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Globally, Erysiphe necator causing powdery mildew disease in grapevines (Vitis vinifera

L.) is the second most important endemic disease, causing huge economic losses every

year. At present, the management of powdery mildew in grapes is largely dependent

upon the use of chemical fungicides. Grapes are being considered as one of the high

pesticide-demanding crops. Looking at the residual impact of toxic chemical pesticides

on the environment, animal, and human health, microbe-based strategies for control of

powdery mildew is an emerging technique. It offers an environment-friendly, residue-free,

and effective yet safer approach to control powdery mildew disease in grapes. The mode

of action is relatively diverse as well as specific to different pathosystems. Hence, the

aim of this study was to evaluate the microbe-based technologies, i.e., Eco-pesticide®,

Bio-Pulse®, and Bio-Care 24® developed at the Plant-Microbe Interaction and

Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, against grape powdery mildew and

to integrate these technologies with a safer fungicide (sulfur) to achieve better disease

control under organic systems of viticulture. The experiments were conducted at four

different locations, namely, the vineyards of ICAR-NRCG, Rajya Draksha Bagayatdar

Sangh (MRDBS), and two farmers’ fields at Narayangaon and Junnar in the Pune

district of Maharashtra. A significantly lower percent disease index (PDI) was recorded

on the leaves of grape plants treated with Eco-Pesticide®/sulfur (22.37) followed by

Bio-Pulse®/sulfur (22.62) and Bio-Care 24®/sulfur (24.62) at NRCG. A similar trend was

observed with the lowest PDI on bunches of Eco-pesticide®/sulfur-treated plants (24.71)

followed by Bio-Pulse®/sulfur (24.94) and Bio-Care®/sulfur (26.77). The application of

microbial inoculants singly or in combination with sulfur has a significant positive impact

on the qualitative parameters such as pH, total soluble solids (TSS), acidity, berry

diameter, and berry length of the grapes at different locations. Among all the treatments,

the Bio-Pulse®/sulfur treatment showed the highest yield per vine (15.02 kg), which was

on par with the treatment Eco-Pesticide®/sulfur (14.94). When compared with the yield
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obtained from the untreated control, 2.5 to 3 times more yield was recorded in the plants

treated with either of the biopesticides used in combination with sulfur. Even in the case

of individual inoculation, the yield per vine was approximately two times higher than the

untreated control and water-treated plants across the test locations. Results suggested

that microbial technologies not only protect grapevines from powdery mildew but also

enhance the quality parameters with increased yield across the test locations.

Keywords: microbe-based technology, Eco-Pesticide, Bio-Pulse, Bio-Care, Erysiphe necator, Vitis vinifera,

powdery mildew of grapes

INTRODUCTION

Grapevine (Vitis vinifera L.) is one of the important crops grown
worldwide for wine, dried resins, and fresh table purposes. It
was originally a temperate crop but is widely cultivated in
temperate, subtropical, and tropical regions of the world. Several
reports indicate that ∼72 million tons of grapes are produced
worldwide every year, most of which are used to produce wine.
Apart from wine production, grapes are widely used to prepare
jelly, jam, juices, raisins, currants, and sultanas (Sawant and
Sawant, 2006; Sawant et al., 2017). It has great economic potential
due to higher yields translating into higher monetary returns,
which are duly supported by its fair export potential (Calonnec
et al., 2004). Being an export crop, it plays a crucial role in the
nation’s economy. In India, it is widely cultivated in the states
of Maharashtra, Karnataka, Tamil Nadu, Mizoram, and Andhra
Pradesh. The area under grapes in India is ∼1.25 lakh hectares
with an average productivity of 22.95 t/ha. Among these states,
Maharashtra contributes about 75.85% to the area and 81.22% to
the national grape production with a productivity of 24.58 t/ha
(Sawant and Sawant, 2006; Sawant et al., 2017; Kanitkar et al.,
2020).

Several biotic (viruses, bacteria, fungi, and insects) and
abiotic (i.e., drought and winter cold) stresses affect grape
production worldwide. Among biotic stresses, fungal diseases,
namely, downy mildew (Plasmopara viticola [Berk and Curtis]
Berlese and De toni), powdery mildew (Erysiphe necator
previously known as Uncinula necator [Schw.] Burn), and
Anthracnose (Gloeosporium ampelophagum [Pass] Sacc. [Perfect
stage: Elsinoe ampelina {DeB} Shear]) are the major constraints
in grapevine cultivation (Calonnec et al., 2004; Gadoury et al.,
2007, 2012; Vinothini et al., 2014). Among fungal diseases,
powdery mildew is the second most important endemic disease
of commercial grapevine varieties after downy mildew, and it
becomes more serious than downy mildew in the changing
climatic scenario with relatively cool and dry weather (Calonnec
et al., 2004, 2018; Bendek et al., 2007). Erysiphe necator is
an obligate biotrophic and the most notorious pathogen of
the grapevine causing considerable losses in grape production
(Konstantinidou-Doltsinis et al., 2007; Saleh et al., 2007).
The disease can be devastating to susceptible varieties under
conducive environmental conditions covering the entire above-
ground parts of the plants. The release of ascospores is always
associated with high humidity, and therefore, frequent rain is a
key factor for the release of ascospores, which are, in fact, the

primary inocula (Jones et al., 2014; Sawant et al., 2017; Kavadia
et al., 2020). Grapevine diseases can have drastic ill effects not
only on the host plants and berries but also on the wine qualities
and their sensorial and organoleptic properties (Stummer et al.,
2003a,b; Pinar et al., 2017a,b), resulting in economic losses for
the grape growers and wine producers (van Helden, 2008). As a
consequence of smaller diseased berries, E. necator can cause a
drastic reduction in grape yield of up to 45% (Calonnec et al.,
2004) and severally affect the export quality (Stummer et al.,
2005; Rusjan et al., 2012; Pinar et al., 2016, 2017a,b). Although
the grapevine is susceptible to powdery mildew at all its growth
stages, berries are not infected after the berry softening stage
(Calonnec et al., 2004, 2018; Gadoury et al., 2007, 2012).

Management of powdery mildew in grapes is largely
dependent upon the use of chemical fungicides, and interestingly,
grapes are considered to be one of the high pesticide-demanding
crops (Sholberg et al., 2006; Pertot et al., 2017; Arestova
and Ryabchun, 2021). Worldwide, an average of 35% of all
pesticides produced are used in viticulture (Essling et al., 2021).
In India, a total of 1,814M.T. of pesticides were used in
fruit crop production during 2020–2021 (www.ppqs.Gov.in).
Earlier, sulfur and sulfur-containing fungicides were used for
controlling the powdery mildew of grapes globally (Biondi
et al., 2012; Warneke et al., 2022). However, in the recent past,
several other fungicides, namely, difenoconazole, metrafenone,
nissodium fenarimol, bupirimate, penconozole, dimethomorph,
triademefon, pyrazophos, hexaconazole, chlorothalonil, and
flusilazole were introduced in India and used to control powdery
mildew in grapes (Sawant and Sawant, 2006; Sawant et al.,
2017; Kanitkar et al., 2020). Consequences of intensive pesticide
use include their persistence in soils, contamination of the
environment, negative impact on human health, and deterrents
to the ecosystems as well as the development of resistant
pathogenic strains. Heavy doses and multiple applications of
fungicides on grapes lead to excess fungicidal residues in the
harvest, which affect the export quality and cause huge losses in
foreign exchange (Carisse et al., 2009; Alem et al., 2019; Rantsiou
et al., 2020). Resistance development in the pathogens and
residual toxicity of chemical fungicides on the environment and
human health have compelled researchers and commercial grape
growers to look for alternative strategies (Yildirim and Dardeniz,
2010; Miles et al., 2012; Fernández-González et al., 2013;
Çetinkaya and Fadime, 2016). With the possible withdrawal of
chemical fungicides, including sulfur powder, from the schedule
of the acceptable input chart and the demand for residue-free
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grapes, there is an urgent need to find suitable alternatives
for disease management in the organic systems of viticulture
(Carisse et al., 2009; Yildirim and Dardeniz, 2010; Lu H. et al.,
2020). Among them, the development of resistant cultivars with
a high degree of resistance/tolerance to respective pathogens
to produce high-quality grapes and wines commensurate with
the parameters for higher standards of food safety is of great
importance (Pap et al., 2016; Riaz et al., 2020). However, the
detection of the source of resistance to Erysiphe necator and the
transfer of desired traits into a suitable commercial cultivar using
a resistance breading program is a great challenge to the grape
breeders (Ficke et al., 2002; Riaz et al., 2013, 2020; Pap et al.,
2016). Furthermore, availability of resistant lines and breeding
of resistant cultivars is cost-effective, but in grapes, it is not an
easy task (Miles et al., 2012; Fernández-González et al., 2013;
Çetinkaya and Fadime, 2016).

