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Adult T-cell leukemia–lymphoma (ATL), an aggressive neoplasm etiologically

associated with HTLV-1, is a chemoresistant malignancy. Heat shock protein 90

(HSP90) is involved in folding and functions as a chaperone for multiple client

proteins, many of which are important in tumorigenesis. In this study, we exam-

ined NVP-AUY922 (AUY922), a second generation isoxazole-based non-geldana-

mycin HSP90 inhibitor, and confirmed its effects on survival of ATL-related cell

lines. Analysis using FACS revealed that AUY922 induced cell-cycle arrest and

apoptosis; it also inhibited the growth of primary ATL cells, but not of normal

PBMCs. AUY922 caused strong upregulation of HSP70, a surrogate marker of

HSP90 inhibition, and a dose-dependent decrease in HSP90 client proteins associ-

ated with cell survival, proliferation, and cell cycle in the G1 phase, including

phospho-Akt, Akt, IKKa, IKKb, IKKc, Cdk4, Cdk6, and survivin. Interestingly,

AUY922 induced downregulation of the proviral integration site for Moloney

murine leukemia virus (PIM) in ATL cells. The PIM family (PIM-1, -2, -3) is made up

of oncogenes that encode a serine ⁄ threonine protein kinase family. As PIM kinas-

es have multiple functions involved in cell proliferation, survival, differentiation,

apoptosis, and tumorigenesis, their downregulation could play an important role

in AUY922-induced death of ATL cells. In fact, SGI-1776, a pan-PIM kinase inhibi-

tor, successfully inhibited the growth of primary ATL cells as well as ATL-related

cell lines. Our findings suggest that AUY922 is an effective therapeutic agent for

ATL, and PIM kinases may be a novel therapeutic target.

H eat shock protein 90 is involved in folding and functions
as a chaperone for multiple client proteins, many of

which are important in tumorigenesis. In contrast to normal
cells, tumor cells contain an abundance of catalytically active
HSP90, which is found in multichaperone complexes. There-
fore, HSP90 has emerged as a target of interest in cancer ther-
apy.(1) Inhibition of HSP90 leads to misfolding of client
proteins and degradation through the ubiquitin proteasome
pathway. Heat shock protein 90 inhibitors target tumor cells
on mutated or amplified oncoproteins, such as transmembrane
tyrosine kinases (human epidermal growth factor receptor 2,
epidermal growth factor receptor, c-Met, insulin-like growth
factor 1 receptor), metastable signaling proteins (Akt, Raf-1,
IKK), mutated signaling proteins (p53, Kit, Flt-3, v-Src), chi-
meric signaling proteins (nucleophosmin ⁄ anaplastic lymphoma
kinase, BCR-ABL), steroid receptors (androgen, estrogen, pro-
gesterone receptors), and cell cycle regulators (CDK4, CDK6).
The HSP90 inhibitor 17-AAG, derived from geldanamycin,
has shown potent antitumor activity against ATL.(2,3) However,
geldanamycin derivatives have several limitations, including

poor solubility, formulation difficulties, and severe hepatotox-
icity in clinical settings,(4–6) which have prompted develop-
ment of next generation synthetic HSP90 inhibitors including
NVP-AUY922 (AUY922), a second generation isoxazole-based
non-geldanamycin HSP90 inhibitor that inhibits the ATPase
activity of HSP90.(7,8) AUY922 has shown nanomolar efficacy
against a wide range of human cancer cells in vitro and also
inhibits progression of a variety of tumors in vivo.(7–11)

Furthermore, in a phase I clinical trial of AUY922 in patients
with advanced solid tumors, the agent showed acceptable
tolerability.(12)

Adult T-cell leukemia–lymphoma is a chemoresistant malig-
nancy with a CD4-positive T-lymphocyte origin etiologically
associated with HTLV-1.(13) In ATL, activation of NF-jB,
AP-1, and PI3K ⁄Akt results in upregulation of expression of a
large number of cellular genes involved in cell proliferation
and survival.(14–16) Adult T-cell leukemia–lymphoma is gener-
ally classified into four clinical subtypes: acute, chronic, smol-
dering, and lymphoma. Although several approaches have been
reported, combination chemotherapy is still the treatment of
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choice for newly diagnosed aggressive ATL. Patients with
aggressive ATL have a median survival time of 13 months,
indicating limitations in present treatment strategies.(17) How-
ever, agents that interrupt a variety of signal transduction path-
ways such as HSP90 inhibitors are thought to be potential
treatment options for the disease. In this study, we examined
the effects of AUY922 on ATL cells in vitro and explored
a novel therapeutic target by investigating its molecular
mechanisms.

