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Abstract: Many studies have shown that the maize rhizosphere comprises several plant growth-
promoting microbes, but there is little or no study on the effects of land-use and management histories
on microbial functional gene diversity in the maize rhizosphere soils in Africa. Analyzing microbial
genes in the rhizosphere of plants, especially those associated with plant growth promotion and
carbon cycling, is important for improving soil fertility and crop productivity. Here, we provide
a comparative analysis of microbial genes present in the rhizosphere samples of two maize fields
with different agricultural histories using shotgun metagenomics. Genes involved in the nutrient
mobilization, including nif A, fixJ, norB, pstA, kef A and B, and ktrB were significantly more abundant
(α = 0.05) in former grassland (F1) rhizosphere soils. Among the carbon-cycling genes, the abundance
of 12 genes, including all those involved in the degradation of methane were more significant
(α = 0.05) in the F1 soils, whereas only five genes were significantly more abundant in the F2 soils.
α-diversity indices were different across the samples and significant differences were observed in
the β diversity of plant growth-promoting and carbon-cycling genes between the fields (ANOSIM,
p = 0.01 and R = 0.52). Nitrate-nitrogen (N-NO3) was the most influential physicochemical parameter
(p = 0.05 and contribution = 31.3%) that affected the distribution of the functional genes across
the samples. The results indicate that land-use and management histories impact the composition
and diversity of plant growth-promoting and carbon-cycling genes in the plant rhizosphere. The
study widens our understanding of the effects of anthropogenic activities on plant health and major
biogeochemical processes in soils.

Keywords: agricultural management practices; biogeochemical processes; crop productivity; nutrient
mobilization; soil ecosystem functioning; soil fertility

1. Introduction

The plant rhizomicrobiome, comprising different microbial communities, plays im-
mense roles in many processes of ecosystem functioning, such as nutrient recycling,
suppressing disease pathogens, secreting plant growth-promoting enzymes, and min-
eralization of organic matter, which ultimately lead to increased soil fertility and crop
productivity [1,2]. The rich nutrients provided by plants attract several microbes around
the roots, which are recruited from the surrounding soils [3,4] by the metabolic compat-
ibility and signaling events of exudates secreted by the plant roots into the rhizosphere
environment, the host-plant immune system, and interactions among different microbes
within the plant rhizosphere [5,6].

Soil ecosystem functioning is mostly determined by the activity and complexity of
the inhabiting microbes. These microbes are influenced by several biological, chemical,
and physical properties of the soil environment [1,7]. The microbial community com-
position in soils can be altered by different land-use and management practices, which
consequently affect certain ecosystem functioning in soils [8,9]. Agricultural management
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practices impact microbial community structure and functions, thereby complexing the
contributions of microbial communities towards important ecosystem functions such as
nutrient and carbon cycling [10,11]. Most studies on the effects of land-use practices on the
soil ecosystem functions focused mainly on the composition and structure of soil microbial
communities [12,13]. Microbial community composition in different ecosystems and its
effects on ecosystem functioning has been studied [14,15]. The literature has shown that
the information obtained from the taxonomic composition and abundance of soil microbial
communities alone is insufficient to predict their functional potentials [16,17]. Therefore,
quantifying the knowledge of the functional capabilities of microbial communities in soils
will help identify their roles in the ecosystems, how they are impacted by land-use and man-
agement practices, and their influence on soil ecosystem functions. such as organic matter
mineralization, nutrient cycling, degradation of organic pollutants, and plant–microbe
interactions [9,18,19].

Recent studies have suggested that the functions of soil microbial communities can
be better predicted by studying their functional genes [20–23]. Knowledge of microbial
functional gene composition and diversity in the rhizosphere of agricultural soils, instead
of mere taxonomic insight, is important for understanding the dynamics of vital processes,
such as nutrient and carbon cycling, and how they are influenced by agricultural man-
agement practices [23]. The whole metagenomic sequencing of rhizosphere soil samples
has been tested to provide information on the diversity of microbial functional genes in
the plant rhizosphere [24,25]. Metagenomics provides information on a wide variety of
functional genes present in a sample, which may assist in the acquisition of information on
the functional potentials of microbial communities in soils. Through this method, infor-
mation on functional genes that play important roles in the rhizosphere soil ecosystem is
obtained [26]. These functional genes may include specific ones, such as the phloroglucinol
(phl) synthesis and nitrogen fixation (nif ) genes that can directly confer beneficial traits to
plants, and the pyrroloquinoline quinone (pqq) biosynthesis genes, which contribute to
many indirect functions in plant cells. Together, these genes enhance plant growth and
health [27].

Studies have reported the influence of land-use practices on the diversity of functional
genes in agricultural soils [1,28]. However, studies on microbial functional gene diversity in
the rhizosphere of plants in African soils as influenced by their land-use and management
histories are rare. Moreover, the specific functional genes responsible for performing
various important functions, such as the biogeochemical cycling of nutrients and plant-
growth promotion in the maize rhizosphere, are understudied. This study provides a
principal report on the effects of land-use history (conversion from grassland to cultivated
land) and management practices (tillage and no tillage) on the diversity of plant growth-
promoting and carbon-cycling genes in maize rhizospheric soils.

To gain deeper knowledge on the diversity of genes concerned with plant growth
promotion and carbon cycling, we analyzed the metagenomes of rhizospheric soil samples
from former grassland soil and intensively cultivated agricultural land using shotgun
metagenomic sequencing. We compared the composition and diversity of functional
genes involved in plant growth promotion and carbon cycling in the rhizospheric soils of
the former grassland with those from the intensively cultivated land. Furthermore, we
compared the taxonomic profiles of one field with the other. Based on our previous study,
we formulated two hypotheses. First, we assumed that although the maize rhizosphere
harbored important beneficial microbes, this environment must also be characterized
by diverse microbial functional genes that contribute to important functions in the soil
ecosystem. Second, we expected the diversity of the genes that contribute to plant growth
and carbon cycling in the two fields to differ significantly from one another due to their
land-use and management histories.
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2. Materials and Methods
2.1. Soil Sampling and Sites Description