Under these circumstances, the use of microbe-based
strategies for control of powdery mildew is an emerging
technique/approach. It has been reported to be an environment-
friendly, residue-free, and safer approach for combating the
powdery mildew pathogen effectively (Hayes, 2015; Kumar et al.,
2021; Pathma et al., 2021; Sellitto et al., 2021). In the recent past,
several biological control agents of microbial origin have been
evaluated and used to control the powdery mildew pathogen
in grapes. Among them, Ampelomyces quisqualis, Trichoderma
harzianum, T. asperellum, T. virens, Pythium oligandrum,
Pseudozyma flocculosa, Bacillus subtilis, B. licheniformis, B. brevis,
B. cereus, Pseudomonas fluorescens, and Streptomyces cacaoi were
noteworthy (Rao et al., 2015; Damalas and Koutroubas, 2018;
Thakur et al., 2020; Salimi and Hamedi, 2021). However, very few
microbe-based products/technologies are available in the market
for wider applicability in the Indian subcontinent and abroad
to control grape powdery mildew in the organic viticulture
(Compant et al., 2013; Moyer et al., 2016; Cangi et al., 2018;
Malićanin et al., 2020). Due to a lack of information in the
scientific literature on the availability and effectivity of microbial
inoculants, agronomists and vine growers are often not aware of
these new products and the impact they can have indirectly on
the quality of grapes (Lu W. et al., 2020; Agbowuro et al., 2021;
Steiner et al., 2021).

Recently, a few biopesticides of microbial origin have been
developed at the Plant-Microbe Interaction and Rhizosphere
Biology Lab, ICAR-National Bureau of Agriculturally Important
Microorganisms (ICAR-NBAIM), Kushmaur, Maunath Bhanjan,
Uttar Pradesh, India. Among them, Eco-pesticide R© (a liquid
bioformulation of Pseudomonas fluorescens PF-08), Bio-Pulse R©

(a talc-based bioformulation of Trichoderma asperellum
UBSTH-501 and Bacillus amyloliquefaciens B-16), and Bio-Care
24 R© (a liquid bioformulation of Bacillus subtilis RP-24) are
widely studied technologies in different crops for enhanced
resistance to biotic and abiotic stresses through direct and
indirect mechanisms (Singh et al., 2016a,b, 2019a,b). The
direct mechanism includes mycoparasitism, synthesis of many
secondary metabolites, hormones, cell wall-degrading enzymes,
and antioxidants that assist the plant in its defense against
pathogenic attack (Singh et al., 2016a,b, 2019a,b). They were also
found to increase plant growth, uptake, and translocation of the

key plant nutrients from the soil, and thus increase yield directly
and/or indirectly in many crops (Singh et al., 2016a,b, 2021).
Keeping this in mind and analyzing the importance of grapes
as an economical crop, trials were devised in collaboration with
ICAR-NRC for Grapes, Pune, to evaluate and compare the (1)
efficacy of microbe-based technologies, Eco-pesticide R©, Bio-
Pulse R©, and Bio-Care 24 R© developed at ICAR-NBAIM against
grape powdery mildew and (2) integration of microbe-based
technologies with the safer fungicide (sulfur) to achieve the
better disease control with reduced fungicide application for
wider applicability under organic viticulture.

MATERIALS AND METHODS

Source of Microbe-Based Technologies
Eco-pesticide R©, Bio-Pulse R©, and Bio-Care 24 R© were developed
and supplied by the Plant-Microbe Interaction and Rhizosphere
Biology Lab, ICAR-NBAIM, Kushmaur,Maunath Bhanjan, India.
The colony-forming units (CFU) of Eco-pesticide R© (2.75 ×

108 ml−1), Bio-Pulse R© (T. asperellum: 2.25 × 107 g−1, and
B. amyloliquefaciens: 2.50 × 108 g−1), and Bio-Care 24 R©

(3.50 × 108 ml−1) were standardized before final packaging of
the product.

Experimental Setup
The experimental trials were conducted at four different
locations, namely, vineyards of ICAR-National Research Center
for Grapes (ICAR-NRCG), Pune (location 18.32◦N, 73.51◦E, soil
black [Vertisol], with a pH of 7.75), Maharashtra, Rajya Draksha
Bagayatdar Sangh (MRDBS), Pune (location 18.32◦N, 73.51◦E,
soil slightly alkaline with a pH of 8.05 with climate hot semiarid
climate bordering with tropical wet and dry and having average
temperatures ranging from 66◦F to 91◦F), and two farmers’
plots at Narayangaon and Junnar (19.2◦N 73.88◦E, temperature
typically varies from 53◦F to 96◦F and is rarely below 47◦F or
above 100◦F, soil black, Vertisol with a pH of 6.75; the wet season
is warm, oppressive, windy, and overcast, and the dry season
is hot and mostly clear) in the Pune district of Maharashtra.
The cultivar Fantasy Seedless was taken for experimentation
at ICAR-NRCG, Pune. However, a vineyard with the cultivar
Nanasaheb Purple was taken into study in the other three
locations, namely, MRDBS, a farmers’ plot at Narayangaon and
Junnar. The vines selected for the experiment were subjected
to natural infection of powdery mildew. The first spray was
carried when the disease infection was observed in the untreated
control plot. The experiments were laid out in randomized block
design (RBD) with four replications having eight grapevines
per treatment. Grapevines sprayed with sulfur (80% WDG)
were used as the standard check. The bio-formulations, which
were taken for experimentation, were also applied with the
alternation of sulfur (80% WDG). The main reasons behind
alternate application of sulfur along with microbial technologies
are that “only bioinoculants may not be sufficient to control the
menace of obligate pathogens like powdery mildew and a need-
based application of sulfur fungicide is needed.” The schedule of
applications is given in Table 1. These microbial bio-pesticides
were applied at weekly intervals. The volume of water used for
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TABLE 1 | Details of treatments for powdery mildew field trial.

Treatments Treatment details Dose (ml or g/liter)

T1 Eco-Pesticide 10 ml/l

T2 Bio-Pulse 10 g/l

T3 Bio-Care 24 10 ml/l

T4 Three sprays of

Eco-Pesticide/one spray of sulfur

10 ml/l

T5 Three sprays of Bio-Pulse/one

spray of sulfur

10 g/l

T6 Three sprays of Bio-Care 24/one

spray of sulfur

10 ml/l

T7 Sulfur 80%WDG 2 gm/l

T8 Water control -

T9 Untreated control -

FIGURE 1 | Pictorial depiction of 0–4 rating scale for powdery mildew

disease severity.

spray was calculated (1,000 L/ha at full canopy). A knapsack
sprayer with a hollow cone nozzle was used for spraying.

Sampling and Analyses
Foliar Disease Intensity
The severity of powdery mildew was recorded at two different
growth stages, first on leaves and second on bunches. The severity
of powdery mildew on plant leaves was recorded by adopting the
0–4 scale, where 0 means no disease present and 4 means more
than 75% of the leaf area is infected. A rating scale on leaves
is shown in Figure 1. PDI was calculated using the following
formula:

PDI =
Sum of numerical ratings× 100

Number of leaves observed×Maximum rating scale

The ratings on 10 leaves were recorded on randomly
selected canes. Such 10 canes per vine were observed, so
100 diseased leaf observations were recorded per replicate.
Four replications for each treatment were considered. Only
actively growing powdery mildew lesions were considered for
recording ratings.