Materials and Methods

Cells and ATL-related cell lines. The ATL-derived cell lines
KK1, KOB, SO4, ST1, and LM-Y1, were obtained from ATL
patients and established in our laboratory.(18–21) KK1, KOB,
SO4, and LM-Y1 were maintained in RPMI-1640 medium sup-
plemented with 10% heat-inactivated FBS and 0.5 U ⁄mL inter-
leukin-2 (kindly provided by Takeda Pharmaceutical Company,
Ltd., Osaka, Japan). ST1 and HTLV-1-infected T-cell lines,
MT2(22) and HuT102(23), were maintained in RPMI-1640 med-

ium supplemented with 10% heat-inactivated FBS. The KOB,
LM-Y1, ST1, MT2, and HuT102 cell lines possess wild-type
p53, whereas KK1 and SO4 have mutant-type p53.(24) Primary
leukemia cells from patients with ATL were also used. The
diagnosis of ATL was based on clinical features, hematological
findings, and presence of anti-HTLV-1 antibodies in serum.
Monoclonal HTLV-1 provirus integration in the DNA of leuke-
mic cells was confirmed in patients using Southern blot hybrid-
ization (data not shown). Peripheral blood mononuclear cells
from patients with ATL and a normal healthy donor were iso-
lated by Ficoll–Paque density gradient centrifugation, and
washed with PBS. For enrichment of ATL cells, CD4 T cells
were negatively enriched using Miltenyi CD4 T-Cell Isolation
Kit II (Miltenyi Biotec, Auburn, CA, USA). Each patient sam-
ple contained more than 90% leukemia cells at the time of
analysis. After receiving approval from the Ethics Committee
at Nagasaki University Hospital (Nagasaki, Japan), all patient
samples were obtained with informed consent.

Chemicals and cell proliferation assay. AUY922 was kindly
provided by Novartis Institutes for Biomedical Research
(Basel, Switzerland). 17-AAG (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) and SGI-1776 (Santa Cruz Biotechnol-
ogy) were obtained, and dissolved in DMSO. The effect of
AUY922 on cell proliferation was examined using the cell via-
bility agent provided in a CellTiter 96 AQueos Cell Prolifera-
tion Assay kit (Promega, Madison, WI, USA). Briefly, the cell
lines (2–5 9 105 ⁄mL) and PBMCs (1 9 106 ⁄mL) were sepa-
rately incubated in 96-well plates in the presence or absence
of various concentrations of AUY922. After 72 h, the reagent
was added and incubation was continued for 2–4 h, then absor-
bance at 492 nm was measured using an automated microplate
reader. All experiments were carried out in triplicate. Error
bars represent the standard error in each experiment. Non-para-
metric statistical analysis (Mann–Whitney U-test) was carried
out using GraphPad Prism version 6.00 software (GraphPad

(a)

(b)

Fig. 1. Growth inhibition effects of heat shock protein 90 inhibitor
AUY922. Inhibitory effects of AUY922 on cell survival of adult T-cell
leukemia–lymphoma-related cell lines (a), and primary adult T-cell leu-
kemia–lymphoma cells (n = 8) and normal PBMCs (n = 7) (b). Cells
were incubated in the presence of various concentrations of AUY922
for 72 h and in vitro survival was determined using an MTS assay. A
relative viability of 100% was designated as the total number of cells
that survived after 72 h in the absence of AUY922. The relative viabil-
ity of cultured cells was determined from triplicate cultures and is pre-
sented as the mean � SD (bars). *P < 0.0001.