Soil samples were collected in March 2019 from two maize plantations in Venters-
dorp (F1) and Mafikeng (F2), South Africa (located in the semi-arid regions of the North
West province). The choice of our sample collection was influenced by the agricultural
histories of the two plantations. The field at Ventersdorp (approximately 130 hectares) has
existed since 1962, initially as grassland for animal grazing, and subsequently converted
to cultivable land in 2015, with no tilling system and fertilizer application (N = 90, P = 60,
and K = 60 kg ha−1). On the other hand, the Mafikeng field has existed since 1989 as
a continuously cultivated land, with a mechanized tilling system and fertilizer applied
at the rates of N = 140, P = 80, and K = 80 kg ha−1. The average winter and summer
temperatures at Ventersdorp are 10.6 and 22.9 ◦C, respectively, with an annual average
rainfall of 585 mm, an average precipitation of 4 mm (in winter) and 105 mm (in summer),
an altitude of 1339 m, and average humidity of 47% (in winter) and 45% (in summer).
On the other hand, the mean temperatures in Mafikeng are 11 and 23.1 ◦C in winter and
summer, respectively, with an annual rainfall of 571 mm, average precipitation of 3 mm in
winter and 96 mm in summer, an altitude of 1290 m, and mean humidity of 46% and 44% in
winter and summer, respectively. Soil samples were collected from the following locations:
26◦19′38′ ′ S and 26◦53′18′ ′ E for F1, and 25◦48′00′ ′ S and 25◦38′21′ ′ E for F2. Rhizosphere
soils were collected by deliberately uprooting maize plants and agitating the uprooted
plant to remove loosely attached soils; meanwhile, soils attached to the root crowns, where
rooting was so dense, were collected together with the roots in sterile plastic bags. Before
sample collection, each field was split into four parts (representing north, south, east, and
west), and each part was called a site. In each site, rhizospheric soil samples were collected
from six different maize plants, later pooled to form a composite sample. Therefore, for
F1, rhizospheric soil samples were collected from sites GZ1, GZ2, GZ3, and GZ4, and for
F2, we collected samples from sites AG1, AG2, AG3, and AG4. A total of 8 composite soil
samples were collected from the rhizosphere of maize plants in the two fields (4 from each
field). Samples were collected at the flowering stage, and soils from both fields were typical
of loamy sand. These samples were stored in a cooler containing ice and transported to the
laboratory. At the laboratory, each sample was divided into two, one for physicochemical
analysis and the other for whole DNA extraction. Samples were kept at −20 ◦C until they
were needed for analyses.

2.2. Physicochemical Analyses of Soil Samples

The chemical properties of soil samples were determined using 20 g of dried and
sieved soils that were kept specifically for this purpose. The pH of samples was determined
using a pH meter at a soil-to-water ratio of 1:2.5. The Kjeldahl method was used to
determine the amount of nitrogen in the samples [29], while the procedure of Bray and
Kurtz [30] was employed to determine the extractable phosphorus content of the samples.
Organic carbon (OC) content was measured using the method of Walkley and Black [31]
and Shi et al. [32]. Exchangeable potassium, N-NO3, and N-NH4 content, and the available
sulfur in samples were determined after extraction with 1 M ammonium acetate, 2 M
potassium chloride (KCl), and 0.1 M hydrochloric acid (HCl), respectively, while the
amount of organic matter was estimated by the loss-on-ignition (LOI) method [33].

2.3. Metagenomic DNA Extraction and Sequencing

A DNeasy PowerMax Soil Kit (Qiagen, Germantown, MD, USA) was used to extract
whole microbial DNA from 5 g of soil samples according to the manufacturer’s guidelines.
The initial DNA concentration of the samples was confirmed using Qubit® dsDNA HS
Assay Kit (Life Technologies, Carlsbad, CA, USA), and samples were subjected to further
cleaning using the DNEasy PowerClean Pro Cleanup Kit (Qiagen, Germantown, MD,
USA). Whole metagenome sequencing of samples through the shotgun approach, which
generated the complete datasets for the study, was performed at the Molecular Research
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Laboratories (MR DNA, Shallowater, TX, USA). Adhering to user instructions step-by-step,
metagenomic DNA libraries were developed with 20–25 ng of DNA using a Nextera DNA
Flex library preparation kit (Illumina, San Diego, CA, USA). After sample cleanup, the
quality of the DNA in samples was again checked using the Qubit® dsDNA HS Assay Kit
(Life Technologies, Carlsbad, CA, USA). The quality DNA samples were made to undergo
simultaneous fragmentation with the subsequent addition of adapter sequences. A limited-
cycle PCR was run on the samples and unique indices were added. The Qubit® dsDNA
HS Assay Kit (Life Technologies, Carlsbad, CA, USA) was reused to check the final library
concentration, while the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) was used to deduce the average size of the developed libraries. The libraries were
pooled and diluted to 0.6 nM. Afterward, 300-cycle pair-end sequencing was performed on
the libraries using the NovaSeq system on Illumina.

2.4. Metagenome Sequence Processing and Analysis of Data

The raw sequences of each metagenome were uploaded to the metagenomics rapid an-
notation pipeline (MG-RAST) version 4.0.3 server [34], and quality control was performed
on the sequences. The preprocessing steps (quality control and trimming) involved the
elimination of artificial sequences, which were products of sequence artifacts, the removal
of sequences with over 5 ambiguous base pairs (bp) and a 15 phred cutoff score, removal
of host species-specific sequences, and the removal of sequences whose mean lengths were
more significant than 2 standard deviations from the mean. Afterward, sequences were
annotated using the BLAST-like alignment (BLAT) algorithm [35] on the M5NR database,
which provides a nonredundant combination of different databases [36]. Taxonomic group-
ings were performed using the Ribosomal Database Project (RDP), while the assignment
of protein-coding genes (at the level of functions) were performed on the SEED subsys-
tems database. The SEED subsystems database on the MG-RAST server is a continuously
updated genome database, application programming interface (API), web front end, and
server scripts consisting of integrated genomic data and collections of functionally related
protein families that are used to predict gene functions and new pathways [37]. BlastX was
used to detect hits that have maximum lengths of 15 bp, an E-value cutoff of 1 × 10−5, and
a 60% minimum identity. Sequences with failed annotation did not receive any further anal-
ysis. We were interested in the entire microbiome comprising archaea, bacteria, and fungi.
However, data from protists and other micro-eukaryotes were excluded from the analysis.
The effect of experimental noise or error was minimized by applying the “normalized data”
option on the MG-RAST server. We manually selected and arranged the genes imparting
plant-beneficial functions from the data we obtained for the microbial functions in the
SEED subsystems database. The 8 sequences of this study were individually evaluated on
the MG-RAST server, and data analyses were performed on all the metagenome samples
(GZ1–GZ4 and AG1–AG4). The metagenomic sequences of the study samples are available
in the NCBI SRA dataset, with the BioProject accession number PRJNA649682.