Bunch Infection
During the fruiting season, powdery mildew ratings were
recorded separately on bunches. Powdery mildew appearance
on bunches was recorded by adopting a 0–4 scale, where
0 means no disease present and 4 means more than 75%
of the bunch area is infected. PDI was calculated using the
following formula:

PDI =
Sum of numerical ratings× 100

Number of bunches observed×Maximum rating scale

The ratings on 20 randomly selected bunches per replicate
were recorded. During observations, only active powdery mildew
growth was considered for recording ratings.

Estimation of TSS, Titrable Acidity, pH, and

Physiological Loss in Weight
Fruits from different treatments were harvested and used for
the analysis of various fruit quality, qualitative, and quantitative
parameters, namely, total soluble solids (TSS), titratable acidity
(TA), pH, physiological weight loss (PWL), and marketable
yield. The total soluble solids (TSS) and titratable acidity
(TA) were estimated by extracting juice from crushed berries
and centrifuging at 5,000 rpm for 5min. TSS was estimated
using the digital handheld refractometer with a temperature
compensated to 20◦C (Thosar et al., 2020). Determination of
titratable acidity was conducted by titration with 0.1N of NaOH
using phenolphthalein as the indicator and titratable acidity was
expressed as tartaric acid equivalent (Satisha and Somkuwar,
2019).

Percentage acid= Titer× acid factor× 10/10 (ml juice)
where “factor” for grapefruit is 0.075 (Satisha and Somkuwar,

2019).
The pH of the juice was recorded using a pH meter (Model

420, Thermo Orion) as per the methods described by Satisha
and Somkuwar (2019). The physiological weight loss of berries
was also assessed. The weight of bunches was recorded at 24-
h intervals for the first 5–7 days at room temperature. The
percentage of weight loss over the initial weight was calculated
mathematically (Thosar et al., 2020).

Marketable Yield
To calculate the total marketable yield, fruits were harvested
from each treatment in four replications, including the untreated
control plants, and the yield was calculated in kg/ha.

Statistical Analysis
The PDI data were transformed using an arcsine transformation
for leaves and bunches and statistically analyzed using a
randomized block design (RBD) using the Statistical Analysis
System (SAS software, version 9.3). The yield data were analyzed
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TABLE 2 | Bio-efficacy of biocontrol agent formulations against powdery mildew of grapes at different locations.

Treatments PDI of powdery mildew on leaves

At ICAR-NRCG, Pune 24/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 12.75 (20.90) 14.81 (22.62) 17.06 (24.38) 19.12 (25.91)

T2-Bio-Pulse 0.00 (0.00) 13.00 (21.12) 15.13 (22.87) 17.25 (24.48) 19.37 (26.09)

T3-Bio-Care 24 0.00 (0.00) 15.81 (23.41) 17.94 (25.04) 20.06 (26.59) 22.13 (28.04)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 8.13 (16.50) 10.25 (18.66) 12.38 (20.58) 14.50 (22.37)

T5-Bio-Pulse/sulfur 0.00 (0.00) 8.38 (16.81) 10.50 (18.89) 12.63 (20.80) 14.81 (22.62)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.94 (19.30) 13.13 (21.23) 15.25 (22.97) 17.37 (24.62)

T7-Sulfur 80%WDG 0.00 (0.00) 6.56 (14.83) 8.69 (17.13) 10.81 (19.18) 12.93 (21.07)

T8-Water control 0.00 (0.00) 18.06 (25.12) 20.12 (26.64) 22.25 (29.87) 24.38 (29.57)

T9-Untreated control 3.56 (10.85) 24.81 (29.90) 29.06 (32.60) 33.14 (35.13) 37.56 (37.78)

CD (P = 0.05) 0.39 0.75 0.65 1.87 0.73

At MRDBS, Pune 20/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 14.75 (22.56) 17.25 (24.47) 19.81 (26.41) 23.75 (29.15)

T2-Bio-Pulse 0.00 (0.00) 15.06 (22.81) 17.75 (24.80) 20.13 (26.63) 24.06 (29.36)

T3-Bio-Care 24 0.00 (0.00) 19.25 (25.99) 19.75 (27.20) 22.88 (28.55) 26.75 (31.13)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 8.75 (17.12) 13.25 (21.23) 13.88 (21.85) 17.75 (24.90)

T5-Bio-Pulse/sulfur 0.00 (0.00) 8.25 (16.67) 12.25 (21.33) 13.38 (21.41) 17.25 (24.51)

T6-Bio-Care 24/sulfur 0.00 (0.00) 11.31 (19.58) 14.25 (23.32) 17.25 (24.52) 20.31 (26.76)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 6.25 (15.65) 9.69 (18.10) 13.56 (21.58)

T8-Water control 0.00 (0.00) 28.88 (32.48) 30.00 (34.39) 33.94 (35.61) 37.88 (37.96)

T9-Untreated control 4.94 (12.82) 36.75 (37.30) 40.75 (39.42) 43.38 (41.17) 47.25 (43.40)

CD (P = 0.05) 0.27 1.93 1.28 0.88 1.27

At Narayangaon, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 13.25 (21.32) 16.31 (23.79) 18.81 (25.69) 22.75 (28.47)

T2-Bio-Pulse 0.00 (0.00) 13.56 (21.58) 16.63 (24.03) 19.13 (25.91) 23.06 (26.77)

T3-Bio-Care 24 0.00 (0.00) 16.25 (23.71) 19.31 (26.04) 22.50 (28.30) 25.75 (30.48)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.25 (15.51) 10.31 (18.64) 12.88 (21.00) 16.75 (24.14)

T5-Bio-Pulse/sulfur 0.00 (0.00) 6.75 (15.04) 9.81 (18.16) 12.38 (20.56) 16.25 (23.75)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.00 (18.41) 12.06 (20.31) 15.06 (22.82) 19.13 (25.91)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 6.13 (14.30) 8.69 (17.11) 12.56 (20.74)

T8-Water control 0.00 (0.00) 22.50 (28.30) 30.43 (33.46) 32.94 (34.93) 36.88 (37.37)

T9-Untreated control 4.44 (12.14) 27.88 (31.36) 39.81 (39.09) 42.38 (41.38) 46.25 (42.83)

CD (P = 0.05) 0.28 1.87 2.20 1.38 1.25

At Junnar, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 13.25 (21.32) 15.81 (23.40) 18.31 (25.32) 24.88 (29.90)

T2-Bio-Pulse 0.00 (0.00) 13.56 (21.58) 16.13 (23.64) 18.63 (25.54) 25.25 (30.15)

T3-Bio-Care 24 0.00 (0.00) 16.25 (23.71) 18.81 (25.68) 21.38 (27.52) 28.00 (31.93)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.25 (15.51) 11.88 (20.12) 12.38 (20.57) 18.81 (25.68)

T5-Bio-Pulse/sulfur 0.00 (0.00) 6.75 (15.03) 11.50 (19.80) 11.88 (20.05) 18.00 (25.07)

T6-Bio-Care 24/sulfur 0.00 (0.00) 9.81 (18.16) 13.88 (21.85) 15.75 (23.36) 19.00 (25.78)

T7-Sulfur 80%WDG 0.00 (0.00) 3.06 (10.01) 5.63 (13.69) 8.19 (16.59) 12.06 (20.31)

T8-Water control 0.00 (0.00) 27.38 (31.53) 29.93 (33.14) 32.44 (34.70) 36.38 (37.07)

T9-Untreated control 3.44 (10.66) 36.75 (37.30) 39.31 (38.80) 41.88 (40.30) 45.75 (42.54)

CD (P = 0.05) 0.32 2.15 1.71 1.41 1.63

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 3 | Bio-efficacy of biocontrol agent formulations against powdery mildew of grapes at different locations.

