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Abstract: Data on artificial night-time light (NTL), emitted from the areas, and captured by satellites,
are available at a global scale in panchromatic format. In the meantime, data on spectral properties
of NTL give more information for further analysis. Such data, however, are available locally or on
a commercial basis only. In our recent work, we examined several machine learning techniques,
such as linear regression, kernel regression, random forest, and elastic map models, to convert the
panchromatic NTL images into colored ones. We compared red, green, and blue light levels for
eight geographical areas all over the world with panchromatic light intensities and characteristics of
built-up extent from spatially corresponding pixels and their nearest neighbors. In the meantime,
information from more distant neighboring pixels might improve the predictive power of models. In
the present study, we explore this neighborhood effect using convolutional neural networks (CNN).
The main outcome of our analysis is that the neighborhood effect goes in line with the geographical
extent of metropolitan areas under analysis: For smaller areas, optimal input image size is smaller
than for bigger ones. At that, for relatively large cities, the optimal input image size tends to differ
for different colors, being on average higher for red and lower for blue lights. Compared to other
machine learning techniques, CNN models emerged comparable in terms of Pearson’s correlation
but showed performed better in terms of WMSE, especially for testing datasets.

Keywords: night-time light (NTL); panchromatic; red; green; blue (RGB) bands; international space
station (ISS); convolutional neural network (CNN); neighborhood effect

1. Introduction

Artificial night-time lights (NTL), emitted from the residential, industrial, and enter-
tainment areas, and captured by satellites, provides researchers and policy-makers with
the information for a wide range of analyses: on the human presence on the Earth [1–8],
on NTL adverse effects on human health [9–11], on the health of ecosystems [12,13], on
night sky observations [14–16], etc. Globally, this NTL information is currently provided
by the day-night band (DNB) sensor, supported by Visible Infrared Imaging Radiometer
Suite (VIIRS), and available from the Earth Observation Group site [17]. These data, how-
ever, are panchromatic (that is, each pixel of NTL image reports summarized intensities
of light in the diapason of 500–900 nm [18]). In the meantime, information about NTL
color is of great importance for a variety of research, since it is known, for instance, that
NTL emissions of different diapasons are associated with different economic activities and
land-use types [19–21], or that NTL in blue diapason is especially effective in melatonin
suppression [22] and thus inducing hormone-dependent cancers [23] and obesity [24]. Red,

Sensors 2021, 21, 7662. https://doi.org/10.3390/s21227662 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3135-6865
https://orcid.org/0000-0003-1474-1734
https://orcid.org/0000-0001-6224-1430
https://doi.org/10.3390/s21227662
https://doi.org/10.3390/s21227662
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21227662
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21227662?type=check_update&version=1


Sensors 2021, 21, 7662 2 of 16

green, and blue (RGB) spectrum of NTL data, however, are currently available from the
International Space Station (ISS) for selected areas and sporadically [25], or on a commercial
basis [26], thus impeding research in a variety of fields. The present study proposes an
approach to obtain RGB NTL information, highly demanded the epidemiological and na-
ture conservation research from freely available panchromatic NTL and auxiliary built-up
area data.

In our previous research [27], we attempted to obtain RGB NTL estimates from
freely available panchromatic VIIRS-DNB NTL data and information on built-up areas,
used as land-use type proxies. We used several machine learning techniques, such as
linear regressions, non-linear kernel regression, random forest, and elastic map models
to define the association between ISS-provided RGB NTL levels at certain pixels and a
set of predictors, comprising panchromatic NTL and built-up areas characteristics from
corresponding pixel and its first-order neighbors. We built such models for each of the
eight metropolitan areas all over the world—Atlanta (US), Beijing (China), Haifa (Israel),
Khabarovsk (Russia), London (UK), Naples (Italy), Nashville (US), and Tianjin (China)
—and validated them over the rest seven metropolitan areas. The analysis showed that
model-estimated RGB NTL levels demonstrated a sufficient consistency with the original
ISS-provided RGB NTL data: Pearson’s correlation coefficients, both for training and testing
sets, ranging between 0.719 and 0.963, and weighted mean squared error (WMSE) varying
from 0.029 to 4.223. This study considered the first-order neighbors of each point only. In
the meantime, accounting for the information from more distant neighboring pixels (than
first-order ones) might be beneficial for obtaining more accurate estimates of RGB NTL
levels of the pixel under analysis. The reason is that certain land-use types within a city
(residential areas, industrial facilities, municipal roads) may differ in physical size, NTL
intensity, and spectral characteristics [19–21]. In the present study, we aim at assessing this
neighborhood effect.