Shannon, Evenness, and Simpsons were used as parameters to determine the α di-
versity indices of all the samples. These indices were used to compare habitats using the
Kruskal–Wallis test. Significantly abundant microbial genes were identified as biomarkers
of the microbial communities, and the samples were determined using the linear discrim-
inant analysis (LDA) effect size (LEfSe) version 1.0. Here, the logarithmic LDA cutoff
score was set to 2.0, and the α parameter significance threshold for the Kruskal–Wallis
test performed among classes was set to 0.05. To determine the β diversity of the plant
growth-promoting and carbon-cycling genes, we used the principal coordinate analysis
(PCoA) centered on the Euclidean distance matrix. To identify significantly different
metagenomes among the samples, we used the one-way analysis of similarities (ANOSIM)
through 9999 permutations. The percentage (%) contribution of each functional gene to
the dissimilarities in gene abundance between and within the sample groups was assessed
using the similarity percentage (SIMPER) analysis. The canonical correspondence analysis
(CCA), through the forward selection option, was used to determine the physicochemical
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parameters that best described the functional genes, while the Monte Carlo permutation
test with 9999 random permutations was used to measure the significance. All the physico-
chemical parameters of the soils were incorporated into the CCA analysis as descriptive
variables.

The rarefaction curve was obtained after the normalization of the datasets using the
analysis tools in MG-RAST v. 4.0.3 [34] (Figure 1). Heatmaps showing the abundances of
microbial families, plant growth-promoting and carbon-cycling genes, and an extended
error bar plot used to identify the significant microbial communities in the samples, were
obtained using the statistical analysis of taxonomic and functional profiles (STAMP),
version 2.1.3 [38]. The α diversity, ANOSIM, and SIMPER analyses were performed using
the PAST version 3.20 software, developed by Hammer et al. [39], while the PCoA and CCA
were performed in CANOCO 5 (Microcomputer Power, Ithaca, 148 NY, USA). The Galaxy
software on https://huttenhower.sph.harvard.edu/galaxy/ (accessed December 2020) was
used to plot the bar chart showing the statistically differential and biologically consistent
differences in the abundance of functional genes involved in plant growth promotion and
carbon cycling in the samples [40].
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Figure 1. Rarefaction curve depicting sample richness and the sample sites from which rhizospheric
samples were collected.

3. Results
3.1. Soil Chemical Analysis

The results of the soil chemical analyses of this study have been previously described
in Chukwuneme et al. [41]. Briefly, the pH of the GZ samples was between 6.45 and 7.04
(neutral), while that of the AG samples ranged between 4.84 and 5.49 (acidic). The sulfur
content of both soils was low and observed only in the GZ1, GZ3, and AG2 samples, while
the phosphorus contents of the GZ and AG samples ranged from 19.75 (GZ2) to 40.39
(GZ3) mg/kg and from 16.25 (AG4) to 56.88 (AG2) mg/kg, respectively. Moreover, total
C, organic C, organic matter, and nitrate-nitrogen (NO3-N) contents were higher in the
GZ samples compared to the ammonium (N-NH4) content, which was higher in the AG
samples (Table S1).

3.2. Assembly and Analysis of Shotgun Metagenomic Sequence Data

From the rarefaction curve in Figure 1, most of the sample reads reached saturation
points, thereby indicating a full coverage of the sampling efforts. After quality control

https://huttenhower.sph.harvard.edu/galaxy/


Genes 2021, 12, 1431 6 of 18

on the MG-RAST server, the output file obtained contained sequences in the range of
5,255,550–9,039,015 and 2,627,486–8,287,108 for the GZ1–GZ4 and the AG1–AG4 rhizosphere
samples, respectively. Out of the quality sequences obtained, 39.63–40.98% of the sequences
in the GZ samples contained proteins whose functions are known, while for the AG samples,
the proteins with known functions ranged from 41.39 to 43.42%. Furthermore, the quality
sequences obtained contained 2,732,830–4,759,994 and 1,306,964–4,262,335 proteins for the
GZ (GZ1–GZ4) and AG (AG1–AG4) samples, respectively, with unknown functions.

3.3. The Distribution of Microbes across the Maize Rhizosphere Soils

Metagenomic analysis using the RDP database revealed the dominance of 14 bacte-
rial families as the most abundant microbial families observed in the former grassland
and the intensively cultivated soils (Figure S1). Among these families, the abundance of
eight bacterial families, including Micromonosporaceae (GZ1), Nocardioidaceae (GZ4),
Gemmatimonadaceae (GZ1), Microbacteriaceae (GZ3), Frankiaceae (GZ3), and others were
highest in the F1 soils, while the abundance of six bacterial families, including Geoder-
matophilaceae (AG3), Pseudonocardiaceae (AG4), Micrococcaceae (AG2), and others was
predominant in the F2 soils (Figure S1). Among the archaeal families, Methanobacteri-
aceae was found in GZ3, AG1, and AG2, Methanomicrobiaceae in GZ2 and GZ4, and
Thermofilaceae in the AG2 samples, whereas Ustilaginaceae (the only fungi found) was
observed in all samples except AG2 and AG3. We used the STAMP software to identify
significantly abundant microbial communities in the samples, represented by the extended
error bar plot (Figure 2). The analysis showed that out of 18 microbial families, seven of
them were significantly more abundant (p < 0.05) in the F1 samples, whereas five others
were significantly more abundant (p < 0.05) in the F2 rhizosphere (Figure 2). However,
no significant difference (Kruskal–Wallis, p = 0.98) was observed in the α diversity of the
microbial communities between the F1 and the F2 soils.
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3.4. Microbial Genes That Enhance Plant Growth and Fitness Observed in the Maize Fields

The SEED subsystem database used in the functional classification of the metagenomic
dataset revealed the abundance of several genes involved in plant growth promotion and
carbon cycling in the agricultural soils (Tables S2 and S3).