Treatments PDI of powdery mildew on bunches

At ICAR-NRCG, Pune 24/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 15.63 (23.27) 17.81 (22.90) 19.68 (26.32) 22.19 (28.08)

T2-Bio-Pulse 0.00 (0.00) 15.94 (23.51) 18.12 (25.17) 20.00 (26.54) 22.50 (28.30)

T3-Bio-Care 24 0.00 (0.00) 18.75 (25.64) 21.25 (27.43) 23.12 (28.72) 25.00 (29.98)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 10.94 (19.28) 13.12 (21.20) 15.31 (23.00) 17.50 (24.71)

T5-Bio-Pulse/sulfur 0.00 (0.00) 11.25 (19.57) 13.43 (21.48) 15.62 (23.25) 17.81 (24.94)

T6-Bio-Care 24/sulfur 0.00 (0.00) 13.75 (21.69) 15.93 (23.50) 18.12 (25.18) 20.31 (26.77)

T7-Sulfur 80%WDG 0.00 (0.00) 9.37 (17.77) 11.56 (19.85) 13.75 (21.72) 15.63 (23.70)

T8-Water control 0.00 (0.00) 20.93 (27.21) 24.06 (29.35) 26.25 (30.76) 27.5 (31.60)

T9-Untreated control 4.18 (11.77) 27.81 (31.80) 31.87 (34.35) 36.62 (37.20) 41.25 (39.94)

CD (P = 0.05) 0.46 1.66 2.04 1.45 0.48

At MRDBS, Pune 30/12/2020 08/01/2021 14/01/2021 22/01/2021 29/1/2021

T1-Eco-Pesticide 0.00 (0.00) 16.25 (23.74) 10.31 (19.09) 26.25 (30.80) 29.06 (32.60)

T2-Bio-Pulse 0.00 (0.00) 16.88 (24.21) 9.69 (18.10) 24.69 (29.77) 28.13 (32.21)

T3-Bio-Care 24 0.00 (0.00) 22.81 (28.50) 24.06 (29.34) 30.31 (33.38) 33.75 (35.50)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 7.81 (16.18) 19.69 (26.32) 18.75 (25.64) 18.13 (25.17)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.63 (15.01) 19.38 (26.10) 15.63 (24.22) 19.38 (26.07)

T6-Bio-Care 24/sulfur 0.00 (0.00) 13.13 (21.18) 14.69 (22.51) 22.50 (28.30) 23.44 (28.91)

T7-Sulfur 80%WDG 0.00 (0.00) 4.06 (11.60) 7.81 (16.21) 11.56 (19.74) 12.50 (20.68)

T8-Water control 0.00 (0.00) 27.81 (31.81) 31.56 (34.16) 39.06 (38.66) 41.88 (40.30)

T9-Untreated control 7.81 (16.16) 36.88 (37.36) 39.69 (39.02) 48.44 (44.26) 47.81 (43.72)

CD (P = 0.05) 0.80 1.77 1.47 1.64 1.82

At Narayangaon, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 8.13 (16.49) 13.12 (20.39) 15.94 (23.50) 22.19 (28.08)

T2-Bio-Pulse 0.00 (0.00) 8.44 (16.87) 12.81 (20.96) 14.38 (22.22) 21.56 (27.65)

T3-Bio-Care 24 0.00 (0.00) 14.06 (21.78) 18.12 (25.17) 23.13 (28.72) 26.88 (31.19)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 5.63 (13.65) 8.75 (17.17) 10.31 (18.71) 15.63 (23.23)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.00 (12.86) 8.12 (16.54) 9.38 (17.79) 15.31 (22.98)

T6-Bio-Care 24/sulfur 0.00 (0.00) 10.63 (18.92) 15.31 (22.98) 16.87 (24.24) 18.13 (25.17)

T7-Sulfur 80%WDG 0.00 (0.00) 3.12 (10.04) 5.31 (13.30) 6.25 (14.43) 11.25 (19.39)

T8-Water control 0.00 (0.00) 28.43 (32.21) 31.87 (34.35) 34.06 (35.68) 38.44 (38.29)

T9-Untreated control 2.81 (2.81) 37.50 (37.74) 40.63 (39.57) 41.25 (39.94) 45.94 (42.65)

CD (P = 0.05) 0.50 2.52 1.68 1.66 2.39

At Junnar, Pune 21/12/2020 09/01/2021 15/01/2021 23/01/2021 30/01/2021

T1-Eco-Pesticide 0.00 (0.00) 16.25 (23.74) 8.75 (17.48) 24.06 (29.35) 27.50 (31.61)

T2-Bio-Pulse 0.00 (0.00) 16.88 (24.24) 8.13 (16.51) 24.69 (29.77) 28.13 (32.01)

T3-Bio-Care 24 0.00 (0.00) 21.25 (27.42) 22.50 (28.27) 28.43 (32.19) 32.19 (34.55)

T4-Eco-Pesticide/sulfur 0.00 (0.00) 6.25 (14.43) 18.13 (25.17) 16.87 (24.24) 16.25 (23.76)

T5-Bio-Pulse/sulfur 0.00 (0.00) 5.63 (13.87) 18.75 (25.64) 15.6 (23.27) 17.73 (24.89)

T6-Bio-Care 24/sulfur 0.00 (0.00) 11.56 (19.82) 13.13 (21.17) 20.62 (26.97) 21.69 (27.74)

T7-Sulfur 80%WDG 0.00 (0.00) 4.06 (11.60) 6.25 (14.43) 10.00 (18.18) 13.25 (21.33)

T8-Water control 0.00 (0.00) 27.81 (31.81) 29.69 (33.01) 37.5 (37.74) 40.31 (39.39)

T9-Untreated control 5.00 (12.86) 36.88 (37.36) 38.13 (38.11) 40.63 (39.57) 46.56 (43.01)

CD (P = 0.05) 0.66 1.53 1.96 2.31 1.26

Figures in parenthesis indicate arcsine transformed averages.

Frontiers in Microbiology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 871901

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Malviya et al. A Comparative Analysis of Microbe-Based Technologies

TABLE 4 | Effect of biocontrol agent formulations on the shelf life of bunches at different locations.

Treatments Physiological loss in weight (%) No. of rotten berries No. of fallen berries

Day 1 Day 2 Day 3 Day 4

At ICAR-NRCG, Pune

T1-Eco-Pesticide 1.91 (7.91) 3.57 (10.87) 4.74 (12.57) 5.44 (13.49) 1.50 4.75

T2-Bio-Pulse 1.81 (7.70) 3.10 (10.13) 4.70 (12.50) 5.33 (13.34) 1.75 5.25

T3-Bio-Care 24 1.86 (7.84) 3.93 (11.42) 4.78 (12.60) 5.45 (13.49) 1.25 4.25

T4-Eco-Pesticide/sulfur 1.51 (7.02) 3.36 (10.55) 3.59 (10.91) 5.10 (13.05) 1.25 3.50

T5-Bio-Pulse/sulfur 1.61 (7.29) 2.18 (8.48) 3.49 (10.76) 5.08 (13.01) 1.50 3.50

T6-Bio-Care 24/sulfur 1.78 (7.65) 3.57 (10.88) 3.87 (11.32) 5.30 (13.30) 0.75 3.00

T7-Sulfur 80%WDG 1.61 (7.29) 2.32 (8.73) 3.35 (10.53) 5.06 (12.97) 0.25 5.75

T8-Water control 1.84 (7.76) 3.29 (10.44) 5.51 (13.57) 6.88 (15.20) 3.25 6.00

T9-Untreated control 2.20 (8.52) 3.29 (10.44) 5.80 (13.92) 7.23 (15.58) 4.00 6.25

