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Membrane fouling remains a notorious problem in microfiltration (MF) and ultrafiltration

(UF), and a systematic understanding of the fouling mechanisms is fundamental for

solving this problem. Given a wide assortment of fouling studies in the literature, it

is essential that the numerous pieces of information on this topic could be clearly

compiled. In this review, we outline the roles of membrane-foulant and foulant-foulant

intermolecular interactions in MF/UF organic fouling. The membrane-foulant interactions

govern the initial pore blocking and adsorption stage, whereas the foulant-foulant

interactions prevail in the subsequent build-up of a surface foulant layer (e.g., a gel

layer). We classify the interactions into non-covalent interactions (e.g., hydrophobic

and electrostatic interactions), covalent interactions (e.g., metal-organic complexation),

and spatial effects (related to pore structure, surface morphology, and foulants size for

instance). They have either short- or long-range influences on the transportation and

immobilization of the foulant toward the membrane. Specifically, we profile the individual

impacts and interplay between the different interactions along the fouling stages. Finally,

anti-fouling strategies are discussed for a targeted control of the membrane-foulant and

foulant-foulant interactions.

Keywords: membrane fouling, intermolecular interaction, non-covalent interaction, covalent interaction,

steric effect

INTRODUCTION

Microfiltration (MF) and ultrafiltration (UF) membrane separation technologies are playing an
increasingly important role in water purification, wastewater treatment, and resource recovery
(Baker, 2012; Tong et al., 2019; Xiao et al., 2019b). However, membrane fouling remains a
notorious problem in MF/UF processes (Guo et al., 2012; Shi et al., 2014; Meng et al., 2017).
Membrane fouling causes higher filtration resistance and lower separation efficiency. To mitigate
fouling, intensive hydraulic regulation (such as air scouring and crossflow circulation) and frequent
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chemical cleaning not only consume a large amount of energy
and cleaning agents, but also shorten the membrane life and
increase the depreciation cost (Porcelli and Judd, 2010; Wei
et al., 2011; Shi et al., 2014; Xiao et al., 2019b). Organics are
a major group of foulant, and the fouling caused by organics,
called organic fouling, merits particular attention in MF/UF
operation (Lee et al., 2007; Guo et al., 2012). For a more cost-
effective and targeted control of membrane fouling, it is necessary
to clearly understand the reasons, factors, and dynamics of
fouling. Membrane-foulant and foulant-foulant interactions are
the fundamental principles of membrane fouling (Wang and
Waite, 2008; Lin et al., 2010; Tang et al., 2011; Xiao et al.,
2011). These interactions can be classified into non-covalent
interactions, covalent interactions, and spatial effects, which
may correspond to different physical/chemical means to combat
them. This review aims to concisely outline the prevailing
mechanisms and the targeted control strategies of membrane
fouling from the perspective of membrane-foulant and foulant-
foulant interactions.

MEMBRANE-FOULANT INTERACTION

During the fouling process, an organic foulant particle from the
bulk solution travels through a possibly existing concentration
polarization (CP) boundary layer and arrives at the membrane
surface (outer surface or pore walls). The mass transfer may be
influenced by hydrodynamic effects such as advection driven by
filtrational flow, Brownian diffusion, shearing-induced diffusion,
and/or inertial lift, depending on the size of the foulant particle
(Belfort et al., 1994). In the CP layer, the mass transfer is hindered
by the chemical potential gradient that is also a function of
foulant-foulant interaction (Wang et al., 2011; Wang and Li,
2012). The foulant particle may also receive electrostatic long-
range attractive or repulsive force from themembrane. Figure 1A
illustrates the possible force balance in the CP layer.

At the membrane surface, non-covalent and covalent
interactions may occur between the membrane and foulant,
and may be influenced by spatial effects (Zhang and Song,
2000; Maximous et al., 2009; Huang et al., 2014; Wang et al.,
2015). Among them, non-covalent interactions mainly include
hydrophobic interaction and electrostatic interaction (van Oss,
2006), both of which are different forms of electromagnetic
interaction with varied strength and effective distance (long- or
short-range). Figure 1B illustrates the possible force balance at
the membrane-foulant interface.

Non-covalent Interaction
Non-covalent interactions include van der Waals interactions,
Lewis acid-base interactions, electrostatic interactions, and
random thermal motions. In the framework of the extended
DLVO (XDLVO) theory, hydrogen bonding is regarded as
a generalized Lewis acid-base interaction; as such, van der
Waals and Lewis acid-base interactions together are classified
as hydrophobic interaction (van Oss, 2006). In MF/UF water
treatment systems, the hydrophobicity and surface charge
(potential) of the membrane and foulant are two important
factors for the membrane-foulant non-covalent interaction,

corresponding to hydrophobic adsorption and electrostatic
attraction/repulsion, respectively (Weis et al., 2005; van Oss,
2006; Maximous et al., 2009; Meng et al., 2009; Xiao et al., 2014b).