Fig. 2. Growth inhibition effects of heat shock protein 90 inhibitor
17-AAG. Inhibitory effects of 17-AAG on cell survival of adult T-cell
leukemia–lymphoma-related cell lines. Cells were incubated in the
presence of various concentrations of 17-AAG for 72 h and in vitro
survival was determined using MTS assay. The relative viability of cul-
tured cells is presented as the mean determined from triplicate cul-
tures. A relative viability of 100% was determined based on the total
number of cells that survived after 72 h in the absence of 17-AAG.
The relative viability of cultured cells was determined from triplicate
cultures and is presented as the mean � SD (bars).
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Software, San Diego, CA, USA). P-values <0.05 were
regarded as significant.

Flow cytometric analysis (apoptosis assays and cell cycle analy-

sis). To evaluate apoptotic changes, we used annexin V and a

PI Kit (Bender Medsystems, Vienna, Austria). Cell cycle was
analyzed using a Cycletest Plus DNA reagent kit (BD Bio-
sciences, San Jose, CA, USA). In brief, 106 cells were washed
with a buffer solution containing sodium citrate, sucrose, and

Fig. 3. Effects of heat shock protein 90 inhibitor
AUY922 on cell cycle. Adult T-cell leukemia–
lymphoma-related cell lines were incubated in the
absence (�) or presence of AUY922 (12.5 or
25.0 nM) for 48 h and stained with propidium
iodide, then DNA content was assayed using flow
cytometry. The percentage of cells in various phases
of the cell cycle was determined.

(a)

(b)

Fig. 4. Effects of heat shock protein 90 inhibitor
AUY922 on apoptosis. Adult T-cell leukemia–
lymphoma-related cell lines were treated with or
without AUY922 (12.5 or 25.0 nM [a], or 100 nM
[b]) for 48 h, then harvested, stained with annexin
V–propidium iodide, and analyzed using flow
cytometry. Data shown represent the percentages
of apoptotic cells among untreated and AUY922-
treated cells.
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dimethyl sulfoxide suspended in a solution containing RNase
A, and stained with 125 lg ⁄mL PI for 10 min. All experi-
ments were carried out using a FACSCanto II flow cytometer
and FACSDiva software (BD Biosciences).

Western blot analysis and antibodies. Cells were harvested
after treatment and washed, then homogenized at 4°C in lysis
buffer (0.1% SDS, 1% Igepal CA-630, 0.5% sodium deoxych-
olate) and a protease inhibitor cocktail (Sigma-Aldrich, St.
Louis, MO, USA). Cell lysates (20–50 lg) were resolved by
electrophoresis on polyacrylamide gels and transferred to
PVDF membranes. After blocking the membranes in 5% non-
fat dry milk or 5% FBS and 0.1% Tween-20 in Tris-buffered
saline for 1 h at room temperature, the blots were hybridized
overnight at 4°C with primary antibodies. After hybridization
with secondary antibodies conjugated with HRP, immunocom-
plexes were visualized using an enhanced chemiluminescence
kit (GE Healthcare, Chalfont St. Giles, UK). Analyses were
carried out with antibodies to HSP90, PIM-1 (Santa Cruz Bio-
technology), HSP70, Cdk4, Cdk6, Akt, p-Akt, IκBa, IKKa,
IKKb, IKKc, Bcl-2, survivin, PIM-2, PIM-3 (Cell Signaling
Technology, Beverly, MA, USA), and b-actin (Sigma-Aldrich).

DNA microarray analysis. Gene expression profiling of
ATL-related cell lines was examined. KK1, SO4, LM-Y1, and
HuT102 cells with or without exposure to 100 nM AUY922 for
24 h were harvested. Total RNA was extracted using ISOGEN
(Nippon Gene, Toyama, Japan) and purified with an RNeasy
Mini Kit (Qiagen, Germantown, MD, USA), then total purified
RNA was amplified with a one-color Low Input Quick Amp
Labeling Kit (Agilent Technologies, Santa Clara, CA, USA).
Cyanine 3–labeled fragmented cRNA was hybridized to a Sure-
Print G3 Human GE 8 9 60 K Microarray Kit (Agilent Tech-
nologies) covering 27 958 Entrez Gene RNAs. The microarrays
were washed and scanned with a High-Resolution Microarray
Scanner (Agilent Technologies). Data were processed using a
quantile normalization method. Significant functions were cal-
culated by Ingenuity Pathways Analysis (Ingenuity Systems,
Redwood, CA, USA) with DAVID software (National Institute
of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD, USA; available from http: ⁄ ⁄david.
abcc.ncifcrf.gov ⁄ ) from a list of genes showed a 1.5-fold
increase or decrease following treatment with AUY922.