CD (P = 0.05) 0.81 0.70 0.87 0.83 1.72 NA

At MRDBS, Pune

T1-Eco-Pesticide 1.87 (7.85) 3.64 (11.00) 4.81 (12.67) 5.44 (13.49) 3.00 3.25

T2-Bio-Pulse 1.52 (7.07) 3.19 (10.28) 4.74 (12.57) 5.34 (13.36) 2.25 3.25

T3-Bio-Care 24 2.20 (8.51) 3.99 (11.51) 3.99 (11.79) 5.52 (13.59) 1.50 3.50

T4-Eco-Pesticide/sulfur 1.53 (7.10) 3.42 (10.66) 3.57 (10.89) 5.33 (13.35) 1.50 3.25

T5-Bio-Pulse/sulfur 1.90 (7.92) 2.33 (8.78) 3.62 (11.41) 5.15 (13.11) 1.50 2.75

T6-Bio-Care 24/sulfur 1.91 (7.95) 3.65 (11.01) 3.91 (11.74) 5.18 (13.15) 0.75 2.75

T7-Sulfur 80%WDG 1.82 (7.74) 2.38 (8.87) 3.40 (11.26) 5.55 (13.62) 0.25 3.25

T8-Water control 1.65 (7.36) 3.39 (10.60) 5.62 (13.70) 6.92 (15.25) 5.50 4.25

T9-Untreated control 2.16 (8.44) 3.97 (11.49) 5.88 (14.03) 7.45 (15.83) 5.75 4.50

CD (P = 0.05) 0.47 0.34 0.74 0.20 2.12 NA

At Narayangaon, Pune

T1-Eco-Pesticide 1.87 (7.85) 3.64 (10.98) 4.81 (12.66) 5.44 (13.48) 2.75 3.25

T2-Bio-Pulse 1.50 (7.03) 3.17 (10.24) 4.76 (12.59) 5.39 (13.41) 3.00 2.25

T3-Bio-Care 24 2.19 (8.50) 3.87 (11.34) 4.85 (12.72) 5.55 (13.62) 3.50 2.25

T4-Eco-Pesticide/sulfur 1.52 (7.08) 3.41 (10.63) 3.59 (10.91) 5.43 (13.47) 2.00 2.25

T5-Bio-Pulse/sulfur 1.89 (7.89) 2.34 (8.79) 3.81 (11.25) 5.21 (13.19) 2.00 1.75

T6-Bio-Care 24/sulfur 1.92 (7.96) 3.67 (11.04) 3.94 (11.44) 5.24 (13.23) 1.25 1.75

T7-Sulfur 80%WDG 1.54 (7.11) 2.35 (8.82) 3.42 (10.66) 5.62 (13.70) 0.75 3.50

T8-Water control 1.68 (7.44) 3.38 (10.59) 5.77 (13.90) 6.94 (15.27) 3.75 2.25

T9-Untreated control 2.17 (8.45) 4.10 (11.68) 6.01 (14.18) 7.63 (16.03) 4.50 3.50

CD (P = 0.05) 0.40 0.37 0.38 0.53 2.00 NA

At Junnar, Pune

T1-Eco-Pesticide 1.90 (7.91) 3.60 (10.93) 4.79 (12.64) 5.46 (13.51) 2.25 2.50

T2-Bio-Pulse 1.54 (7.10) 3.15 (10.22) 4.73 (12.53) 5.37 (13.39) 2.50 3.00

T3-Bio-Care 24 2.24 (8.55) 3.95 (11.45) 4.80 (12.62) 5.49 (13.54) 2.25 3.00

T4-Eco-Pesticide/sulfur 1.85 (7.78) 3.40 (10.61) 3.55 (10.85) 5.15 (13.11) 1.75 3.00

T5-Bio-Pulse/sulfur 1.93 (7.96) 2.30 (8.71) 3.53 (10.81) 5.30 (13.30) 1.50 3.00

T6-Bio-Care 24/sulfur 1.93 (7.99) 3.64 (11.00) 3.89 (11.35) 5.06 (13.00) 0.75 2.50

T7-Sulfur 80%WDG 1.80 (7.70) 2.35 (8.81) 3.38 (10.57) 5.40 (13.43) 0.50 4.00

T8-Water control 1.63 (7.33) 3.35 (10.54) 5.56 (13.63) 6.85 (15.16) 2.50 4.25

T9-Untreated control 2.15 (8.41) 3.95 (11.46) 5.85 (13.99) 7.27 (15.63) 3.50 4.25

CD (P = 0.05) NA 0.63 0.84 0.51 2.05 NA

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 5 | Effect of bio-formulations on qualitative parameters of grapes at different locations.

Treatments pH TSS (Brix) Acidity (%) Berry diameter (mm) Berry length (mm)

At ICAR-NRCG, Pune

T1-Eco-Pesticide 3.16 18.80 0.51 (4.09) 14.85 22.28

T2-Bio-Pulse 3.34 19.95 0.47 (3.91) 12.72 22.18

T3-Bio-Care 24 3.18 18.95 0.55 (4.23) 12.62 22.10

T4-Eco-Pesticide/sulfur 3.15 20.55 0.48 (3.97) 15.70 24.58

T5-Bio-Pulse/sulfur 3.45 21.88 0.42 (3.70) 17.49 25.47

T6-Bio-Care 24/sulfur 3.36 19.73 0.51 (4.08) 15.11 22.87

T7-Sulfur 80%WDG 3.41 18.55 0.52 (4.11) 12.50 23.19

T8-Water control 3.45 16.65 0.71 (4.83) 10.31 21.63

T9-Untreated control 3.61 16.13 0.72 (4.87) 9.25 21.60

CD (P = 0.05) NA 0.84 0.18 1.29 1.67

At MRDBS, Pune

T1-Eco-Pesticide 3.16 19.25 0.83 (1.06) 17.15 22.33

T2-Bio-Pulse 3.34 19.28 0.91 (0.83) 17.48 23.25

T3-Bio-Care 24 3.19 19.73 0.80 (1.02) 17.45 22.28

T4-Eco-Pesticide/sulfur 3.16 20.55 0.75 (1.00) 18.35 23.78

T5-Bio-Pulse/sulfur 3.46 21.88 0.71 (0.80) 18.75 24.28

T6-Bio-Care 24/sulfur 3.37 19.95 0.76 (0.76) 18.33 23.20

T7-Sulfur 80%WDG 3.43 18.55 0.99 (0.71) 16.95 21.63

T8-Water control 3.45 18.40 1.02 (0.91) 16.75 21.58

T9-Untreated control 3.59 18.38 1.06 (0.75) 15.60 21.03

CD (P = 0.05) NA 0.83 0.08 1.38 1.60

At Narayangaon, Pune

T1-Eco-Pesticide 3.54 18.05 0.83 (5.22) 17.45 22.28

T2-Bio-Pulse 3.50 18.93 0.80 (5.13) 17.48 23.25

T3-Bio-Care 24 3.47 18.00 0.83 (5.21) 17.15 22.33

T4-Eco-Pesticide/sulfur 3.61 19.92 0.75 (4.96) 18.33 23.78

T5-Bio-Pulse/sulfur 3.50 20.67 0.71 (4.84) 18.40 24.28

T6-Bio-Care 24/sulfur 3.52 19.12 0.76 (5.00) 18.35 23.28

T7-Sulfur 80%WDG 3.50 17.36 0.99 (5.72) 16.95 21.63

T8-Water control 3.65 16.85 1.02 (5.80) 16.23 21.58

T9-Untreated control 3.62 16.18 1.06 (5.91) 16.00 19.88

CD (P = 0.05) NA 1.60 0.23 0.89 1.29

At Junnar, Pune

T1-Eco-Pesticide 3.34 17.18 0.91 (5.47) 17.48 22.28

T2-Bio-Pulse 3.41 18.10 0.80 (5.13) 17.15 23.25

T3-Bio-Care 24 3.36 17.33 0.83 (5.22) 17.45 22.33

T4-Eco-Pesticide/sulfur 3.45 18.75 0.75 (4.96) 18.35 23.78

T5-Bio-Pulse/sulfur 3.61 20.25 0.71 (4.84) 18.40 24.28

T6-Bio-Care 24/sulfur 3.45 18.33 0.76 (5.00) 18.33 23.28

T7-Sulfur 80%WDG 3.18 16.93 0.99 (5.72) 16.95 21.63

T8-Water control 3.16 16.78 1.02 (5.80) 16.75 21.58

T9-Untreated control 3.15 16.00 1.06 (5.91) 15.85 20.88

CD (P = 0.05) NA 0.81 0.23 1.23 1.27

Figures in parenthesis indicate arcsine transformed averages.
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TABLE 6 | Effect of biocontrol agent formulations on marketable yield of grapes at different locations.