Electrostatic Interaction

The membrane-foulant electrostatic interaction could be either
attractive or repulsive, depending on the sign of the charges
carried by the membrane and foulant. Opposite charges promote
transport and adsorption of the foulants to the membrane,
whereas the same charges do not (Zhan et al., 2004; Weis
et al., 2005; Cai et al., 2016). At different pH conditions,
the sign and amount of charge may be different due to
protonation/deprotonation of the functional groups. For a
protein moving toward the membrane with the same sign of
charge, the farther the pH is from the isoelectric point, the
higher surface charge density the protein carries, and the stronger
electrostatic repulsion it will receive from the membrane (Cai
et al., 2016); as a result, this allows for a higher quasi-steady
state flux (corresponding to a stronger filtration drag against the
electrostatic repulsion) at force balance (Palecek and Zydney,
1994). The amount of surface charges carried by the membrane
or foulant may also vary with ionic strength or hardness ion
concentration due to adsorption of the ions (Wang Z. et al., 2018;
You et al., 2020). Zeta potential is usually used to characterize the
apparent potential on the water film-covered surface (the water
film is tightly bound to the surface when moving in aqueous
media) (Kim et al., 1997; Wang et al., 2000; Hunter, 2013).
Aspects of the solution environment, such as ionic strength, can
affect the gradient of electric potential across the water film and
thus affect the zeta potential (Hunter, 2013; Israelachvili, 2015).
Approximately, the membrane-foulant electrostatic interaction
energy could be related to the product of the zeta potentials of
the membrane and foulant, which reflects the combined effect of
the two (Xiao et al., 2011; Cai et al., 2016).

Hydrophobic Interaction

The membrane-foulant hydrophobic interaction includes van
der Waals and Lewis acid-base interactions. Hydrogen bonding
could be classified as a generalized Lewis acid-base interaction;
as such, the hydrophobic interaction is usually dominated by the
Lewis acid-base interaction (van Oss, 2006). The hydrophobic
behavior could be understood from the perspective of hydrogen
bonding. Immersion of a hydrophobic surface (such as that of a
membrane or a foulant particle with a low density of hydrogen
bonding sites) in water will disturb the original dense network
of hydrogen bonds of water, reducing the number of hydrogen
bonds, or distorting the hydrogen bonds, and thus increase the
free energy at the enthalpic or entropic level (Chandler, 2005).
Therefore, the surrounding water molecules will spontaneously
push the hydrophobic surface together to reduce the water-
contacting interface area, and this phenomenon is apparently
observed as hydrophobic attraction. In the XDLVO theory, the
hydrophobic effect due to hydrogen bonding is incorporated into
the Lewis acid-base term as an extension of the DLVO theory
(van Oss, 2006). The membrane-foulant hydrophobic adsorption
mainly affects initial fouling or irreversible fouling, for which the
foulant particle directly contacts the membrane surface.
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FIGURE 1 | Force analysis of a foulant particle (A) moving toward the membrane and (B) sitting on the membrane surface.

A large number of studies have shown that a membrane
surface with higher hydrophobicity would suffer more serious
adsorptive fouling (Jin et al., 2001; Weis et al., 2005; Maximous
et al., 2009; Xiao et al., 2014b; Zhao et al., 2018). Higher
hydrophobicity of the foulant would make the hydrophobic
adsorption stronger (Xiao et al., 2014b; Mu et al., 2019).
The air-water-solid three-phase contact angle (θ) is usually
used to judge the relative hydrophobicity of the membrane
surface or foulant particle surface, and a smaller contact angle
suggests a weaker hydrophobicity (or stronger hydrophilicity)
(van Oss, 2006; Israelachvili, 2015; Jiang and Patel, 2019). The
interference of surface roughness and porosity in contact angle
measurement could be corrected using, e.g., the Cassie-Baxter
relation (Han et al., 2019a,b). Approximately, the membrane-
foulant hydrophobic interaction energy could be related to the
sum of the cosθ ’s of the membrane and foulant, which reflects
the combined effect of themembrane and foulant hydrophobicity
(Xiao et al., 2011).

Identification of the Dominant Mechanism

In MF/UF systems, there has long been a controversy over
whether the hydrophobic or the electrostatic effect dominates the
membrane-foulant non-covalent interaction. Researchers have
studied not only the individual impact of membrane/foulant
hydrophobicity/surface charge on membrane fouling, but also
the joint impact of them in different combinations, such as
the combined effects of membrane and foulant surface charge
(Xiao et al., 2014b), foulant hydrophobicity/surface charge
and membrane hydrophobicity (Yu et al., 2018), and foulant
hydrophobicity and membrane surface charge (Raspati et al.,
2011). Xiao et al. (2011) derived a semi-empirical multiple
regression model based on the XDLVO theory, describing
the combined effect of the hydrophobic and electrostatic
properties (represented by water contact angle and zeta
potential, respectively) of the membrane and foulant on the
adsorption equilibrium constant. Statistical analysis showed that
the contact angle term (sum of the cosθ ’s) was significant,
whereas the zeta potential term (product of the membrane