Genes 2021, 12, 1431 7 of 18

3.4.1. Genes That Facilitate Nutrient Mobilization and Plant Growth

The metagenomic analysis of microbial functional genes in our samples using the
SEED subsystems revealed a total of 8091 functional genes, of which several involved in the
cycling of major nutrients (nitrogen, phosphorus, and potassium) that promote soil fertility
were identified (Table S2). The plant growth-promoting genes assessed in our study were
those involved in nitrogen fixation (nif A, nif H, and fixJ), nitrification (amoA), denitrification
(nirK, nirS, and norB), phosphorus cycling (gdh, ppX, ppK, and pstA,), potassium cycling
(kef A, kef B, kup, ktrA, and ktrB), ACC deaminase activity (acdS and dcyD), IAA biosynthesis
(ipdC), tryptophan biosynthesis (trpA and trpB), sulfur metabolism (cysC, cysD, cysH, cysI,
cysJ, and cysN), pyoverdine siderophore biosynthesis (pvdD, pvdI, pvdJ, pvdL, pvdQ, and
mbtH), acetoin and 2,3-butanediol biosynthesis (alS, budA, budB, and budC), phenazine
biosynthesis (phzF), oxidative stress (GST, sodB, and cat), quorum sensing (ribB), arsenate
and atrazine degradation (arsC, gabT, and ureC), and 4-hydroxybenzoate biosynthesis (ubiC)
(Table S2). The highest abundances of the genes involved in nitrogen cycling—nif A, fixJ,
amoA, nirK, nirS, and norB—were observed in the F1 rhizosphere (GZ2, GZ3, GZ2, GZ3,
GZ3, and GZ3, respectively) (Figure 3a and Table S2). Notably, the highest abundances
of the genes concerned with phosphorus cycling, including glucose dehydrogenase (gdh),
polyphosphate kinase (ppk), exopolyphosphatase (PPX), and the phosphate transport
system (pstA) were observed in GZ3. Among the genes involved in potassium cycling, we
observed the highest abundances of the potassium efflux (kef A and B) and the potassium
uptake (kup) genes in GZ3, while the highest abundance of the potassium transport (ktrA)
gene was observed in AG1 (Figure 3a and Table S2).
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Figure 3. (a) Heatmap representing the composition of plant growth-promoting genes in maize rhizosphere samples and (b)
a bar plot of linear discriminant analysis (LDA) scores showing the differentially abundant plant growth-promoting genes
in the rhizosphere samples. The vertical axis (Figure 3b) represents the plant growth-promoting genes whose differences
between the sample groups were significant, while the horizontal axis depicts the LDA, showing the LDA score (log 10) of
the corresponding plant growth-promoting genes. GZ and AG stand for rhizosphere samples from the former grassland
and the intensively cultivated soils, respectively.
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The analysis also revealed the abundance of various genes involved in both the di-
rect and indirect enhancement of plant growth and health. The abundances of the ipdC,
trpA, trpB, budA, budB, and alS genes were highest in AG1 compared to dcyD, budC, phzF,
arsC, sodB, and GST, whose highest abundances were observed in GZ3 (Figure 3a and
Table S2). Further analysis of genes involved in plant growth promotion using the linear
discriminant analysis (LDA) effect size (LEfSe) on the galaxy server revealed the differ-
ences in the composition of these genes between the fields by describing their effect sizes.
While performing the analysis, we used the strict (all classes differential) version, which
identified 19 of the 46 plant growth-promoting genes, showing statistically differential
and biologically consistent differences (α = 0.05) in the GZ samples (Figure 3b). In the
AG samples, 11 plant growth-promoting genes with statistically differential abundance
were observed (Figure 3b). The results revealed that the genes GST and kup (with an LDA
score nearly 4 orders of magnitude) were the most differentially abundant (α = 0.05) plant
growth-promoting genes observed in the GZ samples, whereas the cysN and cat (with an
LDA score over 3.5 orders of magnitude) were the most differentially abundant (α = 0.05)
in the AG samples (Figure 3b). The differences observed in the abundance of these genes
among the samples reached a threshold of 2.75 for the GZ samples and 2.85 for the AG
samples (Figure 3b).

To evaluate the α diversity of plant growth-promoting genes in the samples, we used
the Simpson, Shannon, and Evenness indices. The α diversity analysis indicated that there
was no significant difference (Kruskal–Wallis, p = 0.94) in the diversity of genes involved in
plant growth promotion between the samples. From the α diversity analyses, the Simpson
index was the same (0.95) in all samples. However, the Shannon and Evenness indices
were higher in the GZ than in the AG samples (Figure S2). The β diversity (the diversity
between the GZ and AG samples), which was determined using the analysis of similarity
(ANOSIM), revealed that there was a significant difference (p = 0.01 and R = 0.52) in the
diversity of these genes among the samples, thereby confirming the result obtained from
the principal coordinate analysis (PCoA), which displayed a distinct separation between
the GZ and AG samples and a close clustering of the GZ samples (Figure 4). The similarity
percentage (SIMPER) analysis showed an overall average dissimilarity of 28 in the plant
growth-promoting genes between all GZ and AG samples, with the kup gene contributing
the most (8.70%) to the dissimilarity (Table 1). On the other hand, within the GZ samples
(GZ1–GZ4), we observed the highest overall average dissimilarity of 24.20 between the GZ3
and GZ4 samples, whereas among the AG samples (AG1–AG4), the highest overall average
dissimilarity of 48.0 was observed between the sample pair AG1 and AG3 (Table 1).