Results

AUY922 inhibits growth of ATL-related cell lines and primary

ATL cells. First, we analyzed the effects of AUY922 on prolif-
eration of ATL-related cell lines. Incubation with AUY922 at
various concentrations (0–100 nM) for 72 h inhibited cellular
proliferation in a dose-dependent manner in a range from 0
to 25 nM, while a plateau was reached at concentrations
>25 nM, as assessed by an MTS assay (Fig. 1a). The concen-
trations of AUY922 required to inhibit cellular proliferation of
ATL-related cell lines by 50% (IC50) varied from 12.5 to
25.0 nM. Importantly, AUY922 was effective regardless of the
presence of wild-type or mutant p53. We also assessed
AUY922-induced cellular inhibition of PBMCs obtained from
both normal subjects and patients with ATL. Importantly, pri-
mary ATL cells were more susceptible to AUY922 than nor-
mal PBMCs, and the difference was statistically significant at
25 nM (Fig. 1b). Also, when compared directly with 17-AAG,
AUY922 was between 20- and 50-fold more active at inhibit-
ing growth of ATL-related cell lines (Fig. 2).

AUY922 induces sub-G1 ⁄G1 phase arrest of ATL-related cell

lines. Next, we examined the effect of AUY922 on cell cycle

progression in the tested cell lines. Cells were incubated with
the control, AUY922 at 12.5 nM, or AUY922 at 25.0 nM for
48 h, then cell cycle distribution was analyzed using flow
cytometry. Faint increases of G1 and G2–M cell populations
were seen in KK1 and KOB, and SO4 cells, at 12.5 nM
AUY922, respectively. In all of the tested cell lines, the sub-
G1 cell population increased in a dose-dependent manner, indi-
cating apoptotic cell death (Fig. 3).

AUY922 induces apoptosis of ATL-related cell lines. To exam-
ine whether induction of apoptosis accounted for the inhibition
of proliferation observed in ATL-related cell lines, cells were
treated with the control, 12.5 nM AUY922, or 25.0 nM
AUY922 for 48 h, or 100 nM AUY922 for 48–72 h, then
examined using the annexin V–PI method. Annexin V binds to
cells that express phosphatidylserine on the outer layer of the
cell membrane, a characteristic finding in those entering apop-
tosis. AUY922 increased the proportion of cells positive for
annexin V in all cell lines in a dose-dependent manner
(Fig. 4a). Moreover, 100 nM AUY922 increased the propor-
tion of cells positive for annexin V in all cell lines in a time-
dependent manner (Fig. 4b). We carried out additional
apoptosis assays using the non-HTLV-1 related T-cell lines
Jurkat and Molt4. Those results were similar to the results
obtained with ATL-related cell lines (Fig. S1).

AUY922 affects induction of HSP70 and depletion of oncogenic

proteins through inhibition of HSP90 activity. To verify the

(a)

(b)

Fig. 5. Effects of heat shock protein (HSP) 90 inhibitor AUY922 on
HSP90, HSP70, and HSP90 client proteins. Western blot analysis
revealed that AUY922 treatment led to strong upregulation of HSP70,
a surrogate marker of HSP90 inhibition. In addition, dose-dependent
decreases in HSP90 client proteins associated with cell survival, prolif-
eration, and cell cycle, including phospho-Akt (p-Akt), Akt, IjB kinase
(IKK)a, IKKb, IKKc (a), and Cdk4, Cdk6, and survivin (b), were seen.
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Table 1. Microarray analysis of adult T-cell leukemia–lymphoma-related cell lines treated with heat shock protein 90 (HSP90) inhibitor AUY922

Fold change (log2 ratio)

Gene symbol Gene KK1 SO4 LM-Y1 HuT102 Average

I. Genes upregulated in AUY922-treated ATL-related cell lines

LGR4 Leucine-rich repeat containing G protein-coupled receptor 4 4.72 5.51 4.81 2.93 4.5