and foulant zeta potentials) was not, indicating that the main
mechanism for adsorptive fouling of MF/UF membranes might
be hydrophobic interaction rather than electrostatic interaction
(Xiao et al., 2011). However, for further accurate quantification,
the impacts of surface roughness (Hoek and Agarwal, 2006),
molecular conformational changes (Nakanishi et al., 2001), or
entropic repulsion (Grasso et al., 2002) should be rigorously
considered. Future studies on the leading mechanisms could
adopt mechanistic models with comprehensive consideration
of the factors, statistical models covering a wider range of
the variables and samples, or semi-empirical computational
chemistry approaches such as molecular dynamics andmolecular
docking (Shaikh et al., 2018; Liu et al., 2019).

Covalent Interaction
Covalent interactions, such as the metal-organic complexation,
could also occur between the membrane and foulant. The
functional groups (e.g., carboxyls), present on the foulant particle
and membrane surfaces, can be bridged by complexation with
multivalent metal ions such as calcium and magnesium ions (Mo
et al., 2012; Wang et al., 2015; Xin et al., 2015). The covalently
adsorbed foulant could serve as an initial riveting layer on
the membrane surface, laying a foundation for subsequent gel
layer build-up. The gel layer is a network of foulant molecular
chains which are also linked bymetal ion-mediated complexation
(Wang and Waite, 2009; Chen et al., 2016). The type and
concentration of metal ions (Wang et al., 2015; Xin et al., 2015)
as well as the type and density of organic ligands (Wang and
Waite, 2009; Guo et al., 2012; Xiao et al., 2014b) can affect the
complexation, as evidenced by atomic force microscope (AFM)
and quartz-crystal microbalance with dissipation monitoring
(QCM-D) measurements (Contreras et al., 2011; Mo et al.,
2012). There is a critical concentration for Ca2+ in the feed
solution, below which the initial fouling rate (flux decline rate)
increases with the increase of the Ca2+ concentration; above it,
the initial fouling rate decreases because excessively high Ca2+

concentrations cause the foulant particles to be bridged together
in the feed solution before arriving at the membrane surface, so
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that the foulants form loose flocs instead of a dense adsorption
layer on the membrane surface (Mo et al., 2011).

Spatial Effects
The membrane pore structure (e.g., porosity and pore shape) and
surface morphology (e.g., roughness) and the foulant size and
morphology can have spatial effects on membrane fouling (Le-
Clech et al., 2006; Fu et al., 2008; Xiao et al., 2014a; Kumar and
Ismail, 2015; Cai et al., 2018; Li et al., 2019). The complexity
of the pore structure affects fouling in many ways: on the one
hand, the filtration flux of a membrane with straight-through
pores decreases sharply due to pore blockage, whereas the flux of
a membrane with highly interconnected pores decreases mildly
due to that the fluid can easily bypass the blocked point (Ho
and Zydney, 1999, 2006); on the other hand, highly crosslinked
porous network structures are easier to catch and intercept
foulant particles (especially the foulant particles with irregular
shapes) and are more likely to suffer internal fouling (Xiao et al.,
2014a; Fan et al., 2018). The membrane surface roughness can
affect fouling at different scales. At the micrometer scale, the
topography of membrane surface affects the microflow, such that
the foulant particles are more prone to deposit in the “valleys”
than on the “hills” (Kang et al., 2006; Hashino et al., 2011;
Won et al., 2016). At the nanometer scale, the surface roughness
can affect the interfacial interaction between the membrane
and foulant (Hoek et al., 2003; Zhao et al., 2015). Empirically,
a smoother membrane surface corresponds to a slower initial
fouling, but probably a higher irreversibility against hydraulic
washing once fouling occurs (Oh et al., 2009; Jin et al., 2010;
Wang and Tang, 2011).

The spatial effects on the non-covalent interaction are
represented by the effect of membrane pore structure and
surface roughness on foulant adsorption (Xiao et al., 2014a;
Zhao et al., 2015; Fan et al., 2018). Compared with membranes
with perforated plate-like (e.g., PCTE) or particulate bed-like
morphologies (e.g., PVDF), fibrous mesh-like membranes (e.g.,
PTFE) are beneficial for reducing hydrophobic adsorption (Xiao
et al., 2014a; Fan et al., 2018). This is because thin, fiber-like
pore walls provide limited contactable area for the adsorption,
and the foulant particles sitting on the fibers are not stable under
hydraulic disturbance. Moreover, interfacial force calculation
suggests that the hydrophobic attractive force of a foulant particle
received from a thread-like (or cylindrical) membrane object
is weaker than that from a plane-like membrane object at the
same distance (Fan et al., 2018). At the micrometer scale, the
membrane surface roughness can influence the force balance
of a foulant particle sitting on the membrane surface. Higher
roughness is conducive to the leverage effect for the stripping or
rolling of the particle under hydrodynamic shear (Hong et al.,
2014). At the nanometer scale, the roughness can obstruct close
contact between the membrane and foulant surfaces, increasing
the effective distance and weakening the force between them
(especially for short-range forces which decay steeply with
increasing distance) (Hoek et al., 2003; Hoek and Agarwal, 2006).