Since we aim at enhancing the spectral resolution of NTL images from panchromatic to
RGB, our task might be viewed as a super-resolution (SR) task, which refers to the process
of recovering high-resolution images from low-resolution ones [28]. SR, which initially
referred to the spatial aspect of the images only, is nowadays one of the most active research
areas [29]. Spatial SR research utilizes either frequency-domain-based, interpolation-
based, regularization-based signal processing techniques, or machine-learning methods
(for reviews, see [30–32]). Recently, with the development of deep learning techniques,
convolutional neural networks (CNN) have widely been utilized in spatial SR research (see,
for example, [33–38]; for review, see [28]). In line with spatial, spectral SR research, modeling
the mapping from coarser scale spectrum (usually, RGB) to finer one (usually, hyperspectral
images of over 30 spectral channels) [39], is also nowadays quickly developing. Compared
to spatial, spectral SR research is much more sparse [40] mainly due to the lack and
incomparability of training data: hyperspectral cameras are expensive and generally do not
simultaneously produce broader RGB bands–thus, low and high spectral resolution images
vary in terms of the scene. Additionally, spectral responses of sensors are camera-specific
and may vary significantly from camera to camera [41]. Thus, recent studies on spectral
SR utilize hyperspectral images, comprised of ~30 bands from 400 to 700 nanometers with
10 nm increment, from the ICVL (201 images), CAVE (32 images), and NUS (66 images)
datasets (see, for example, [40–43]). Probably due to later start, spectral SR studies are
often based on neural networks, either shallow (see, inter alia, [42–44]), or moderately
and very deep (see, inter alia, [40,41], correspondingly) CNNs. A shallow neural network
approach implies using a high-quality hyperspectral dataset to create a sparse dictionary of
hyperspectral signatures and their RGB projections and afterward to restore a hyperspectral
image from decomposed–over the dictionary–pixels of a new RGB image [42–44]. This
approach is reported (see [43]) to be much faster in computation, but comparable in
terms of performance with its predecessor, based on the matrix factorization method [45].
Simultaneously, a shallow neural network approach was reported (see [42]) to be similar
in performance in terms of RMSE to very deep CNN, with a total of 56 layers [41]. The
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reason might be in the lack of training data and high correlation between spectral bands,
which require a moderately deep CNN; as a recent study confirms (see [40]), such a CNN,
consisting of 6 layers only, outperforms both shallow and very deep CNN.

Despite the formal proximity to the image colorization task, also–as in our case–implying
enhancing the spectral resolution of the image from grayscale to RGB [46], our task is
essentially different. In image colorization, mainly applied to historical photographs
and videos, the research, aimed at diminishing the user input, is generally based upon
finding an appropriate reference image (or selected semantic feature) from a dataset and
transferring its color to the whole or the part of the image under analysis [47–52]; the
research is built upon semantic features (such as cars, animals, plants, etc.) identification
and allocation.

In essence–not formally–our task is different from the image colorization task. Unlike
the latter, our research does not imply user intervention or semantic features identification.
Actually, our task is a spectral SR task. The difference is that we deal with night-time
satellite images, which, due to low signal, are not available in the hyperspectral format,
and it is a great privilege to obtain even RGB resolution. Given the ill-posedness of the
task of mapping between coarser and finer spectral resolution [39–41,43], in our research,
we use built-up area characteristics as additional input information. We hypothesize that
panchromatic light and built-up area information from neighboring pixels might contribute
to better predictions of RGB levels. Using CNN as a tool, we settle our task as a regression
one: we form multi-layer small-size images from panchromatic VIIRS-DNB NTL and built-
up area data, which are further used as CNN input images, and match them with the levels
of either red, green, or blue light pixels, located in the center of the corresponding small-size
image, and used as a dependent variable. We run our analysis upon eight metropolitan
areas all over the world. We experiment with the size of input CNN images—we try
square images with an odd number of pixels (from 3 × 3 to 15 × 15). We compare the
performance of the models overtraining and testing datasets for each CNN input image
size and also compare the fit to the actual RGB data of the CNNs with previously used
machine learning techniques [27]. As our results indicate, compared to our previous study,
under-examined first-order neighborhood effect via linear regression, non-linear kernel
regression, random forest, and elastic map models [26], CNN models emerged comparable
in terms of Pearson’s correlation, but showed generally better performance in terms of
WMSE, especially for testing datasets. We assume that such an improvement was induced
by accounting for the varying neighborhood effect. The second important finding of the
analysis is that for relatively small metropolitan areas, either in terms of area or population,
the best-performing models for any color light band prediction were built for 5 × 5 input
image size, while for larger areas the optimal input image size was at least 7 × 7 pixels and
varied depending on the color prediction.