CLU Clusterin 3.03 4.75 2.67 3.84 3.6

HSPA1B Heat shock 70 kDa protein 1B 2.58 4.05 2.31 4.14 3.3

RGS2 Regulator of G-protein signaling 2 2.41 1.97 2.78 5.86 3.3

PDZK1 PDZ domain containing 1 3.34 4.70 2.06 1.22 2.8

MXD4 MAX dimerization protein 4 2.91 3.20 2.06 2.91 2.8

HSP90AA1 Heat shock protein 90 kDa alpha, class A member 1 2.90 3.04 1.86 2.59 2.6

BAG3 BCL2-associated athanogene 3 1.04 1.57 2.75 3.29 2.2

NQO1 NAD(P)H dehydrogenase, quinone 1 2.10 2.42 1.15 2.80 2.1

CREBBP CREB binding protein 2.85 2.09 1.20 1.87 2.0

DEDD2 Death effector domain containing 2 1.67 1.81 1.65 2.78 2.0

BST2 Bone marrow stromal cell antigen 2 2.09 2.28 1.64 1.76 1.9

SPHK2 Sphingosine kinase 2 2.46 2.63 1.44 1.02 1.9

HSPD1 Heat shock 60 kDa protein 1 1.98 2.08 1.30 1.56 1.7

HDAC4 Histone deacetylase 4 2.00 2.13 1.19 1.48 1.7

CEBPA CCAAT ⁄ enhancer binding protein, alpha 2.38 1.74 1.47 1.09 1.7

SAP30BP SAP30 binding protein 2.09 2.08 1.00 1.45 1.7

SQSTM1 Sequestosome 1 1.59 1.21 1.56 2.10 1.6

B9D2 B9 protein domain 2 2.16 1.87 1.00 1.37 1.6

TMEM127 Transmembrane protein 127 1.78 1.76 1.24 1.56 1.6

CLN3 Ceroid-lipofuscinosis, neuronal 3 1.66 1.89 1.37 1.35 1.6

II. Genes downregulated in AUY922-treated ATL-related cell lines

CCL3L3 Chemokine (C-C motif) ligand 3-like 3 �4.16 �4.35 �7.43 �4.41 �5.1

OSM Oncostatin M �2.72 �3.16 �4.38 �3.21 �3.4

PIM1 Pim-1 oncogene �3.72 �4.15 �1.95 �1.53 �2.8

CYP1A1 Cytochrome P450, family 1, subfamily A, polypeptide 1 �2.35 �5.03 �1.02 �2.17 �2.6

IL13 Interleukin 13 �2.02 �3.06 �2.71 �2.72 �2.6

PLAUR Plasminogen activator, urokinase receptor �2.73 �2.06 �2.18 �2.95 �2.5

VEGFA Vascular endothelial growth factor A �2.29 �2.78 �2.63 �1.60 �2.3

CAMK1D Calcium ⁄ calmodulin-dependent protein kinase ID �2.32 �2.70 �2.69 �1.34 �2.3

ADAMTSL4 ADAMTS-like 4 �2.73 �2.75 �2.17 �1.14 �2.2

HBEGF Heparin-binding EGF-like growth factor �2.00 �2.95 �1.98 �1.84 �2.2

DMC1 DMC1 dosage suppressor of mck1 homolog, meiosis-specific

homologous recombination (yeast)

�2.09 �1.22 �1.81 �3.54 �2.2

PTPN6 Protein tyrosine phosphatase, non-receptor type 6 �2.65 �2.89 �1.06 �1.96 �2.1

CEBPB CCAAT ⁄ enhancer binding protein (C ⁄ EBP), beta �2.48 �3.16 �1.30 �1.52 �2.1

LIF Homo sapiens leukemia inhibitory factor �1.39 �1.22 �3.94 �1.75 �2.1

KLF11 Kruppel-like factor 11 �2.12 �2.21 �2.23 �1.60 �2.0

TERT Telomerase reverse transcriptase �1.29 �2.04 �2.72 �2.09 �2.0

TNFRSF12A Tumor necrosis factor receptor superfamily, member 12A �2.38 �2.41 �2.30 �1.01 �2.0