On the other hand, non-covalent and covalent interactions
can alter spatial effects such as the membrane pore sieving
effect during the development of membrane fouling (Xiao et al.,

2014b). At the initial stage of fouling, hydrophobic adsorption
of the foulant onto the pore walls can narrow the pore channels
and in turn promote the mechanical interception of the foulant
particles at the pore openings. A gel layer will then be formed
when the foulant intercepted on the membrane surface reaches
a critical concentration (i.e., gel point) (Xiao et al., 2013).
Therefore, hydrophobic adsorption accelerates this process.
The membrane-foulant complexation is also beneficial to the
accumulation of foulant on the membrane surface, composing
a premise layer to promote subsequent growth of the gel layer
(Mo et al., 2012; Chen et al., 2018).

Summary
The relationships among the membrane-foulant non-covalent,
covalent, and spatial effects are schematically summarized in
Figure 2. A conceptual model for a combination of these effects
might be expressed in the form of:

ET =
∑

EiSi + ε = (EHPSHP + EELSEL + ECVSCV + . . .) + ε (1)

where ET is the total effect (e.g., the total interaction energy);
Ei’s are the components represented by hydrophobic interaction
(HP), electrostatic interaction (EL), covalent interaction (CV),
etc.; Si’s are the correction factors for spatial effects; and ε is
the error term due to other marginal effects and non-linearity
of the expression. EHP and EEL are approximately proportional
to (cosθm + cosθ f) and ζmζ f, respectively, where θ and ζ are
the water contact angle and zeta potential of the membrane (m)
and foulant (f) according to a derivation from the XDLVO theory
(Xiao et al., 2011). ECV may be related to the strength and density
of the metal-organic bonds for the complexation. Si may be a
function of the effective contacting area and/or distance.

FOULANT-FOULANT INTERACTION

When the bare membrane surface is completely covered
(shielded) by the foulant material after the initial adsorption and
pore blocking, further development of a foulant layer on the
outer surface would be controlled by the foulant-foulant cohesion
rather than the foulant-membrane adhesion (Wang et al., 2013;
Huang et al., 2014; Xiao et al., 2014b).

Covalent Interaction
Metal-organic complexation is the critical mechanism for gel
layer formation. The skeleton of the gel matrix is constituted
by the polymers of, e.g., polysaccharides and humic acids (Yang
N. N. et al., 2011; Xiao et al., 2014b; Chen et al., 2016). The
thermodynamics of gel formation can be described by the Flory-
Huggins theory for polymeric systems (Lei et al., 2016). In
general, the gel layer has a quite high porosity (and water
content) but extremely low water permeability. For example,
the calcium alginate gel layer (4 mmol Ca/g alginate) has a
porosity of 0.97 and a high specific filtration resistance of
1019 m−2, and the calcium humate gel layer (5 mmol Ca/g
humic acid) has a porosity of 0.99 and a specific resistance
of 4 × 1018 m−2, under a constant pressure of 100 kPa
(Wang and Waite, 2008; Yang N. N. et al., 2011). The reason is
that the water contained in the gel layer is mainly bound

Frontiers in Chemistry | www.frontiersin.org 4 June 2020 | Volume 8 | Article 417

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xu et al. Interactions in Membrane Fouling

FIGURE 2 | Relationships among membrane-foulant interactions.

water and the migration of free water is extremely limited. As
water passes through the gel layer, the water molecules are
dragged from the gel layer (with a low chemical potential) to the
permeate side (with a much higher chemical potential), so that
a high transmembrane pressure is required to balance the gap of
chemical potential (Hong et al., 2014; Chen et al., 2016).

The three-dimensional network structure of the gel layer
is formed by polymer chains crosslinked by multivalent metal
ions via complexation (Wang and Waite, 2008; Chen et al.,
2016). The specific resistance of the gel layer is closely related
to the degree of crosslinking and complexation. The polymer
chain structure, ligand type and density, and metal ion type and
concentration could be important factors for the complexation.
The equilibrium constant for Ca-humic acid complexation was
reported to be ∼1 × 103 L/mol (as determined by isothermal
titration calorimetry) (Wang et al., 2015), while for Ca-microbial
products it was ∼5 × 103 L/mol (Wang and Waite, 2009)
or ∼1.5 × 104 L/mol (Xiao et al., 2014b) (as determined
by complexometric titration) in membrane bioreactor (MBR)
systems; relatively strong carboxylic sites (with pKa <5.5 or 6)
were most responsible for the complexation.