2. Materials and Methods
2.1. Data Sources

In the analysis, we use three sources of information. First, as an output of CNNs, we
use multispectral (RGB) images, provided by the ISS and available from the Astronaut Pho-
tography Search Photo service [25] for eight metropolitan areas all over the world—Atlanta
(US), Beijing (China), Haifa (Israel), Khabarovsk (Russia), London (UK), Naples (Italy),
Nashville (US), and Tianjin (China). The images and their ID numbers are reported in the
left column of Figure 1.

Second, as CNN inputs, we use panchromatic NTL intensities–namely, we use spatially
corresponding cropped areas from VIIRS-DNB-provided images, available from the Earth
Observation Group site [17] (see the central column of Figure 1). In the present analysis, to
avoid poor-quality pixels, outliers, and cloud contamination, which might be present in
daily VIIRS-DNB images [53], we use their monthly composites.

Third, as additional inputs for CNNs, we use the characteristics of the built-up extent;
That is, we use cropped corresponding areas from the global raster layer of human built-
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up area and settlement extent (HBASE) database, reporting the pixel-wise percentage of
the built-up area in the range from 0 to 100%. These data are available from the NASA
Socioeconomic Data and Application Center site [54] (see right panel of Figure 1).
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Figure 1. Raw input data for metropolitan areas under analysis: RGB NTL images (a), panchromatic NTL images (b), and
HBASE images (c). Notes: RGB NTL images are ~10-m resolution with the range of values of 0–255 digital numbers (dn) for
each band; panchromatic NTL images are ~500-m resolution with the values in the range of 1–740 nW/cm2/sr; HBASE
images are ~30-m resolution with the values in the 0–100% range. For the sake of comparability, RGB images, selected for
analysis, were made by the same DSLR camera (Nikon D4), and their acquisition time is close to the VIIRS/DNB acquisition,
that is, at about 01:30 a.m., local time.

2.2. Data Processing

To obtain inputs and outputs for neural networks, we used ArcGIS v.10.x software [55]
to resample three types of the images (see Figure 1) to the resolution of the coarsest of
them—that is, ~500-m resolution of panchromatic NTL data (Figure 2 reports processed
images for the Haifa area, Israel). Thus, from the initial HBASE image (right panel in
Figure 1), we form two 500-m resolution images, reporting average levels and standard de-
viations of initial middle-resolution HBASE data in each new coarse pixel (see Figure 2b,c).
From each band of the initial high-resolution RGB image (left panel of Figure 1) we form
a 500-m resolution image, reporting average levels or red, green, and blue band lights in
each corresponding new coarse pixel (see correspondingly Figure 2d–f).

Afterward, using MATLAB v.R2020x software [56], in order to obtain inputs for the
convolutional neural networks, we have sliced all the resampled layers (Figure 2) using
a kernel with the unit stride into small fragments of K × K size, Kε[3; 5; 7; 9; 11; 13; 15].
Figure 3 reports an example of 7 × 7 fragments of the resampled layers for the Haifa region.
At that, fragments of panchromatic NTL, average and standard deviation levels of HBASE
(Figure 3a–c) formed three layers of input images for CNN, while the values of central
pixels from the red, green, or blue light fragments (Figure 3d–f) consequently emerged as
dependent variables.
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2.3. CNN Architecture

Since we had small-scale input images (from only 3 × 3 to 15 × 15 pixels) of a
relatively small number (see Table 1), training a heavy CNN seemed not appropriate [57].
Therefore, we performed trial experiments with several ‘light-weight’ CNN architectures
and eventually selected the one depicted in Figure 4. The selected CNN architecture
included the following consequent layers: (1) Input image layer, represented by the sets of
input images of K × K size, Kε[3; 5; 7; 9; 11; 13; 15]; (2) 3D convolutional layer (Conv3D) of
3 × 3 × 3 size, followed by Batch Normalization (BN) and Rectified Linear Unit (ReLu)
layers; (3) 2D convolutional layer (Conv2D) of 3 × 3 size, also followed by BN and ReLu
layers; (4) one fully connected layer; and (5) regression layer, aimed to associate the output
with continuous levels of either red, green, or blue light intensity.