TRIB3 Tribbles homolog 3 (Drosophila) �2.41 �2.94 �1.40 �1.19 �2.0

BIRC3 Baculoviral IAP repeat containing 3 �1.97 �2.01 �1.37 �2.54 �2.0

BNIP3L BCL2 ⁄ adenovirus E1B 19 kDa interacting protein 3-like �1.82 �2.65 �1.20 �2.07 �1.9

CAMK2B Calcium ⁄ calmodulin-dependent protein kinase II beta �1.36 �1.25 �3.19 �1.80 �1.9

TNFAIP3 Tumor necrosis factor, a-induced protein 3 �1.66 �2.19 �1.33 �2.15 �1.8

TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10 �1.65 �1.53 �1.73 �2.34 �1.8

CDKN2D Cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) �2.29 �1.50 �1.62 �1.80 �1.8

ANG Angiogenin, ribonuclease, RNase A family, 5 �2.48 �2.05 �1.33 �1.09 �1.7

PIM3 Pim-3 oncogene �1.98 �1.71 �1.66 �1.58 �1.7

DTL Denticleless homolog (Drosophila) �1.82 �1.25 �1.72 �2.11 �1.7

IL2RA Interleukin 2 receptor, alpha �1.67 �2.10 �1.42 �1.62 �1.7

MXI1 MAX interactor 1 �1.14 �1.42 �1.54 �2.71 �1.7

NEK6 NIMA (never in mitosis gene a)-related kinase 6 �1.44 �2.19 �1.39 �1.56 �1.6

E2F7 E2F transcription factor 7 �2.22 �1.38 �1.61 �1.33 �1.6

PRIM1 Primase, DNA, polypeptide 1 �1.90 �1.18 �1.37 �1.90 �1.6

SEPT8 Septin 8 �1.43 �1.02 �1.77 �2.06 �1.6

KLF10 Kruppel-like factor 10 �1.92 �1.23 �1.76 �1.20 �1.5

To determine which molecules play important roles in AUY922-induced ATL-cell death, gene expression profiling was carried out using DNA
microarray analysis. Among genes with changes in average expression of at least 1.5-fold (log2 ratio) in either direction in the four tested cell
lines, we selected those with known functions related to apoptosis, cell cycle, and cell proliferation. The results showed upregulation of HSP70
in those, which was consistent with the results of our Western blot analysis. We also noted upregulation of HSP90, although the protein level of
HSP90 was not changed. Interestingly, decreases in two of the Moloney murine leukemia virus (PIM) kinases, PIM-1 and PIM-3, were commonly
found.
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molecular mechanisms of the effects of AUY922 on survival
and apoptosis of ATL-related cell lines, we examined the
expressions of HSP90, HSP70, and several intracellular regula-
tors of cell proliferation, cell cycle, and apoptosis, including
p-Akt, Akt, IjBa, IKKa, IKKb, IKKc, Cdk4, Cdk6, Bcl-2,
and survivin. AUY922 treatment led to induction of HSP70, a
surrogate marker for inhibition of HSP90 function, but did not
influence the protein level of HSP90 itself. HSP90 and its
co-chaperones modulate tumor cell apoptosis, and much of
their activity seems to be mediated through effects on the
PI3K ⁄Akt pathway and NF-jB function. Suppression of
HSP90 function by AUY922 decreases the level of Akt, result-
ing in a reduction of activated p-Akt. The IKK complex, com-
posed of IKKa, IKKb, and IKKc, is a positive regulator of
NF-jB. In general, a decrease in the IKK complex inhibits
phosphorylation of IjBa, resulting in its increased level. In the
present study, AUY922 treatment decreased expression of the
IKK complex in all tested cell lines. Among the apoptosis-
related proteins examined, we found a decrease in survivin.
Overall, we found similar changes in HSP90 client proteins
regardless of the presence of wild-type or mutant p53 (Fig. 5).