Calculation based on the density functional theory (DFT), a
computational chemistry approach, indicates that intermolecular
Ca-alginate complexation occurs more preferentially than
intramolecular complexation, and the two alginate chains
connected by Ca2+ tend to stretch in a tetrahedral angle
(cross to each other) rather than parallel to each other, which
homogenizes the gel matrix and eventually form an “egg-box”
structure (Zhang et al., 2018). The intermolecular bridging of
alginate chains is enhanced significantly by the increase of Ca2+

concentration (Bruus et al., 1992; Zhang et al., 2017). Compared

with Mg2+ and Fe3+, Ca2+ has been well-reported to be able

to form a highly porous but poorly permeable alginate gel layer
(Davis et al., 2003; Wang and Waite, 2009).

Non-covalent Interaction
As the molecular chains in the gel layer are normally negatively
charged, the electrostatic repulsion would affect the inter-chain
distance and, hence, the density and uniformity of the gel layer.
The charge density is related to the ionization of acid groups
(such as carboxyls) that is a function of pH (Kratz et al., 2000). At
lower pH, the acid groups are less charged and the electrostatic
repulsion weakens, resulting in deteriorated fouling (Chan and
Chen, 2001). The increase in ionic strength of the solution can
also reduce the electrostatic repulsion by compressing the electric
double layer (Hunter, 2013; Israelachvili, 2015; You et al., 2020).
When there is free Ca2+ in the solution, it can also compress the
double layer and enable a closer contact between the chains.

When multiple foulants coexist in the solution, the non-
gelling foulant may be adsorbed on the surface or inside the
gel layer through non-covalent interactions such as hydrophobic
and electrostatic interactions. For example, proteins could be
adsorbed and penetrate deep into the Ca-alginate gel layer
(Wang and Waite, 2008) and form a protein-alginate composite
foulant layer (Pendashteh et al., 2011). In an organic-inorganic
composite foulant layer (such as a polysaccharide gel blended
with silica and metal oxides), the non-covalent adsorption
(such as electrostatic attraction of opposite charges) or covalent
bridging between the inorganic particles and organic polymer
backbones will increase the compactness of the foulant layer (You
et al., 2005; Meng et al., 2007; Chen et al., 2018).

Spatial Effects
When the gel layer is blended with inorganic particles (e.g., SiO2,
Al2O3, Fe2O3, and kaolin), the inorganic particles can affect the
structure, permeability, and filtration resistance of the gel layer
through hydraulic effect and physical/chemical adsorption (Ao
et al., 2018; Chen et al., 2018; Ma B. W. et al., 2019). Blending of
impermeable solid particles would lower the overall permeability
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of the gel layer; however, when the content of inorganic particles
is high enough to interrupt the continuous gel structure (creating
gaps around the particles), the water permeability would be
largely elevated (Chen et al., 2018). The gaps are also encouraged
by the adhesion between inorganic particles and organic polymer:
the stronger adsorption, the more likely organics tend to
agglomerate at the surface of the inorganic particles rather
than to form a continuous gel layer (Chen et al., 2018). The
adsorption could be contributed by hydrophobic interaction,
electrostatic attraction, and/or covalent complexation between
the gelling polymer and inorganic particles (Giese and van Oss,
2002; Israelachvili, 2015; Chen et al., 2018). According to Chen
et al. (2018), a conceptual model for the permeability of the
composite gel/cake layer might be expressed in the form of:

JT =
∑

Jifi (K) + ε =
(

JOGfOG + JIPfIP + J0f0
)

+ ε (2)

where JT is the overall permeability contributed by the
components of organic gel (JOG), inorganic particles (JIP), and
gaps filled with water (J0); fi is a distribution function depending
on the adsorption parameter K; and ε is the error term.

ROLE OF THE INTERACTIONS AT
DIFFERENT FOULING STAGES

The interactions specific to different fouling stages are
schematically summarized in Figure 3.

(a) The Pre-fouling Stage
When migrating from the bulk solution toward the membrane,
the foulant particle is dragged by the filtration flow but repelled
by the concentration gradient in the CP boundary layer (i.e., a
foulant-foulant repulsion in a broad sense) (Wang et al., 2011;
Wang and Li, 2012; Xiao et al., 2013), and the CP phenomenon
stems from the mechanical rejection of the foulant by the
membrane (a steric effect). The foulant in the CP layer may
also be attracted or repelled by long-range electrostatic force
from the membrane surface (membrane-foulant non-covalent
interaction). If the particle is micron-sized, it may also undergo
hydrodynamic effects (e.g., shear-induced back transport or
inertial lift) in the boundary layer (Belfort et al., 1994).