3.4.2. Microbial Genes Involved in Carbon Cycling

Genes that were considered to be associated with carbon cycling were identified
using the functional category of the SEED subsystems (Table S3). From our analysis of
the metagenomes in the maize rhizosphere soils, we found 34 important genes that were
linked with carbon cycling in all samples. These genes include those concerned with
the metabolism of carbohydrate (galK, glcD, manA, manC, melA, and lacZ), the fixing of
carbon (codH, cbbL, cbbR, cbbO, cbbQ, cbbX, cbbS, gap2, and rpe), and the degrading of
starch (amyA, glgB, glgC, bglX, malZ, malQ, abf A, treA, and treC), methane (glpX, fbaA, fbaB,
mxaF, and mmoX), hemicellulose (araB, xylA, and xynA), and xenobiotics (vanB and uidA).
With respect to carbon fixation, the abundance of the cbbR, cbbS, cbbX, and codH genes
were highest in the AG rhizosphere compared to the gap2, rpe, cbbL, cbbO, and cbbQ genes
whose abundances were observed to be highest in the GZ rhizosphere. Interestingly, all
the methane-degrading genes (mxaF, mmoX, fbaA, fbaB, and glpX) were more abundant in
the GZ than in the AG rhizosphere (Figure 5a and Table S3). The abundance of several
genes involved in starch degradation, including amyA, glgB, glgC, malZ, malQ, abf A, and
treA, was highest in the GZ samples. Furthermore, the highest abundances of several genes
involved in hemicellulose degradation (araB, xylA, and xynA), carbohydrate metabolism
(lacZ, melA, and glcD), and xenobiotics degradation (vanB) were observed in the GZ samples
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(Figure 5a and Table S3). By employing the strict (all classes differential) version of the
linear discriminant analysis (LDA) effect size (LEfSe), we determined the effect sizes of
differences in the abundance and distribution of carbon-cycling genes between the fields
(GZ = GZ1–GZ4 and AG = AG1–AG4). The output revealed 12 and 6 carbon-cycling genes
(out of the 34 genes), showing statistically differential and biologically consistent differences
in the GZ and AG samples (Figure 5b). From the analysis, the most differentially abundant
(α = 0.05) carbon-cycling genes in GZ were those concerned with methane degradation
(mxaF, fbaB, rpe, and mmoX), with high LDA scores (over 3 orders of magnitude), reaching a
threshold of 4.3 (Figure 5b). On the other hand, the most differentially abundant (α = 0.05)
carbon-cycling genes observed in the AG samples were the codH and bglX genes, involved
in carbon fixation and starch degradation, with high LDA scores of 4.3 (Figure 5b).
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Table 1. Overall dissimilarities and the top shared plant growth-promoting and carbon-cycling genes with the most
contribution to the dissimilarities between the samples.

Sample Pair Ov. Avg.
Dissimilarity

Contribution % of Plant Growth
Promoting Genes

Ov. Avg.
Dissimilarity

Contribution % of
Carbon-Cycling Genes

kup ppk trpB codH lacZ mxaF
GZ and AG 28.00 8.70 7.67 5.76 26 12.43 11.93 10.4

GZ1 and GZ2 6.55 11.90 6.94 4.57 6.90 10.18 13.90 14.01
GZ1 and GZ3 18.08 9.87 6.05 3.60 15.96 6.72 13.35 7.40
GZ1 and GZ4 9.11 6.76 12.85 7.52 10.27 16.82 11.85 8.04
GZ2 and GZ3 12.81 8.24 5.20 2.91 10.83 3.96 11.29 2.85
GZ2 and GZ4 13.78 10.16 11.46 6.97 14.60 16.37 15.00 12.50
GZ3 and GZ4 24.20 9.80 8.67 5.12 24.15 10.70 13.64 8.08
AG1 and AG2 19.03 6.91 7.06 6.27 15.84 21.3 10.85 6.44
AG1 and AG3 48.0 6.83 8.29 7.02 45.58 19.82 12.86 4.93
AG1 and AG4 44.32 7.33 8.11 6.81 40.13 19.84 13.24 4.67
AG2 and AG3 31.93 6.74 9.47 7.74 32.71 18.18 14.05 3.65
AG2 and AG4 28.87 6.74 9.48 7.74 27.03 17.64 14.73 2.91
AG3 and AG4 6.00 1.72 9.00 8.53 7.12 18.40 8.21 7.16

Note: Ov. avg. stands for overall average; GZ represents all sites in field 1 (F1), including GZ1–GZ4; AG represents all sites in field 2 (F2),
including AG1–AG4; GZ1–GZ4 represent each sample site in F1; AG1–AG4 represent each sample site in F2.

To determine the α diversity of carbon-cycling genes in the rhizosphere samples,
we used the Simpson, Shannon, and Evenness indices. The values obtained from these
indices were higher in the GZ samples than in the AG samples (Figure S3). However,
no significant difference (Kruskal–Wallis, p = 0.93) was observed in the α diversity of the
carbon-cycling genes between the fields. On the other hand, ANOSIM, which was used
to determine the β diversity, indicated that there was a significant difference (p = 0.01
and R = 0.52) in the β diversity of the carbon-cycling genes between the samples from
the former grassland and the intensively cultivated land. This analysis is a confirmation



Genes 2021, 12, 1431 10 of 18

of the principal coordinate analysis (PCoA), which showed a distinct separation of the
samples from the former grassland and the intensively cultivated land (Figure 6). From
the SIMPER analysis, an overall pairwise dissimilarity of 26 was observed in the diversity
of carbon-cycling genes between the GZ and the AG samples (Table 1). The diversity of
carbon-cycling genes within the GZ samples showed that the highest pairwise dissimilarity
of 24.15 was observed between the GZ3 and GZ4 samples compared to 45.58 (between AG1
and AG3) obtained as the highest pairwise dissimilarity observed in the AG samples. The
top shared carbon-cycling genes that contributed the most to the observed differences in
the sample groups and their percentage contributions are presented in Table 1.
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3.5. Influence of Soil Physicochemical Properties on the Diversity of Carbon-Cycling and Plant
Growth-Promoting Genes