For either red, green, or blue band light prediction, we trained CNN on the im-
ages of a certain metropolitan area and applied the obtained model to each of the rest
cities. The analysis was performed in MATLAB v.R2020b software [58] using TrainNet-
work function [59] with a default training options (i.e., under stochastic gradient descent
with momentum (SGDM) optimizer; minibatch size = 128; initial learn rate = 0.001;
learn rate schedule = piecewise; learn rate drop factor = 0.1; learn rate drop period = 20;
shuffle = every epoch).
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Figure 4. The architecture of the CNN, used in the analysis. Note: Conv2D and followed by BN and
ReLu layers were omitted in the case of 3 × 3 × 3 input image size.

Table 1. The number of inputs for CNN depending on input image size.

Region
Input Image Size

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

Atlanta 5609 5313 5025 4745 4473 4209 3953

Beijing 5400 5088 4784 4488 4200 3920 3648

Haifa 900 782 672 570 476 390 312

Khabarovsk 3550 3312 3082 2860 2646 2440 2242
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Table 1. Cont.

Region
Input Image Size

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13 15 × 15

London 4850 4560 4278 4004 3738 3480 3230

Naples 1872 1700 1536 1380 1232 1092 960

Nashville 2695 2491 2295 2107 1927 1755 1591

Tianjing 6045 5733 5429 5133 4845 4565 4293

2.4. Assessing the Quality of the Models

The performance of the models for training and testing sets of images was assessed
via two indicators: (i) Pearson’s correlation and (ii) weighted mean squared error (WMSE)
between actual and model-estimated red, green, or blue band light intensity. The first
indicator is aimed to assess the model’s ability to produce RGB estimates, which in their
relative tendency correspond well with the observed RGB levels, while the second one,
calculated as mean squared difference between the model-estimated and actually observed
RGB levels, divided by the actually observed value, helps to assess differences between the
estimated and actual RGB levels on an absolute scale. Statistical analysis was performed
using JASP v.0.14.x software [60].

3. Results
3.1. Neighborhood Effect: Models’ Performance upon Training and Testing Datasets

Visual inspection witnesses fairly sufficient similarity between the original RGB levels
and those restored using the proposed CNN models, although the restored images look
slightly more blurred. Figures 5 and 6 report such pairs for R, G, and B bands for two cities,
representing small (Haifa, Israel) and large (London, UK) metropolitan areas.
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In Figure 7, we report the effect of the input image size upon two performance
indicators—Pearson’s correlation and WMSE for each color band, separately for (eight)
training and (56, i.e., seven for each of the eight training) testing sets. As one can see from
the figures, both indicators’ levels, averaged across training sets (Figure 7a,b), changed
non-monotonically, with the extremum at 5 × 5 image size, for any color band prediction.
To check whether the input size 5 × 5 is indeed the extremum, we conducted a one-tailed
paired samples t-test for the statistical significance of the difference of means—against both
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smaller (3 × 3) and larger (7 × 7) input sizes. For all channels, mean levels of Pearson’s
correlation for 5 × 5 input image size were significantly higher than the ones of either 3 × 3
and 7 × 7 input image size (|t| > 2.335; p < 0.026 for the red channel; |t| > 2.404; p < 0.024
for the green channel; and |t| > 2.531; p < 0.020 for the blue channel). In the meantime, the
pattern in terms of WMSE levels was something less pronounced: 5 × 5 input image size
was always significantly better than 3 × 3 image (|t| = 3.227; p = 0.007 for red channel;
|t| = 2.812; p = 0.013 for green channel; and |t| = 3.126; p = 0.008 for blue channel), but
not always better than 7 × 7 counterpart (|t| = 1.228; p = 0.130 for red channel; |t| = 1.884;
p = 0.051 for green channel; and |t| = 0.962; p = 0.184 for blue channel).

Sensors 2021, 21, x FOR PEER REVIEW 10 of 16 
 

 

was always significantly better than 3 × 3 image (|t| = 3.227; p = 0.007 for red channel; |t| 
= 2.812; p = 0.013 for green channel; and |t| = 3.126; p = 0.008 for blue channel), but not 
always better than 7 × 7 counterpart (|t| = 1.228; p = 0.130 for red channel; |t| = 1.884; p = 
0.051 for green channel; and |t| = 0.962; p = 0.184 for blue channel).  