(b) The Membrane Adsorption/Pore
Blocking Stage
After the foulant arrives at the membrane surface or pore
walls, the membrane-foulant interaction plays a governing
role. Hydrophobic, electrostatic, or covalent adsorption of
the foulant onto the pore walls would narrow the pore
channels, which enhances the size exclusion effect and
promotes mechanical rejection of subsequent foulant particles
(spatial effect). The increased rejection rate would in turn
promote concentration polarization above the membrane
surface (influencing subsequent foulant transport) (Song
and Elimelech, 1995; Wang et al., 2011). The porosity and
pore morphology changed by the pore adsorption would
vary the local fluid conditions (e.g., local flux) near the pores

(Ho and Zydney, 1999), or have a feedback effect on the
adsorption by altering the effective area or distance of the
interaction (Fan et al., 2018). The non-covalent or covalent
adsorption on the membrane surface, as well as the mechanical
retention at the pore openings, contributes to the accumulation
of foulant concentration on the membrane surface (Xiao
et al., 2014b). The membrane-foulant interactions are closely
related to the hydrophobicity, charge, functional groups
(e.g., complexing groups), and spatial properties (e.g., pore
structure, surface roughness, and particle size) of the membrane
and foulant.

(c) The Gel/Cake Layer Stage
When the foulant accumulated on the membrane surface reaches
a critical concentration (e.g., the gel point), a gel layer begins to
form and shield the membrane surface (Wang and Waite, 2008;
Yang N. N. et al., 2011; Xiao et al., 2013). The subsequent foulant
from the feed solution mainly interacts with the gel/cake layer
surface rather than the membrane surface, and the main effect
shifts from membrane-foulant interaction to foulant-foulant
interaction. The covalent complexation is the key mechanism
for gel layer constitution (Wang and Waite, 2009; Chen et al.,
2016), while the non-covalent and steric effects could influence
the porosity, compactness, and permeability of the foulant layer
(Chen et al., 2018). These effects are closely related to the
hydrophobicity, charge, size, morphology, and functional groups
of the foulant components.

There are a number of mathematical models describing the
process and mechanisms of membrane fouling. Process models
describe the variation of flux (or resistance) as a function
of filtration time (or volume). The resistance-in-series model
divides the total resistance into membrane resistance, pore
blocking resistance, surface foulant layer resistance, etc., based
on the spatial distribution of the foulant (Yeh and Cheng,
1993). According to the temporal change of the resistance,
the filtration laws classify the fouling modes into standard
blocking (on the pore walls, including fast and slow adsorption
modes), complete blocking (at the pore opening), intermediate
blocking (random coverage of the porous surface), and cake
filtration (for cake/gel layer growth) (Hlavacek and Bouchet,
1993; Bowen et al., 1995; Xiao et al., 2019a). Some researchers
have developed combined or transitional models between the
different fouling modes (Bolton et al., 2006; Ho and Zydney,
2006; Iritani, 2013; Tien et al., 2014) and modified the
models for more realistic scenarios (Cheng et al., 2011; Tien
and Ramarao, 2011; Xiao et al., 2019a). For the temporal
change of foulant deposition amount, the process of foulant
adsorption onto the membrane surface or pore walls can
be described by dynamic adsorption models (in a linear or
langmuir mode for example) (Nakamura and Matsumoto, 2006;
Mu et al., 2018), and the process of foulant gel/cake layer
growth can be described by mass transfer models in the CP
boundary layer in relation to hydrodynamic conditions (e.g.,
crossflow shear rate) (Wang and Li, 2012; Xiao et al., 2013).
Mechanism models are used to quantify the membrane-foulant
and foulant-foulant interactions in terms of free energy (related
to equilibrium constant) or force (as the gradient of energy).
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FIGURE 3 | Membrane-foulant and foulant-foulant interactions at different fouling stages. (A) Pre-fouling stage, (B) Membrane adsorption/ blocking stage,

(C) Gel/cake layer stage.

Non-covalent interaction can be described by interfacial energy
theories such as DLVO and XDLVO theories (van Oss, 2003,
2008; Tang et al., 2011), while covalent complexation can
be described by the coordination theory (Chermette, 1998;
Wang and Waite, 2009). Recently, computational chemistry
tools have been introduced into the simulation of the
interactions, such as the molecular docking (Liu et al., 2019)
and molecular dynamics (Shaikh et al., 2018) for non-covalent
interactions, and the density functional theory (DFT) for covalent
interactions (Zhang et al., 2018; Chen et al., 2020). Further
study could adopt the combined quantum mechanics/molecular
mechanics for a combined treatment of the covalent and
non-covalent interactions (Gao and Thompson, 1998) and
the coarse-grained molecular dynamics or dissipative particle
dynamics for macromolecular interactions on a mesoscopic scale
(Müller et al., 2006; Marrink et al., 2007).

ANTI-FOULING STRATEGIES TARGETED
ON THE INTERACTIONS

Inhibition of Foulant Migration
The migration of foulants toward the membrane surface
could be inhibited via hydrodynamic control (regulating
CP or hydrodynamic boundary layer) and electrophoretic
back transport.