In this study, we employed the canonical correspondence analysis (CCA) to assess
the correlation between the microbial functional genes in the study and the soils’ physic-
ochemical parameters. We computed the CCA plot with all the environmental variables,
as presented in Figure 7, and observed a CCA permutation test of 0.015, indicating that
the composition of the carbon-cycling and plant growth-promoting genes were affected
by the physicochemical properties of the soils (Figure 7). A correlation analysis showed
that cysC, cysJ, dcyD, ipdC, pvdQ, pvdL, cbbL, cbbQ, rpe, treC, gap2, mxaF, mmoX, and uidA
negatively correlated with N-NH4 and positively correlated with N-NO3, N-NH4, pH, OC,
and OM. On the other hand, cbbX, ureC, and manC positively correlated with N-NH4 and
negatively correlated with N-NO3, N-NH4, pH, OC, and OM. However, abf A, cbbR, and
cbbS positively correlated with all the tested variables (N-NO3, N-NH4, pH, OC, and OM).
The forward selection option through the Monte Carlo permutation test, with 9999 random
permutations, was used to study which soil chemical parameter was the most influential in
the differences observed in the microbial functional genes across the samples (Table S4).
From the analysis, we found that N-NO3 contributed the most (31.3%) to the variation,
with a p-value of 0.05 (Table S4).
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Figure 7. Canonical correspondence analysis (CCA) showing the effect of the soil physicochemical
analysis on the diversity and composition of the genes involved in carbon cycling and plant growth
promotion across the samples. Legend: N-NO3 represents nitrate-nitrogen, N-NH4 represents am-
monium nitrogen, OC = organic carbon, and OM = organic carbon. Plant growth-promoting genes:
budC—acetoin (diacetyl) reductase (EC 1.1.1.5), cysC—adenylylsulfate kinase, cysD—sulfate adenylyl-
transferase subunit 2, cysH—phosphoadenylyl-sulfate reductase (thioredoxin), cysJ—sulfite reductase
(NADPH) flavoprotein α-component, dcyD—D-cysteine desulfhydrase, gabT- GABA aminotrans-
ferase, ipdC—indole-3-pyruvate decarboxylase, ktrA—potassium uptake protein A, KtrB—potassium



Genes 2021, 12, 1431 12 of 18

uptake protein B, mbtH—hypothetical MbtH-like protein, nif H—nitrogenase (molybdenum-iron)
reductase and maturation, norB—nitric oxide reductase subunit B, pvdL—pyoverdine chromophore
precursor synthetase, pvdQ—acyl-homoserine lactone acylase, ubiC—chorismate-pyruvate lyase,
and ureC—urease subunit α. Carbon-cycling genes: abf A—α-N-arabinofuranosidase, bglX—β-
glucosidase, cbbL—RuBisCo large chain, cbbO—RuBisCo activation protein, cbbQ—RuBisCo activa-
tion protein, cbbR—RuBisCo operon transcriptional regulator, cbbS—ribulose bisphosphate carboxy-
lase small chain, cbbX—probable RuBisCo-expression protein, codH—carbon monoxide dehydroge-
nase large chain, fbaA—fructose-bisphosphate aldolase class I, gap2—NAD(P)-dependent glyceralde-
hyde 3-phosphate, manC—mannose-1-phosphate guanylyltransferase, mmoX—methane monooxyge-
nase component A α chain, mxaF—methanol dehydrogenase large subunit protein, rpe—ribulose-
phosphate 3-epimerase, treC—trehalose-6-phosphate hydrolase, and uidA—β-glucuronidase.

4. Discussion

The practice of land-use conversion has become common over the years, with studies
reporting its impacts on soil microbial communities and the environment; however, the ef-
fects of land-use history on microbial functional gene potential in the rhizosphere of plants
remain understudied. Using shotgun metagenomic sequencing, this study revealed the
differences in microbial functional genes, particularly those involved in nutrient mobiliza-
tion, plant growth promotion, and carbon cycling of land previously used as pasture (with
a lower N fertilizer application rate and a no-tillage system), and of land that had been
under intensive cultivation (with a higher N fertilizer application rate and a conventional
tillage system) for several years. We showed that the abundance and diversity of the genes
involved in plant growth-promotion and carbon cycling within these fields are distinct
from one another, thereby representing the land-use and management histories of the fields.
The soils also differed in their physicochemical properties, which also contributed to the
differences in the diversity of the genes. This study highlighted the effects of land-use and
management histories as well as soil chemical properties on the functioning and mainte-
nance of the soil ecosystem, especially in nitrogen and carbon cycling, in order to present
the long-term effects of cultivation on these functional genes in the plants’ rhizosphere.
Understanding the long-term effects of land-use and management practices on the diversity
of microbial functional genes helps to explain how the soil ecosystem copes with current
and future agricultural management practices.

Although the rhizosphere metagenomes contained sequences that originate from the
archaeal and fungal groups, sequences from the bacterial families were more predominant
as they represented more than 99% of the sequences. The analysis of microbial families
in the study revealed that some bacterial communities were more predominant in one
field than the other, thereby indicating the possible effects of land use on microbial com-
munity composition and diversity. Moreover, our analysis revealed that the fields were
dominated by important microbial communities known to improve plant growth and
degrade complex polysaccharides, including chitin, lignin, cellulose, and hemicellulose,
and plant residues in soils [42]. Micromonosporaceae, Microbacteriaceae, Nocardioidaceae,
and Bradyrhizobiaceae (significantly more abundant in the F1 rhizosphere samples) are
important plant colonizers and have been implicated in plant growth promotion in var-
ious agricultural soils [43]. Their contributions toward plant growth and development
include the production, regulation, and degradation of phytohormones, the production
of siderophores, mineralization and mobilization of soil nutrients, production of vitamins
for plant growth, antagonism against various phytopathogens, among other important
functions in the soil [43–45]. The abundance of these communities in the fields indicate
their relevance in maintaining soil fertility and plant health in the soils. We also suggested
that the differentially abundant microbial families (Figure 2) might likely be important,
particularly in the functioning of the host plants, and contribute immensely towards the
plants’ health and fitness as proposed by Hartman et al. [46] and Pérez-Jaramillo et al. [47].