Downregulation of PIM kinases in ATL-related cell lines treated

by AUY922. To determine which molecules play important
roles in AUY922-induced ATL-cell death, gene expression
profiling was carried out using DNA microarray analysis.
Among genes with changes in average expression of at least
1.5-fold (log2 ratio) in either direction in the four tested cell
lines, we selected those with known functions related to apop-
tosis, cell cycle, and cell proliferation. Our results showed
upregulation of HSP70 in those cells, which was consistent
with the results of our WB analysis, and we also noted upregu-
lation of HSP90, although the protein level of HSP90 was not
changed. Interestingly, decreases in two of the PIM kinases,
PIM-1 and -3, were commonly found (Table 1). PIM has mul-
tiple cellular functions related to cell survival, proliferation,
differentiation, apoptosis, and tumorigenesis, and its expression
is also correlated with poor prognosis in most hematopoietic
malignancies, although its role in ATL remains unclear. There-
fore, to investigate this, we examined the protein expression
levels of PIM kinases using WB in ATL-related cell lines trea-
ted by AUY922. Although the protein levels of PIM kinases
varied in each of the cell lines when untreated, the protein
expression levels of PIM-1, -2, and -3 were universally
decreased in all treated cell lines (Fig. 6).

SGI-1776 inhibits cell proliferation by blocking PIM kinases. To
confirm the importance of PIM kinases in ATL cells, we eval-
uated the inhibitory effect of SGI-1776 on those, as well as
proliferation of ATL-related cell lines and primary ATL cells.

When ATL-related cell lines were cultured with various con-
centrations (0–10 lM) of SGI-1776 for 72 h, cellular prolifera-
tion was inhibited in both dose- and cell-dependent manners
(Fig. 7a). In primary ATL cells, SGI-1776 at 10 lM inhibited
cellular proliferation (Fig. 7b). Together, these results suggest
that PIM kinases may be a novel therapeutic target for treat-
ment of ATL.

Discussion

In cancer cells, HSP90 client proteins play a major role in
multiple oncogenic processes, such as cell proliferation and
anti-apoptosis. HSP90 inhibitors are promising therapeutic
agents for variable cancer, and phase I ⁄ II studies of AUY922
with advanced solid tumors and hematological malignancies
are underway.(25)

We observed that AUY922 has very high cytotoxicity
toward ATL-related cell lines and primary ATL cells. We also
found that the inhibitory effect of AUY922 was superior to
that of 17-AAG and 17-DMAG,(2,3) and our results confirmed
previous reports noting that AUY922 showed potent cell inhi-
bition in a low nanomolar range.(7–9) Moreover, we also
showed that ATL-related cell lines and primary ATL cells
were more susceptible to inhibition of proliferation by treat-
ment with AUY922 than normal PBMCs. The difference
between normal and cancer cells in regard to ATP-binding
affinity with HSP90 likely contributed to this selectivity of
effect.(26)

Fig. 6. Effects of heat shock protein 90 inhibitor AUY922 on
Moloney murine leukemia virus (PIM) kinases in adult T-cell leukemia–
lymphoma. Western blot analysis revealed that AUY922 induced
downregulation of PIM-1, -2, and -3 in adult T-cell leukemia–
lymphoma-related cell lines.

(a)

(b)

Fig. 7. Growth inhibitory effects of SGI-1776 in adult T-cell leuke-
mia–lymphoma. SGI-1776, a pan-PIM kinase inhibitor, inhibited
cellular survival suppression in adult T-cell leukemia–lymphoma-
related cell lines in both dose- and cell-dependent manners (a).
Furthermore, SGI-1776 inhibited cellular survival in primary adult T-cell
leukemia–lymphoma cells (b).

© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd
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We found that the inhibitory effect of AUY922 on ATL cells
was due to the induction of cell cycle arrest and apoptosis. Our
results showed that AUY922 induced G1 arrest due to decreased
protein levels of CDK4 and CDK6, which have been identified
as HSP90 client proteins that are important for cell cycle G1

phase progression.(27) Survivin has also been identified as an
HSP90 client protein(27) and reported to be overexpressed in
ATL cells.(28) Our findings showed that AUY922 induced apop-
tosis associated with reduction of survivin in ATL-related cell
lines. In addition, treatment with AUY922 decreased the IKK
complex proteins (IKKa, IKKb, and IKKc). HSP90 is a regula-
tor of NF-jB signaling through IKK activation and a reduction
in the IKK complex inhibits IjBa phosphorylation followed by
a reduction in NF-jB activity.(29) Among apoptosis-related
proteins, we found a decrease in survivin and no change in
Bcl-2, known as an NF-jB target, following treatment with
AUY922. These findings suggest that typical Bcl-2 family
members are not involved in AUY922-induced apoptosis. Fur-
thermore, NF-jB activity may contribute to induction of cell
cycle arrest and apoptosis of ATL-related cell lines.
AUY922 also induced Akt degradation, which resulted in a

reduction of p-Akt. It has been reported that PI3K ⁄Akt plays a
role in activation of pro-survival pathways in HTLV-1-infected
T-cell lines and primary ATL cells.(16,30–32) In those studies,
Akt was shown to be a molecular target in ATL, and it has
also been identified as an HSP90 client protein and shown to
be sensitive to HSP90 inhibitors.(33,34)