Treatments NRCG, Pune MRDBS, Pune Narayangaon Junnar

Kg/vine Q/ha. Kg/vine Q/ha. Kg/vine Q/ha. Kg/vine Q/ha.

T1-Eco-Pesticide 10.27 185.59 10.98 198.46 10.98 198.46 10.98 198.46

T2-Bio-Pulse 10.08 182.20 9.55 172.57 10.02 181.16 10.46 189.07

T3-Bio-Care 24 8.59 155.28 8.83 159.62 8.59 155.35 8.83 159.62

T4-Eco-Pesticide/sulfur 14.94 270.09 14.20 256.65 13.79 249.23 14.15 255.74

T5-Bio-Pulse/sulfur 15.02 271.54 15.47 279.70 15.14 273.73 15.97 288.74

T6-Bio-Care 24/sulfur 12.73 230.18 12.91 233.32 12.91 233.32 12.91 233.32

T7-Sulfur 80%WDG 16.63 300.67 17.93 324.17 18.18 328.69 17.68 319.65

T8-Water control 6.44 116.50 5.94 107.44 6.83 123.51 7.18 129.79

T9-Untreated control 5.35 96.75 4.26 76.93 5.53 99.89 5.64 101.97

CD (P = 0.05) 1.19 2.18 2.31 2.17

without transformation. Means were compared using the least
significant difference (LSD) test.

RESULTS

Effect of Microbial Bioformulations on the
Severity of Powdery Mildew on Leaves
The first disease symptom was recorded in the experimental plot
on 24 December 2020 in the untreated control (Table 2). Results
indicated that significantly less disease (PDI) was recorded in
the plant leaves treated with either of the microbial inoculants
individually or in combination with sulfur (80% WDG) as
compared to the untreated control plants (37.78) and water-
treated plants (29.57) grown at ICAR-NRCG, Pune. However, the
least disease (PDI) was recorded on the leaves of plants treated
with fungicide (sulfur 80% WDG) on 29 January 2021 (PDI:
21.07). Among different microbial inoculations, a significantly
lower disease index (PDI) was recorded on the leaves of grape
plants treated with Eco-Pesticide R©/sulfur (22.37) followed by
Bio-Pulse R©/sulfur (22.62) and Bio-Care 24 R©/sulfur (24.62).
Moreover, the last four observations recorded between 8 January
2021 and 29 January 2021 indicated that powdery mildew was
significantly higher in the untreated control than in all the
other treatments with microbial inoculation. Bio-Pulse R©/sulfur
and Eco-Pesticide R©/sulfur (at 10ml L−1) were statistically on
par with each other. The trend was similar during the first,
second, third, and fourth observations also (Table 2). Looking
at the individual treatments, the least PDI was observed in
the plants treated with Eco-Pesticide R© (25.91) followed by Bio-
Pulse R© (26.09) and Bio-Care 24 R© (28.04) as compared to the
untreated control plants (37.78) and water-treated plants (29.57)
at ICAR-NRCG (Table 2). The data in Table 2 clearly indicate
that maximum PDI was recorded in the untreated control
plants followed by water-treated plants, while the least PDI
was observed in the plants treated with sulfur (80% WDG)
across the locations. Results indicated that comparatively less
disease was recorded on the leaves of plants treated with Bio-
Pulse R©/sulfur followed by Eco-Pesticide R©/sulfur and Bio-Care
24 R©/sulfur at MRDBS and farmers’ plots at Narayangaon and

Junnar in the Pune district of Maharashtra (Table 2). However,
relatively higher PDI was observed on the leaves of untreated
control plants grown at MRDBS, followed by farmers’ plots at
Narayangaon and Junnar, Pune, as compared to ICAR-NRCG
(Table 2).

These data demonstrated that microbial inoculants
not only impede initial infection of the powdery mildew
pathogen, E. necator, on the plant leaves but also inhibit their
invasion, colonization, and development, indicating that these
biopesticides are strong inhibitors of E. necator along with
being strong inducers of plant defense against powdery mildew
pathogen in grapes.

Effect of Microbial Bioformulations on
Severity of Powdery Mildew on Bunches
Data in Table 3 show a significant difference between powdery
mildew developed on bunches of the untreated control plants
as compared to biopesticides-treated plants. In line with this
observation, disease development in bunches was significantly
reduced in biopesticides-treated plants as compared to the
untreated control and water-treated plants across the locations.
Furthermore, a delay and slow disease development were seen in
biopesticide-treated plants, and the majority of cleistothecia were
produced on bunches of the control plants, while significantly
lesser cleistothecia were seen on bunches of the microbe-
inoculated plants (data not shown). In the case of disease
development on bunches, a similar trend was observed and the
lowest PDI was recorded on bunches of Eco-pesticide R©/sulfur-
treated plants (24.71) followed by Bio-Pulse R©/sulfur (24.94)
and Bio-Care R©/sulfur (26.77) as compared to the untreated
control (39.94) and water-treated plants (31.60) at ICAR-NRCG.
However, PDI of sulfur (80%WDG) was the lowest as compared
to all the other treatments (23.70). A more or less similar trend
was recorded at MRDBS and farmers’ plot at Junnar in the Pune
district of Maharashtra (Table 3).

In contrast, PDI of Bio-Pulse R©/sulfur-treated bunches (22.98)
was the lowest followed by Eco-pesticide R©/sulfur-treated plants
(23.23) and Bio-Care R©/sulfur (25.17) (both statistically on par
with each other) as compared to the untreated control (42.65)
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at farmers’ plot, Narayangaon, Pune. The trend was also similar
during the first, second, third, and fourth observations (Table 3).

Effect of Microbial Bioformulations on the
Shelf Life of Grape Bunches
The shelf life of grape bunches is one of the most important
attributes for grape export quality. The longer shelf life
of the grape bunches facilitates the grapes’ longer distance
transportation by keeping their market value and good
appearance unabated. Therefore, the effect of bioformulation
application on the shelf life of bunches was recorded. The
shelf life of bunches was estimated by keeping the harvested
bunches at room temperature and recording the loss in bunch
weight at 24 h of intervals. With increasing the storage duration,
the physiological loss in weight (PLW) was also increased. In
general, among all the treatments, microbial biopesticides in
combination with sulfur manifested lesser PLW as compared to
the untreated control and water-treated bunches. To determine
whether microbial inoculants, individually or in combination
with sulfur, were involved in the PLW, berry rotting, and berry
dropping directly and/or indirectly, observations on shelf life
were recorded at different time intervals at different locations.
The bunch weight was recorded on the first, second, third,
and fourth days, and it was noticed that a significantly higher
PLW was recorded in bunches taken from the untreated control
plants as compared to the other treatments. On the third day
of storage, PLW in control reached up to 5.80%, whereas PLW
in Bio-Pulse R©/sulfur was significantly lower (3.49%). On the
fourth day, PLW of untreated control had the highest value of
7.23%. However, the PLW value in Bio-Pulse R©/sulfur treatment
was only 5.08, which was on par with Eco-Pesticide R©/sulfur
treatment (5.10%) at ICAR-NRCG. A more or less similar trend
was recorded at the other three locations, namely, MRDBS and
farmers’ plots at Narayangaon and Junnar in the Pune district of
Maharashtra (Table 4).