The reverse diffusion of foulant away from the membrane
surface can be enhanced by controlling the hydrodynamics
near the membrane surface. In UF processes, the enhancement
could be achieved by increasing crossflow intensity, injecting
gas to the membrane unit to produce secondary flow and
wake flow, equipping movable parts to promote turbulence,
and applying spiral flow with high rotation frequency to

disturb the mass transfer boundary layer (Cabassud et al.,
2001; Adach et al., 2002; Zakrzewska-Trznadel et al., 2009;
Kondo et al., 2010). In MBR wastewater treatment processes,
the hydraulic enhancement includes optimization of membrane
aeration intensity, aerator type and layout, membrane module
configuration, membrane cassette layout, and upflow/downflow
circulation in the membrane tank (Drews et al., 2008;
Yan et al., 2016; Wu et al., 2018). Computational fluid
dynamics (CFD) reveal that setting baffles in an airlift MBR
tank could constraint the upflow surrounding the membrane
unit, elevate the average shear force on the membrane
surface, and improve the uniformity of shear distribution
to mitigate foulant deposition on the membrane surface
(Yan et al., 2015, 2016).

Given a low-voltage electric field, electrophoresis of the
negatively charged foulants (e.g., sludge bacteria and extracellular
biopolymers) may inhibit their transportation toward the
membrane surface and counteract the filtration drag-induced
compression of the foulant layer (Chen et al., 2007; Akamatsu
et al., 2010; Bani-Melhem and Elektorowicz, 2010; Zhang J.
et al., 2015). To facilitate the electric effect, some researchers
have combined electrode materials with the membrane to
fabricate composite functional membranes, such as carbon-
based membranes (Ahmed et al., 2016; Manawi et al., 2016)
and stainless-steel mesh composite conductive membranes
(Huang et al., 2015).

Membrane Modification for Tuning the
Membrane-Foulant Interaction
To diminish the membrane-foulant hydrophobic interaction,
hydrophilic modification has been implemented on the
membrane substrate material via blending (Guo et al., 2019;
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Tao et al., 2019) or copolymerization (Sun et al., 2013; Wang
S. et al., 2018), the membrane outer surface via hydrophilic
(Higuchi et al., 2002; Li et al., 2015) or superhydrophilic
grafting/coating (Liang et al., 2014, 2018; Li et al., 2018;
Zhao et al., 2018; Ma Z. B. et al., 2019), and the inner
pore walls (Liang et al., 2012). The membrane-foulant
electrostatic repulsion could be enhanced or electrostatic
attraction reduced by modifying the membrane charge
properties via, for instance, in situ deposition of electrically
conductive polymers such as polyaniline, polypyrrole, and
polythiophene on the surface or in the pore structure
(Zhan et al., 2004; Qiang et al., 2011; Liu et al., 2012;
Sun et al., 2018). Applying an electric capacitive carbon

material (e.g., activated carbon) as the supporting layer
of the UF membrane could also increase the electrostatic
repulsion when negatively charged (Liang et al., 2019). The
membrane-foulant covalent complexation could be alleviated
by reducing the density of carboxyl groups on the membrane
surface (Mo et al., 2012; Han et al., 2016). The spatial effects
could be regulated by changing the pore morphology (Xiao
et al., 2014a; Fan et al., 2018), surface roughness (Hashino
et al., 2011; Feng et al., 2017), and surface topography of
the membrane (e.g., prism/pyramid/embossing-patterned
membranes Won et al., 2016 and hierarchically textured
membranes Zhao et al., 2018). In addition, electrocatalytic
membranes have been developed to produce reactive species

FIGURE 4 | Schematic of the impact of chemical cleaning on the foulant assembly in the membrane pores or on the membrane surface.

TABLE 1 | Cleaning mechanisms and target foulants of the typical membrane cleaning agents.

Agent type Mechanism Reacting target Typical examples of agents

Acid Dissolution (protonation) Inorganic compounds, and metal ions in

organic complexes

HCl; citric acid and oxalic acid (also

complexants)

Acid hydrolysis Hydrolyzable bonds (e.g.,

glycoside/peptide/ester bonds) in

polysaccharides, proteins, and lipids

HCl

Alkali Alkaline hydrolysis Hydrolyzable bonds (e.g.,

glycoside/peptide/ester bonds) in

polysaccharides, proteins, and lipids

NaOH

Dissolution (ionization) Organic acids (e.g., humic acids) NaOH

Oxidant Oxidative decomposition A wide range of organics NaOCl (also alkaline) and H2O2

Reductant Reduction Variable-valence metals [e.g., Fe(III)] in organic

complexes and inorganic scales

Ascorbic acid and sodium dithionite

Complexant (chelator) Complexing extraction Metal ions in organic complexes and inorganic

scales

Na-EDTA and sodium tripolyphosphate

(STP)

Surfactant Dissolution (hydrophobic/philic interfacial

activation)

Hydrophobic organics (e.g., proteins, lipids,

and humics)

Sodium dodecyl sulfate (SDS) and Tween

Enzyme Enzyme-catalyzed decomposition Proteins, lipids, polysaccharides, and other

biopolymers

Protease, lipase, carbohydrase, and other

hydrolases and oxidases

Frontiers in Chemistry | www.frontiersin.org 8 June 2020 | Volume 8 | Article 417

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Xu et al. Interactions in Membrane Fouling

(such as hydroxyl radicals) on the membrane surface in
situ, thus breaking the membrane-foulant interactions
(Yang Y. et al., 2011; Yang et al., 2012; Zheng et al., 2018).

