-type traits of Holstein cows by
Zavadilová et al. [33], who found that the average correl-
ation between the post-progeny test EBV and parent
average (0.30) was lower than the average correlation be-
tween the post-progeny test EBV and the predicted
GEBV (0.40).
Previously, the performance of ssGBLUP has been re-

ported to be better than either the pedigree-based BLUP
or GBLUP for milk production traits, udder type traits,
and somatic cell scores in French dairy goats and deliv-
ered a 61 to 96% gain in the accuracy of genomic predic-
tion for udder type traits [38, 39]. Furthermore, Oget
et al. [41] showed that ssGBLUP performed more accur-
ately than pedigree-based BLUP for type traits consisting
of teat angle (15.84%) and udder depth (26.07%) in
Lacaune dairy sheep.
Overall, our findings indicate that ssGBLUP generally

generated higher prediction accuracy than the other
three methods for body measurement traits in Hanwoo
cattle, which could be implemented in practical breeding
programs.

Conclusions
This study aimed to improve the accuracy of genomic
prediction through the incorporation of the information
of genotyped and non-genotyped animals into a genetic
evaluation for body measurement traits in Hanwoo beef
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cattle. Four methods were also compared, PBLUP-G,
PBLUP, GBLUP, and ssGBLUP in terms of accuracy.
Our results demonstrate that the ssGBLUP provides a
more accurate prediction than both traditional BLUP
(PBLUP-G and PBLUP) and GBLUP for all the studied
traits. It is worth noting that the ssGBLUP yielded on
average 43% higher accuracy than GBLUP and 33%
higher accuracy than PBLUP on body measurement
traits. Therefore, the ssGBLUP can be considered as an
alternative for effectively improving the prediction ac-
curacy of selection candidates in ongoing Hanwoo
breeding schemes.

Methods
Pedigree and phenotypic data
The dataset used in this study was provided by the Han-
woo Improvement Center of the National Agricultural
Cooperative Federation and included 8452 bulls and
4615 steers born between 1989 and 2015. The pedigree
consisted of 50,220 animals, which were traced back to
11 generations. The phenotypic data of body measure-
ment traits were recorded in centimeters as continuous
traits at the age of 12 months. The measured traits in-
cluded body height (BH), body length (BL), chest depth
(CD), chest girth (CG), chest width (CW), hip height
(HH), hip width (HW), rump length (RL), rump width
(RW), and thurl width (TW) which their details are illus-
trated in Fig. S1. Descriptive statistics for each trait are
shown in Table 1.

Genotypic data
Genotyping data used in genomic evaluations in this
study were available for 1679 individuals that had been
genotyped using Illumina BovineSNP50K (n = 959) and
HD 777 K (n = 720) BeadChip (Illumina Inc., San Diego,
CA, USA). From both the 50 K and 777 K SNP chips
only the identical locations were used and 45,304 com-
mon SNPs were found. Animals with more than 10% of
missing genotype data (n = 73) and without a phenotype
for the traits of interest (n = 33) as well as animals with
Mendelian conflicts (n = 11) or deviation errors between
the pedigree and genomic relations (n = 39) were ex-
cluded from the final analyses. The Mendelian conflicts
were investigated using all SNP to determine wrong rela-
tionships for sire-offspring pairs. The exclusion thresh-
old of Mendelian conflicts was assumed two percentages
according to the default of PreGSf90 program [49]. To
detect deviation errors between the pedigree and gen-
omic data, the relationship matrix based on pedigree (A)
and SNP genotypes (G) were compared. A total of 39 in-
dividuals showed unreasonable deviations based on their
A and G relationship coefficients possibly due to DNA
sampling errors and thus were eliminated. Among these,
duplicated individuals (n = 8) which might have been

genotyped twice with different IDs had their G coeffi-
cients close to 1.0 and A coefficients close to 0 (n = 4) or
0.25 (n = 4). For the remaining individuals (n = 31), ei-
ther the G coefficients were near 0 while the A coeffi-
cients were close to 0.25, in this case, they would have
been mistakenly recorded as half-sib individuals, or the
G coefficients were close to 0.25 and the A coefficients
were near 0 as would be half-sibs mistakenly recorded as
unrelated. SNPs with unknown positions (302 SNPs)
and those located on sex chromosomes (1150 SNPs)
were removed from the analyses after quality control.
Furthermore, the SNPs with call rates lower than 0.98
(2677 SNPs), minor allele frequencies lower than 0.01
(6684 SNPs), and a maximum difference between ob-
served and expected frequency of 0.15 as a departure of
heterozygous from the Hardy-Weinberg equilibrium (31
SNPs) were excluded. The missing genotypes were im-
puted in the BEAGLE software [50]. Finally, the geno-
types for 34,460 SNP markers from 1523 animals (369
bulls and 1154 steers) were used for the analyses.