In the case of rotten berries, significant differences were
observed among all the treatments. All the treatments with
microbial inoculants showed a significantly less number of rotten
berries as compared to the untreated control (4.00) and those
under water treatment (3.25). The check fungicide sulfur showed
minimum rotten berries (0.25) followed by Bio-Care R©/sulfur
(0.75), Eco-Pesticide R©/sulfur (1.25), and Bio-Care R© alone (1.25)
at ICAR-NRCG (Table 4). These values were slightly higher
at MRDBS, Pune, where the average number of rotten berries
in the untreated control was 5.75, followed by those under
water treatment (5.50), while sulfur showed the minimum rotten
berries (0.25). Amore or less similar trend with a slight difference
in the number of rotten berries was recorded at the other two
locations, namely, farmers’ plots at Narayangaon and Junnar in
the Pune district of Maharashtra (Table 4).

When comparing the average number of fallen berries among
the treatments, the differences were nonsignificant. Among all
the treatments, treatment with Bio-Care R©/sulfur (3.00) showed
the minimum fallen berries followed by Bio-Pulse R©/sulfur (3.50)
and Eco-Pesticide R©/sulfur (3.50) as compared to the water-
treated (6.00) and untreated control plants (6.25). Moreover,

the average number of fallen berries was also lower in the
treatments with individually inoculated plants (Eco-Pesticide:
4.75, Bio-Pulse: 5.25, and Bio-Care: 4.25) as compared to the
untreated control (6.25) and even sulfur-treated plants (fungicide
check) (5.75) at ICAR-NRCG (Table 4). A similar trend with
different values was recorded at MRDBS and farmers’ plots at
Narayangaon and Junnar in the Pune district of Maharashtra
(Table 4). Results indicated that microbial inoculation played
an important role in controlling berry rotting as well as berry
dropping across the locations.

Effect of Microbial Bioformulations on
Qualitative Parameters of Grapes
Grape quality parameters are the primary determinants of the
wine quality. Therefore, the quality of grapes is of utmost
importance to the wine industry. The berry quality as affected
by bioformulation application was assessed, and the data on
observations related to berry quality were recorded. This study
suggests that all the bioformulations tested enhanced the shelf
life and berry quality significantly. The effects of microbial
inoculation, singly or in combination with sulfur, on qualitative
parameters like pH, TSS, acidity, berry diameter, and berry length
were significantly varied, except for the pH of the grapes at
different locations. In the case of pH, no significant difference was
observed among different treatments and the untreated control
(Table 5). The results of this study authenticate a positive role
of the microbial inoculation on the accumulation of TSS and
treatment with Bio-Pulse R©/sulfur exhibited significantly highest
TSS (21.88 Brix) followed by Eco-Pesticide R©/sulfur (20.55 Brix)
and Bio-Care R©/sulfur (19.73 Brix) as compared to the individual
inoculation of Bio-Pulse R© (19.95 Brix) Bio-Care R© (18.95 Brix),
Eco-Pesticide R© (18.80 Brix), and untreated control plants (16.13
Brix) at ICAR-NRCG (Table 5). In general, plants treated
with the newly developed bioformulation showed significantly
higher TSS than the check fungicide, sulfur (18.55 Brix). A
slight difference in the TSS was recorded at the other three
centers/locations. However, the trends were more or less similar.

The percent acidity differed significantly among the
treatments. The treatment with Bio-Pulse R©/sulfur showed
significantly lower acidity (3.70%) than the untreated control
(4.87%) and water-treated ones (4.83), which were followed by
Eco-Pesticide R©/sulfur (3.97) and Bio-Care R©/sulfur (4.08) at
ICAR-NRCG. A similar trend was recorded at the other three
locations (Table 5). Similar to the TSS and percent acidity, the
berry diameter and berry length also significantly varied in
microbial-inoculated plants and the untreated control plants.
Interestingly, maximum berry diameter and berry length were
recorded in the plants treated with Bio-Pulse R©/sulfur across
the locations, which was significantly higher than the sulfur
alone-treated and untreated control plants (Table 5). The results
obtained from ICAR-NRCG, Bio-Pulse R©/sulfur showed the
highest berry diameter (17.49mm) as compared to the untreated
control (9.25mm). Eco-Pesticide R©/sulfur and Bio-Care R©/sulfur
were on par with each other and were the second best among all
the treatments with berry diameters of 15.70mm and 15.11mm,
respectively. In the case of berry length, Bio-Pulse R©/sulfur
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showed the highest berry length (25.47mm) as compared to the
untreated control (21.60mm), which was on par with treatment
Eco-Pesticide R©/sulfur having a berry length of 24.58mm
(Table 5). Furthermore, individual inoculation of either of the
microbial formulation showed significantly increased berry
diameter and berry length across the locations.

Effect of Microbial Bioformulations on
Marketable Yield of Grapes
Fruit yield per plant was recorded, and it was converted to the
fruit yield per unit area (q/ha). In general, results showed that all
the treatments with newly developed bioformulation increased
the yield (kg/vine) significantly as compared to the untreated
control. Furthermore, the yield was significantly increased
after the application of sulfur in combination with microbial
inoculant as compared to the solo bioformulations. Among all
the treatments except check fungicide sulfur, Bio-Pulse R©/sulfur
treatment showed the highest yield per vine, which was on
par with the treatment Eco-Pesticide R©/sulfur. On the contrary,
the untreated control gave the lowest values on this parameter,
while treatments Bio-Care R©/sulfur recorded the second highest
values of yield per vine (Table 6). When compared with the yield
obtained from the untreated control, 2.5–3 times more yield was
recorded in the plants treated with either of the biopesticides
along with sulfur. Even in the case of individual inoculation,
the yield per vine was approximately two times higher than the
untreated control and water-treated plants across the locations
(Table 6).

DISCUSSION

The aim of this study was to evaluate the microbe-based
technologies, such as Bio-Pulse R©, Eco-Pesticide R©, and Bio-
Care R©, developed at ICAR-NBAIM against Erysiphe necator
causing powdery mildew disease in grapes (Vitis vinifera L.). The
basic concept behind evaluating these biopesticides in grapes is
to reduce the application of chemical fungicides and improve
the qualitative parameters in grapes without compromising the
yield. As mostly grapes are used for table purposes, which
demands them to be free from pesticide residue, the use of
chemicals to control the grape diseases becomes an unwarranted
practice (Cordero-Bueso et al., 2014; Warneke et al., 2022).
To keep this with the consumer expectations, most of the
vine industries follow a “zero pesticides” policy promoting
viticulture in a more or less fully organic manner (Alori and
Babalola, 2018). To determine whether these bio-formulations
can be used as an effective technology to control E. necator
causing powdery mildew in grapes, the effects of microbial
inoculants/technologies on E. necator were first examined.
Furthermore, we examined whether there was a difference in
disease severity (PDI) in microbial inoculants-treated vs. sulfur-
treated/water-treated/untreated control plants. A comparative
analysis was carried out, and the effects of treatments on PDI
of powdery mildew on leaves and bunches, physiological weight
loss, the average number of rotten berries, the average number
of fallen berries, yield, and qualitative parameters in treated

berry were recorded. Comparative analyses indicated that on
an average, the microbial inoculants significantly controlled
spread of the disease, physiological weight loss, the average
number of fallen berries, and increased qualitative parameters
such as pH, TSS, berry diameter, berry length, and fruit yield in
the plants as compared to water-treated and untreated control
across the experimental sites. In general, bioinoculants/microbial
bioformulations performed better when used in alternation with
sulfur as compared to the individual applications. Apart from
the check fungicide sulfur, Bio-Pulse/sulfur treatment showed the
highest values in terms of disease control which was on par with
the treatment Eco-Pesticide/sulfur. In contrast, untreated control
showed the highest PDI, while treatment with Bio-Care/sulfur
was found second-best treatment across the locations.