The composition of microbial functional genes involved in plant growth promotion
in the rhizosphere soils was significantly affected by the soils’ management regimes. The
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composition of genes involved in plant growth promotion in the former grassland (GZ)
soils differed from those of the intensively cultivated land (AG). From the analyses, the
higher abundance of genes involved in nitrogen cycling in the GZ (F1 rhizosphere) samples
indicates that management practices impact the abundance of these genes in the plant rhi-
zosphere. The differences observed in the abundance of genes concerned with nitrogen fixa-
tion (nif A and fixJ) in the soils further suggest that reduced fertilizer application rates might
increase biological nitrogen fixation in agricultural soils. Yu et al. [48] also reported a higher
abundance of the nitrogen fixation gene, nif H, in a reduced fertilizer-treated soil. Our re-
sults on the abundance of nitrogen fixation genes is also evidenced by the higher abundance
of the nitrogen-fixing microbial communities—the Micromonosporaceae, Frankiaceae, and
Bradyrhizobiaceae families [49,50]—observed in GZ soils (Figures 2 and S1). The data
concurs with previous studies that suggest that the amount of biological nitrogen fixation
in lower N-fertilized soils is higher compared to higher N-fertilized soils [48,51]. Moreover,
land tilling also affects the abundance of genes involved in several stages of nitrogen
fixation [52]. Under low N fertilization (67 kg ha−1), Hu et al. [53] reported that the relative
abundance of the nif H transcript was higher in no-till soils than in conventionally tilled
soils. Furthermore, the influence of soil management was also observed in the abundance of
genes involved in nitrification (amoA) and denitrification (norB, nirK, and nirS) in the soils.
Hu, Jin, Konkel, Schaeffer, Schneider and DeBruyn [53] studied the effects of agricultural
management on the abundance of genes involved in nitrogen cycling. They observed that
under N fertilizer treatment (67 kg ha−1), both the relative abundance and transcript of the
amoA gene was increased in no-till soils. However, for the denitrification genes, the relative
abundance of nirK increased in no-till plots, whereas the nirS gene was higher in conven-
tionally tilled plots. These results confirm that N fertilization promotes denitrification
and nitrification in agricultural soils, and that reduced fertilization management enhances
these processes [54]. Therefore, our results suggest that management practices altered the
environmental conditions of the soils, which subsequently impacted the abundance of
nutrient-cycling genes in the soils.

Many soil microbes act as biocontrol agents by producing and secreting bioactive
substances (secondary metabolites) known as siderophores [55]. The production and
secretion of siderophores are one of the various modes of biocontrol activity used by
microbes to acquire the nutrient element, iron [56]. The analysis of microbial functional
genes involved in plant growth promotion revealed higher abundances of the pvdD, pvdJ,
pvdI, and mbtH genes that are linked with the production and utilization of pyoverdine
siderophore in the former grassland rhizosphere samples, thereby indicating that microbial
communities in these soils might have high disease-suppressive capabilities. Our results
revealed distinct dissimilarities in the diversity (ANOSIM, p = 0.01 and R = 0.52) of microbial
functional genes responsible for plant growth promotion, as observed in the principal
coordinate analysis (PCoA) (Figure 4) and the similarity percentage (SIMPER) analysis
(Table 1). We attribute these dissimilarities to the different management practices involved
in the fields, which have subsequently impacted the functional attributes of the soils.
Although the α diversity for these genes was not significant between both fields, we
observed higher α diversity indices in the F1 soils than in the F2 soils. Likewise, the PCoA
plot displayed a close clustering of samples from the same field, with samples from a
distinct field widely separated, pointing toward land-use and management differences
(Figure 4). These results, in collaboration with the similarity percentage analysis (SIMPER)
of the plant growth-promoting genes observed in the samples, are in agreement with our
hypothesis that the diversity of microbial functional genes in F1 will differ from those of F2
due to land-use and management histories.

Microbial communities in soils contribute significantly towards soil organic carbon
cycling and fixation, while changes and the pattern of changes in the soil organic carbon
pool are regulated by the soil microbial community structure [57,58]. The impact of land-
use and management histories on the distribution of carbon-cycling functional genes as
assessed by our study revealed that specific gene families concerned with carbon cycling



Genes 2021, 12, 1431 14 of 18

were preferentially associated with a particular soil. For example, the carbon fixation genes,
cbbL (Ribulose bisphosphate carboxylase large chain), cbbQ (RuBisCo activation protein),
cbbO (RuBisCo activation protein), and rpe (Ribulose-phosphate 3-epimerase), were statisti-
cally differentially abundant (α = 0.05) in the F1 rhizosphere (GZ) soils compared to codH
(carbon monoxide dehydrogenase large chain) and cbbX (probable RuBisCo-expression
protein) that were statistically differentially abundant (α = 0.05) in the F2 rhizosphere (AG)
soils (Figure 5b). Ribulose bisphosphate carboxylase (RuBisCo) is the principal enzyme
in the Calvin–Benson cycle, which initiates the process of carbon fixation [28]. These
results indicate that the agricultural management history of each field (grassland with
no tilling and lower N fertilization, and continuous cultivation with tilling and higher
N fertilization) might have provided similar conditions that favored broad colonization
by microbial communities with the same functional groups in each field. Furthermore,
the genes associated with methane degradation, mxaF, fbaB, and mmoX, were significantly
more abundant in the F1 rhizosphere soils than in the F2 rhizosphere soils. We suggest
that higher and prolonged fertilizer use in the intensively cultivated soils (F2) may have
influenced the lower abundance of the genes involved in methane degradation in these
soils. Manoharan, Kushwaha, Ahrén, and Hedlund [1] also reported a higher abundance of
genes in grassland soils than in cultivated soils. They further indicated that the continuous
application of fertilizers in agricultural soils can inhibit methane breakdown in these soils.
In our study, the higher abundance of genes involved in the degradation of methane in F1
soils is a confirmation of the results observed in the physicochemical components of the
soils, which revealed higher OC, TC, and OM contents in the former grassland soils. These
results, along with those of the microbial composition of the soils, confirm that the F1 soil
environment is colonized by active methanotrophic microbial communities that metabolize
and use methane as sources of energy and carbon, thereby helping to regulate methane
flux in the environment.