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Original vs. CNN-estimated (k = 13) RGB levels in London area: (a) original red; (b) original green; (c) original 
blue; (d) estimated red; (e) estimated green; (f) estimated blue. Note: The images are of panchromatic NTL spatial 
resolution. 

We should however notice that—if to analyze the models’ performance indicators for 
each training dataset separately—optimal input image size is relatively small for smaller, 
either in terms of area or population, metropolitan areas (5 × 5 image size is optimal for 
Haifa (with ~0.3 mln people population), Khabarovsk (~0.6 mln people), Nashville (~0.7 
mln people), and Naples (~3 mln people)), and larger for bigger metropolitan areas (input 
images of generally greater than 7 × 7 size are optimal for Atlanta (with ~5.5 mln 
population), London (~9 mln people), Tianjin (~15 mln people), and Beijing (~21.5 mln 
people)). Interestingly, for bigger areas, there emerges differentiation in optimal input 
image size for different color band intensities prediction. Generally, for short-wavelength 
blue lights, the optimal input image size was smaller than for long-wavelength red lights 
(for instance, 5 × 5 and 7 × 7 optimal image size for blue lights and 11 × 11 and 13 × 13 for 
red lights correspondingly in Beijing and Atlanta). In Figure 8 we report models’ 
performance indicators for two selected training datasets, representing typical relatively 
small (Nashville–see Figure 8a,b) and big (Atlanta–see Figure 8c,d)) metropolitan areas. 

We should note that for testing datasets, the tendency in the models’ performance 
indicators is less pronounced (Figure 7c,d), perhaps due to averaging across a greater 
amount of heterogeneous datasets. Visually, the models generally demonstrate the best 
performance upon 3 × 3 input images. Although, the difference with 5 × 5 input image size 
is not always statistically significant. Due to violation of normality, we replaced the paired 
sample t-test for the statistical significance of the difference of means by non-parametric 
Wilcoxon signed-rank test for the difference of medians. For red and green channels, we 
found a significant difference in terms of Pearson’s correlation (p < 0.001) but not WMSE 
(p > 0.204); In contrast, for the blue channel, the difference appeared significant in terms 
of WMSE (p < 0.001) but not Pearson’s correlation (p > 0.801). In the meantime, a more 
detailed examination shows that models built for smaller metropolitan areas (Haifa, 
Khabarovsk, Naples, and Nashville) generally fit better other relatively small areas 
regardless of input image size; While models built for relatively large metropolitan areas 
(Atlanta, Beijing, London, and Tianjin) fit better other large areas given large enough input 
image size (not shown).  

Figure 6. Original vs. CNN-estimated (k = 13) RGB levels in London area: (a) original red; (b) original green; (c) original blue;
(d) estimated red; (e) estimated green; (f) estimated blue. Note: The images are of panchromatic NTL spatial resolution.

We should however notice that—if to analyze the models’ performance indicators for
each training dataset separately—optimal input image size is relatively small for smaller,
either in terms of area or population, metropolitan areas (5 × 5 image size is optimal
for Haifa (with ~0.3 mln people population), Khabarovsk (~0.6 mln people), Nashville
(~0.7 mln people), and Naples (~3 mln people)), and larger for bigger metropolitan areas
(input images of generally greater than 7 × 7 size are optimal for Atlanta (with ~5.5 mln
population), London (~9 mln people), Tianjin (~15 mln people), and Beijing (~21.5 mln
people)). Interestingly, for bigger areas, there emerges differentiation in optimal input
image size for different color band intensities prediction. Generally, for short-wavelength
blue lights, the optimal input image size was smaller than for long-wavelength red lights
(for instance, 5 × 5 and 7 × 7 optimal image size for blue lights and 11 × 11 and 13 × 13
for red lights correspondingly in Beijing and Atlanta). In Figure 8 we report models’
performance indicators for two selected training datasets, representing typical relatively
small (Nashville–see Figure 8a,b) and big (Atlanta–see Figure 8c,d) metropolitan areas.