Results indicated that these bioformulations/products were
found to limit the PDI on leaves and bunches of grapevines
effectively with a simultaneous increase in the yield and enhanced
quality parameters in grapes. The reduction of PDI of powdery
mildew on leaves and bunches was supposed to be either due
to the reduction of primary inoculum or controlling the further
infection/invasion of the pathogen (Lombardi et al., 2020). The
application of bioagents could possibly employ the mechanisms
like mycoparasitism, nutrient competition, hyperparasitism,
antibiosis, competition for space, and production of cell-wall
degrading enzymes (Harman et al., 2004; Robinson-Boyer et al.,
2009; Malviya et al., 2020), which could have reduced the
invasion of E. necator. Since the bioagents performed well upon
foliar spray on the leaf surface, it represents a high degree
of rhizosphere/phyllosphere competence, which is the first and
foremost requirement for developing a successful biocontrol
system (Sawant et al., 2012; Pylak et al., 2019; Santos et al.,
2021). The bioagents used in this study were earlier reported to
induce systemic resistance (ISR) in different crops against plant
pathogens (Singh et al., 2016a,b, 2019a,b). In this study, ISR could
also be a mechanism for biocontrol of E. necator. This induction
of ISR by phyllosphere application of biocontrol agents are in
line with the findings of Sawant et al. (2020), which indicated
that the field application of Trichoderma strains induced systemic
resistance in grapevines against powdery mildew pathogens. It
also acts as an inducer for resistance in treated plants against
the target pathogens (Harman et al., 2004; Shoresh et al.,
2010; Malviya et al., 2020). It is also clear that they can grow
within a wide range of temperature and other environmental
conditions (data not shown). The present investigation clearly
indicated that the application of microbial bioformulations not
only reduces the disease severity on leaves and bunches, but
it also reduces the physiological weight loss, berry rotting, and
berry dropping in grapes. These are commercially very crucial
traits and could significantly affect the yield quality as well
as quantity. Furthermore, microbial inoculation also improves
the qualitative traits such as TSS, berry diameter, and berry
length across the locations as compared to fungicide-treated and
untreated control plants. Trichoderma has a positive effect on
titratable acidity, pH, and TSS of tomato crop; foliar application
of Trichoderma decreased the acidity and increased the TSS
content (Palacios-Torres et al., 2019). It not only increases
nutrient absorption capacity (López-Bucio et al., 2015), but may
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also increase the accumulation of sugars in the fruits (Molla et al.,
2012). This is because the application of Trichoderma improved
the carbohydrate metabolism and increased the accumulation of
starches in the plant (Shoresh and Harman, 2008). Lombardi
et al. (2020) stated that microbial inoculants highly affected
the representation of proteins associated with responses to
stress/external stimuli, nutrient uptake, protein metabolism,
carbon/energy metabolism, and secondary metabolism, also
providing a possible explanation for the presence of specific
metabolites in fruits. Several research reports strongly supported
that microbial inoculation improves the nutritional quality not
only in grapes but also in other crops (Singh et al., 2010, 2016a,b,
2018; Yadav et al., 2022).

Sulfur is an important element with fungicidal properties and
is widely used in the management of plant diseases in grapes and
powdery mildew in particular. Moreover, sulfur (600 g/100 L) is
one of the key fungicides used for the effective management of
powdery mildew and is known to improve the grape yield under
commercial cultivation (Savocchia et al., 2011; Ahmed, 2018;
Essling et al., 2021). In this study, ¾ amount of sulfur is being
reduced without compromising the product quality and quantity,
which is a significant reduction. Apart from saving the dose of
sulfur, it has been shown to have protective rather than curative
action as much as chemical management of powdery mildews is
concerned. It kills the spores of Erysiphe necator and thus protects
the vines from new infections (Rantsiou et al., 2020; Sellitto et al.,
2021). It does not kill the fungus itself, and the best use of sulfur,
therefore, is to prevent vines from becoming infected rather than
to suppress the infections once they have developed. Existing
mature fungal colonies begin producing more spores a week
after a sulfur spray is applied (Konstantinidou-Doltsinis et al.,
2007; Cordero-Bueso et al., 2014; Warneke et al., 2022). Thus,
combining sulfur application with the biocontrol agents that
could reduce the chances of post-application inoculumn buildup
would be a better strategy. The study conducted is in line with
that, and it is clearly evidenced from the results obtained. In this
study, PDI on leaves and bunches was significantly reduced when
bioagents were applied with sulfur (Tables 2, 3). Reduction in
rotten and fallen berries by biocontrol agents+ sulfur application
(Table 4) indicated that the BCA could reduce the persistent
fungal mycelia from the infected vines, which sulfur alone could
not be performed at the same doses. This also has a direct impact
on the shelf life of the berries, which could have been clearly
made out from the results (Table 4). The results are in line with
the findings of Sawant and Sawant (2010) and Ahmed (2018).
Apart from supplementing the sporicidal properties of sulfur,
the application of bioagents also has effects on plant growth
induction. Suppression of disease and consequent improvement
in growth could be one of the reasons for improved berry quality
and yield.

The improvement in the yield and yield performance are in
line with the field study conducted by Tesfagiorgis et al. (2014),
where through the application of biocontrol agents and silicon,
10–70% of disease reduction was obtained. Reduction in the
disease and improvement in yield parameters as obtained in
the present investigation is also significant from the fact that
fungicidal resistance is building-up in powdery mildew fungi
(Vielba-Fernández et al., 2020), thus bioagents with good field

bio-efficacy should be widely tested and adopted for sustainable
grape farming. Shelf life of bunches was significantly improved
upon inoculation of biocontrol agents, and the effects were
more prominent with biocontrol agents + sulfur application.
These results are in line with the reports by Sawant et al.
(2017), where improvement in berry shelf life from Trichoderma
application was reported from the field trials. Since improved
shelf life has a direct correlation with the market value of
berries, the application of Eco-Pesticide+ sulfur and Bio-Pulse+
sulfur could increase the benefit–cost ratio for grape cultivation.
Furthermore, microbial inoculation significantly increased the
grape yield (kg/vine) by 2- to 3-fold as compared to the untreated
control under pathogenic stress of E. necator across the locations.
These results are in agreement with the other researchers
who reported that microbial inoculants have a positive impact
on the yield of grapes grown under the pathogenic stress
of E. necator (El-Mogy, 2017; Johnston-Monje et al., 2021;
Laurent et al., 2021). Dario et al. (2008) stated that commercial
formulations of Bacillus subtilis, namely, Serenade and Milastin
K, showed effective and consistent suppression of E. necator
under greenhouse and field conditions. Milastin K when used
in alternation with fungicides performed best in disease control
and increasing yield of grapevine (Dario et al., 2008; Sawant
et al., 2011). Furthermore, Ampelomyces quisqualis, a typical
biocontrol agent for control of powdery mildew also functions
better with sulfur (unpublished data but paper accepted). Hence,
combined application gives better results, and it is also preferred
in integrated disease management under an organic production
system (Sawant et al., 2011, 2017). In the eventuality of not
obtaining the required level of disease control by the application
of microbial formulations alone, a need-based application of
fungicide is needed (Tesfagiorgis et al., 2014).

CONCLUSION

It has been observed that application of microbe-based
technologies/bioformulations individually or in combination
with sulfur significantly decreased powdery mildew disease on
leaves and bunches and increased the quality parameters in
grapes under this pathogenic stress. Microbe-based technologies,
such as Eco-pesticide R©, Bio-Pulse R©, and Bio-Care 24 R©, emerge
as promising biopesticides for managing powdery mildew at
every stage of grapevine, which can be further maintained
by combining sulfur in a cooperative manner under severe
infections. It was also found that application of either of the
biopesticides alone or in combination with sulfur significantly
suppresses disease development and reduces PDI in a cooperative
manner and saves the plants from fungal infection. It was also
noticed that plants treated with Eco-pesticide R©, Bio-Pulse R©, and
Bio-Care 24 R© exhibit significant enhancement in the nutritional
quality of grapes. These microbial technologies also increased
marketable yield per plant enhancing the crop economy in the
favor of the grower/farmer. With the help of the findings of
this investigation, we conclude that microbe-based technologies
could be a potential alternative of toxic chemical fungicides and
can be applied at a larger scale to control powdery mildew disease
in grapes.
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