Statistical methods
Estimation of variance components
The variance components and heritabilities were esti-
mated implementing AIREMLF90 software [49], using
the pedigree-based single-trait animal model as follows:

y ¼ Xbþ Zuþ e ð1Þ

where y is the vector of the observations for the trait of
interest, b is the vector of the fixed effects, including
batch-test place-sex [the batch was formed twice every
year and it represents the year and season of selection at
6 months of age and test place is the place where ani-
mals were reared after selection (164 levels)], birth place
[the county where the farms were located (111 levels)],
and age at the recorded date as a covariate; u is the vec-
tor of additive genetic effects of the individuals; X is the
incidence matrix of b; Z is the incidence matrix of u,
and e is the vector of the residuals. It was assumed that
u ~N (0, Aσa

2) and e ~N (0, Iσe
2), where A was a

pedigree-based genetic relationship matrix and σa
2 was

the additive genetic variance, and σe
2 is the residual

variance.
Finally, the adjusted phenotypes (yadj) were obtained

for each trait and animal as the residual effects (e) of the

y =Xb + e model which b̂¼ðX0
XÞ − 1

X
0
y.

Estimation of breeding values
Four methods, a traditional BLUP method with pheno-
types only on genotyped animals (PBLUP-G), a trad-
itional BLUP method with pedigree-based relationship
matrix (PBLUP), a GBLUP method based on genomic
relationship matrix, and a single-trait single-step GBLUP
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(ssGBLUP) method by combining the relationship
matrix constructed from genotyped and non-genotyped
individuals and pedigree information, were used to pre-
dict breeding values.

Pedigree-based best linear unbiased prediction (PBLUP)
model
The BLUP model to predict conventional EBV was:

yad j ¼ 1μþ Zuþ e ð2Þ

where yadj is the vector of the observations for the trait
adjusted for fixed effects, 1 is the vector of ones; μ is
overall mean; other notations are the same as in the
model eq. (1). In addition, the EBVs were obtained using
only phenotypes and pedigree on genotyped animals
(PBLUP-G model).

Genomic best linear unbiased prediction (GBLUP) model
For estimating genomic breeding values, we used the
model (2) above with the following assumptions;
u was the vector of additive genetic effects of only ge-

notyped individuals and Z was the incidence matrix of
u. It was assumed that u ~N (0, Gσa

2), where G was the
genomic relationship matrix constructed using SNP in-
formation as described by VanRaden [15]:

G ¼ MM
0

2
Pm

i¼1
pi ð1 − piÞ

, where m is the total number of

markers (34,460), pi is the allelic frequency of ith marker
and M is the matrix of centered genotypes.

Single-step genomic best linear unbiased prediction
(ssGBLUP) model
In the ssGBLUP method, the statistical model was simi-
lar to that used for traditional evaluation; however, the
non-genotyped and genotyped animals were simultan-
eously included in the hybrid relationship matrix of H
that was a combination of A (numerator relationship
matrix) and G (the genomic relationship matrix) matri-
ces. The inverse of the H matrix was obtained as the fol-
lowing equation [51, 52] and by employing preGSf90
software [53]:

H − 1 ¼ A − 1 þ 0 0
0 0:95Gþ 0:05A22ð Þ − 1 −A − 1

22

� �

Where A22 is the numerator relationship matrix for
genotyped animals.

Validation and prediction of accuracy
In this study, the accuracy and unbiasedness of prediction
were obtained using five-fold cross-validation sets for all
traits. Genotyped individuals were assigned to five mutu-
ally exclusive groups for cross-validation. K-means clus-
tering, according to pedigree relationship coefficients, was

used to minimize the relatedness between training and
validation sets [54]. The five groups included 360, 356,
174, 466, and 167 individuals, respectively. Each group
was used as the validation set, while the remaining geno-
typed individuals were included in the training set. When
using the ssGBLUP and PBLUP methods with phenotypes
of all animals, non-genotyped individuals were included in
the training set. For each validation set, the prediction ac-
curacy was calculated as the correlation between the vec-
tor of adjusted phenotypes and the vector of estimated
breeding values, divided by the square root of trait herit-
ability. Regressions of adjusted phenotype on the EBV and
the root of mean square error (RMSE) were calculated for
all prediction methods.
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