Foulant Conditioning for Tuning the
Foulant-Foulant Interaction
The metal-mediated complexation between foulant molecules
depends on the metal ion concentrations in the solution. There
must be a critical concentration of the key metal ion (e.g.,
Ca2+ or Fe3+), around which the gel layer formed has the
lowest permeability and the fouling is the most severe (Mo
et al., 2011; Yang N. N. et al., 2011; Zhang et al., 2014).
Therefore, decreasing the metal ion concentration below the
critical point via chemical precipitation or ion exchange, or
increasing the concentration beyond the critical point via
chemical dosing or electrolysis, may alleviate the fouling. Ion
exchange resins can remove the hardness ions (Apell and Boyer,
2010), and the magnetic ion exchange resin (MIEX) was found
effective in removing organics with complexing groups (Son
et al., 2005; Wei et al., 2011; Sun et al., 2013). Using Fe as
a sacrificial anodic material, the Fe ions can be electrically
released into the solution, and this process is controllable in
situ (Zhang et al., 2014). When the released concentration
exceeds a critical point, the organics tend to agglomerate
loosely with the ferric/ferrous hydroxide flocs in the solution
rather than form a dense gel layer on the membrane surface
(Zhang et al., 2014; Zhang J. et al., 2015).

The properties and concentrations of organic foulants can be
regulated by pretreatment using themethods of, e.g., coagulation,
adsorption, and oxidation among others (Ha et al., 2004; Oh
et al., 2007; Williams and Pirbazari, 2007; You et al., 2007;
Treguer et al., 2010; Lee et al., 2014; Sun et al., 2019). The
efficiency of the pretreatment for fouling mitigation could
be related to the type and dosage of the reagent (coagulant,
adsorbent, or oxidant), reaction conditions (time, temperature,
and hydraulicmixing), solution environment (pH, ionic strength,
etc.), and foulant properties (chemical composition, molecular
weight, hydrophobicity, charge, etc.). In addition, the foulant
components can be biologically regulated. For example, in
an MBR coupled with a sequence batch worm reactor, the
proteinous fractions of the soluble and colloidal foulants were
significantly eaten by the worms (Yu et al., 2012).

Membrane Cleaning
Membrane cleaning includes physical cleaning and chemical
cleaning. Physical cleaning mainly removes the foulant particles
bound by interactions that are relatively weak or sensitive
to mechanical stress (e.g., forces related to hydrodynamic
conditions). The physical means include hydraulic cleaning
(flushing and backwashing), air-assisted cleaning (air lifting,
bubbling, and scouring), ultrasonic cleaning, etc. (Lin et al.,
2010; Porcelli and Judd, 2010; Shi et al., 2014; Wang et al.,
2014). Chemical cleaning dissociates the non-covalent or
covalent interactions, or directly breaks the foulant molecular
structure, as schematically illustrated in Figure 4. The

chemical cleaning agents include acids, alkalis, oxidants,
reductants, complexants (chelators), surfactants, and enzymes
(Madaeni and Moghadam, 2003; Zondervan and Roffel,
2007; Petrus et al., 2008; Porcelli and Judd, 2010; Shi et al.,
2014; Zhang Z. H. et al., 2015). The cleaning mechanisms
and reacting targets of the typical agents are summarized
in Table 1.

CONCLUDING REMARKS

This review has outlined the non-covalent, covalent, and
spatial aspects of the membrane-foulant and foulant-foulant
interactions for membrane organic fouling in MF/UF
systems. The dominant interaction(s) may be different in
the concentration polarization boundary layer (for the migration
of foulant toward the membrane), at the membrane-foulant
interface (for the membrane adsorption/pore blocking stage),
and in the foulant layer (for the gel/cake layer stage). Notably,
there is interplay between different types of the interactions, such
as between non-covalent adsorption and steric effects. These
interactions correspond closely to the hydrophobic, electrostatic,
complexing, and spatial properties of the membrane or foulant.
Further fundamental research is required on experimental
quantification (e.g., related to the physical/chemical aspects
of interfacial phenomena) and theoretical simulation (e.g.,
mechanistic/statistical models and computational approaches)
of the interactions in order to identify the key factors and
their influences on the fouling process. While this review is
focused on organic fouling, the physical/chemical interactions
between organics might be also useful for interpreting the
interfacial behavior in biofouling (e.g., adhesion among bacterial
cells, extracellular biopolymers, and the membrane). From
the standpoint of membrane-foulant and foulant-foulant
interactions, targeted anti-fouling strategies could be developed
in full accordance with the characteristics of different interactions
at different fouling stages.
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