We should note that for testing datasets, the tendency in the models’ performance
indicators is less pronounced (Figure 7c,d), perhaps due to averaging across a greater
amount of heterogeneous datasets. Visually, the models generally demonstrate the best
performance upon 3 × 3 input images. Although, the difference with 5 × 5 input image size
is not always statistically significant. Due to violation of normality, we replaced the paired
sample t-test for the statistical significance of the difference of means by non-parametric
Wilcoxon signed-rank test for the difference of medians. For red and green channels, we
found a significant difference in terms of Pearson’s correlation (p < 0.001) but not WMSE
(p > 0.204); In contrast, for the blue channel, the difference appeared significant in terms of
WMSE (p < 0.001) but not Pearson’s correlation (p > 0.801). In the meantime, a more detailed
examination shows that models built for smaller metropolitan areas (Haifa, Khabarovsk,
Naples, and Nashville) generally fit better other relatively small areas regardless of input
image size; While models built for relatively large metropolitan areas (Atlanta, Beijing,
London, and Tianjin) fit better other large areas given large enough input image size
(not shown).
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3.2. CNN Models Comparison with Other Machine Learning Techniques

We should also note that the best-performing CNN models (with 5 × 5 input images)
demonstrate comparable performance with previously explored techniques [27] in terms of
Pearson’s correlations both for training and testing datasets (Figure 9a,c,e), but, compared
to other techniques, perform much more stable in terms of WMSE upon training and testing
sets—the ratios are within 2.20–2.95 diapason for CNN vs. 3.76–22.78 for other techniques
(Figure 9f).
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4. Discussion and Conclusions

The present study aimed at restoring RGB intensities, reported by the ISS [25], from
VIIRS-DNB-provided panchromatic night-time lights imagery [17] and the levels of the
built-up area [54], used as a proxy for land-use types. We used corresponding datasets for
eight metropolitan areas: Atlanta (US), Beijing (China), Haifa (Israel), Khabarovsk (Russia),
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London (UK), Naples (Italy), Nashville (US), and Tianjin (China), as case studies. To restore
the RGB level of the pixel under analysis, we used panchromatic NTL and built-up area
levels from varying neighborhoods, starting from the first-order neighboring pixels and up
to the neighbors of the seventh level. Thus, for each of the eight metropolitan areas, we
sliced input layers for small-scale squared fragments using a kernel with unit stride, and
consequently–for each input image size dataset–run CNN models, using either red, green,
or blue light level of the central pixel from the corresponding fragment as a dependent
variable. Each model, built for a certain metropolitan area dataset, was validated over the
rest seven cities.

As our analysis revealed, for relatively small metropolitan areas, either in terms of area
or population (such as Haifa, Khabarovsk, Naples, and Nashville), the best-performing
models for any color light band prediction were built for 5 × 5 input image size, while for
larger ones (such as Atlanta, Beijing, London, and Tianjin) the optimal input image size
was at least 7 × 7 pixels. A speculative explanation is on the average larger physical extent
of residential quarters, commercial and entertainment centers, and industrial facilities in
larger cities. Yet, this assumption should be explicitly tested.

Another important finding of the present study is that for bigger metropolitan areas
emerges differentiation in optimal input image size for different color band lights prediction.
Generally, for long-wavelength red lights, the optimal input image size is larger than for
short-wavelength blue lights (compare 11 × 11 and 13 × 13 pixels optimal image size for
red lights and 5 × 5 and 7 × 7 pixels for blue lights correspondingly in Beijing and Atlanta).
There exist several indications that red and green lights are more associated with residential
areas, while industrial and commercial facilities are often lit by blue lights [19,61]. Since
residential areas are usually more extensive, while industrial and commercial facilities are
localized, red and green lights are expected to be predicted better by larger neighborhoods.
In the meantime, this tendency was not confirmed by the case of London (with 9 × 9 and
13 × 13 optimal input image size for red and blue lights, correspondingly) and Tianjin (with
the same 7 × 7 optimal input image size for all colored lights prediction) and thus requires
further investigation. Other directions of future investigation might include experiments
with a larger amount of metropolitan areas and alternative CNN architectures.

To compare different machine learning techniques, none of them demonstrated an
absolute advantage over its counterparts: Instead, the advantage depended on the chosen
performance indicator. Compared to our previous study, where we examined first-order
neighborhood effect only and used several machine learning techniques, such as linear re-
gression, non-linear kernel regression, random forest, and elastic map models [27], CNN
models performed something worse in terms of Pearson’s correlation upon testing sets.
In this sense, it seems perspective to seek for CNN architectures less sensitive to data
heterogeneity. At the same time, compared to other machine learning techniques, CNN
models showed better performance in terms of WMSE for testing datasets for red (0.91 for
CNN models vs. 1.04–1.73 for other machine learning techniques) and green (0.96 for CNN
models vs. 1.16–1.70 for other machine learning techniques) bands prediction. We explain
such an improvement by accounting for the varying neighborhood effect, which is more
important for relatively vaster residential area-associated bands [19,61].
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