Although the relationship between the p53 mutation and
chemosensitivity in ATL remains unknown, Tawara et al. and
Nishimura et al.(35,36) noted a tendency for the median survival
periods of patients with the p53 mutation and ⁄or loss of het-
erozygosity of that region to be shorter as compared to patients
without a p53 aberration. Importantly, we found that AUY922
had effects on ATL-related cell lines irrespective of their p53
status.
Based on the present DNA microarray results, we focused

on the role of PIM kinases in ATL and are the first to present
those results. PIM is an oncogene encoding a serine ⁄ threonine
protein kinase family comprised of PIM-1, -2, and -3; PIM
kinases have multiple functions involved in cell proliferation,
survival, differentiation, apoptosis, and tumorigenesis.(37,38)

Elevated levels of PIM-1 and PIM-2 have been mostly found
in hematologic malignancies and prostate cancer, and increased
PIM-3 expression has been observed in solid tumors.(39,40) In
addition, PIM expression is correlated with poor prognosis in
some hematopoietic malignancies.(41–44) Our results indicated
an anti-ATL activity of AUY922, which was mediated by
degradation of PIM kinases. Those kinases are induced by
activation of transcriptional factors downstream of growth fac-
tor signaling pathways, such as the Janus kinase and signal

transducer and activator of transcription (JAK-STAT) and NF-
jB pathways. Therefore, it is possible that the decrease in PIM
kinases induced by AUY922 was due to a reduction in NF-jB
activity.(45) The present results are the first to show an inhibi-
tory effect of SGI-1776 on ATL-related cell lines and primary
ATL cells. We concluded that PIM kinases are partly responsi-
ble for cell survival in ATL.
SGI-1776 has been shown to induce apoptosis in cells

related to human acute myeloid leukemia and chronic lympho-
cytic leukemia.(46,47) Although a phase l clinical trial of SGI-
1776 in patients with castration-resistant prostate cancer and
refractory non-Hodgkin’s lymphoma was started, evaluation of
this compound was halted due to cardiac toxicity.(48) Our find-
ings suggest that PIM kinases are a novel therapeutic target for
treatment of ATL, indicating that a new generation of PIM
kinase inhibitors with reduced toxicity in clinical settings is
needed.
Heat shock protein 90 mediates protection of PIM kinases

from proteosome degradation and PIM-1 was previously
reported to be an HSP90 client protein.(49) However, it is not
known whether PIM-2 and -3 are also such client proteins. In
our WB analysis of SGI1776, even though it was not deter-
mined whether PIM-2 and ⁄or -3 directly interact with HSP90,
the results suggest that they are HSP90 client proteins in ATL.
In summary, our findings show that AUY922 may be poten-

tially useful as a chemotherapeutic agent and PIM kinases a
novel therapeutic target for treatment of ATL.
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AP-1 activator protein-1
ATL adult T-cell leukemia–lymphoma
HSP90 heat shock protein 90
IKK IjB kinase
NF-jB nuclear factor-jB
p-Akt phospho-Akt
PI propidium iodide
PI3K phosphatidylinositol 3-kinase
PIM proviral integration site for moloney murine leukemia virus
WB Western blot
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Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. Effects of heat shock protein 90 inhibitor AUY922 on apoptosis in non-HTLV-1 related T-cell lines. The non-HTLV-1 related T-cell lines
Jurkat and Molt4 were treated with or without 100 nM AUY922 for 48 or 72 h, then harvested, stained, with annexin V–propidium iodide, and
analyzed using flow cytometry. Data shown represent the percentages of apoptotic cells among untreated and AUY922-treated cells.
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