The similarity percentage analysis (SIMPER) further revealed the extent of dissimilar-
ity in the diversity of carbon-cycling genes between the GZ and AG soils, whereas the PCoA
plot demonstrated that there were obvious differences in the abundance and distribution of
carbon-cycling genes across the fields. Taken together, these results confirmed our second
assumption in which we hypothesized that land-use and management histories would
impact the diversity of the genes observed in the rhizosphere of the former grassland and
the intensively cultivated land. Gaining insights into how the composition and diversity of
microbial carbon-cycling genes in the rhizosphere are impacted by land use may further
increase our knowledge of the effects of anthropogenic activities on carbon flux in the
agricultural soil environment.

In our study, differences were observed in the chemical properties of both fields.
The amounts of N-NO3, K, OM, TC, and OC were higher in the F1 soils than in the F2
soils, while N-NH4 content was higher in the F2 than in the F1 rhizosphere samples
(Table S1). Land disturbances arising from long-term agricultural practices may impact
the physicochemical properties of soils and alter the composition and properties of the
soils’ biogeochemical interfaces [59]. Moreover, the soil microbial community structure
and function may be impacted by land-use practices, resulting in an alteration of the
soils’ chemical properties [8,60]. Long-term continuous agricultural practices, such as
fertilization and tillage reduce soil quality and cause land degradation [61]. Based on
our study, we suggest that the lower levels of OM, TC, OC, and N-NO3 observed in the
F2 soils were due to intensive cultivation practices in the field, as continuous cultivation
degrades the physicochemical properties of soils. These results coincide with those of
Fujisao et al. [62], who indicated that continuous cultivation under conventional tilling
reduces the contents of TC, TN, and exchangeable K in maize soils. The lower OC in F2
soils may also explain the reason for the lower OM in the soils. Long-term cultivation
reduces OC, which contains about 58% of OM [63]. Therefore, land cultivation with heavy
pieces of machinery and the persistent application of fertilizers over a long period increases
the mineralization and degradation of OM and OC in soils [64]. Additionally, lower levels
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of soil organic matter (SOM) due to intensive cropping reduces soil fertility over time by
depleting the stocks of important soil elements, such as N, P, and S [65]. This may be the
case in our study, with the lowest levels of S observed in AG2 and completely absent in
other F2 (AG1, AG3, and AG4) samples. Furthermore, conventional agricultural practices
cause the acidification of soils. The literature has indicated that the extremely long use and
heavy application of N fertilizer reduce soil pH [66,67]. As observed in our study, lower pH
values were detected in F2 soils, indicating the influence of long-term intensive agriculture
on the soils’ pH. This result is also consistent with the amounts of N-NO3 and N-NH4
found in the soils, as N in the form of nitrate (NO3) increases the pH in the rhizosphere,
while N in ammonium (NH4) results in the acidification of the rhizosphere [68]. On the
other hand, Sengupta et al. [69] reported lower pH in plow-till soils and higher pH in no-till
soils, in line with the results of this study. Furthermore, the canonical correspondence
analysis (CCA) showed that N-NO3, with a significance level of 0.05, contributed the
most (31%) to the differences observed in the diversity and abundance of carbon-cycling
and plant growth-promoting genes in the samples (Figure 7 and Table S4). Apart from
N-NO3, our results also showed that other soil properties, including N-NH4, pH, OC, and
OM, also contributed to the observed differences, as shown in the length of their vector
arrows in Figure 7. These results agree with Li et al. [70], who reported that NO3, pH,
NH4, and OC were influential factors that determined the abundance and distribution of
functional genes in heavy metal-contaminated soils. The results of this study indicate that
soil physicochemical properties also impact microbial functional gene composition and
diversity in soils.

5. Conclusions

Shotgun metagenomic sequencing was applied on maize rhizosphere soils to elucidate
the effects of land-use and management histories on the diversity and composition of
microbial functional genes involved in plant growth promotion and carbon cycling. The
differences in the abundance of functional genes involved in carbohydrate metabolism,
carbon fixation, methane degradation, plant growth promotion, and nutrient mobiliza-
tion are evidence that land-use and management histories impact microbial functions in
agricultural soils. Moreover, among the soil properties, N-NO3 was the most influential
in determining the composition and diversity of these genes across the samples; this in-
dicates that soil chemical properties, which are also highly influenced by anthropogenic
activities [59], are strong factors that affect microbial functions in soils. The taxonomic
diversity revealed the abundance of microorganisms linked with important functions in the
plant rhizosphere, with a majority more abundant in the former grassland rhizosphere; in
addition, it reflected the effects of agricultural practices on the rhizosphere microbiota. The
study increased our understanding of the relationship between plant health, biogeochemi-
cal nutrient cycling, the rhizosphere microbiome, and anthropogenic activities, all of which
have direct or indirect effects on food production as the increasing human population
exerts more pressure on crop yield. Future studies that target the genes expressed in these
soils may help divulge the different microbial functional genes truly active in the rhizo-
sphere soils and enhance our understanding of the functioning of microbial communities
in the plant rhizosphere. In conclusion, this study confirmed that land-use history and
management practices could impact the environmental conditions of soils, which may
subsequently influence the ecosystem services (functions) of the microbial communities in
the rhizosphere of agricultural soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12091431/s1. Figure S1: Relative abundance of major microbial families found in the
maize rhizospheric soils; Figure S2: Alpha diversity of genes involved in plant growth promotion in
maize rhizospheric samples; Figure S3: Alpha diversity of genes involved in carbon cycling in maize
rhizospheric samples; Table S1: Physicochemical parameters of soil samples; Table S2: Data of plant
growth-promoting genes found in maize rhizospheric samples; Table S3: Data on of carbon-cycling
genes found in maize rhizospheric samples; Table S4: The forward selection of physicochemical
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parameters that explains the most significant difference in the composition of the functional genes
among the samples
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