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Abstract: Accurate position information plays an important role in wireless sensor networks (WSN),
and cooperative positioning based on cooperation among agents is a promising methodology
of providing such information. Conventional cooperative positioning algorithms, such as least
squares (LS), rely on approximate position estimates obtained from prior measurements. This paper
explores the fundamental mechanism underlying the least squares algorithm’s sensitivity to the
initial position selection and approaches to dealing with such sensitivity. This topic plays an essential
role in cooperative positioning, as it determines whether a cooperative positioning algorithm can
be implemented ubiquitously. In particular, a sufficient and unnecessary condition for the least
squares cost function to be convex is found and proven. We then propose a robust algorithm for
wireless sensor network positioning that transforms the cost function into a globally convex function
by detecting the null space of the relative angle matrix when all the targets are located inside the
convex polygon formed by its neighboring nodes. Furthermore, we advance one step further and
improve the algorithm to apply it in both the time of arrival (TOA) and angle of arrival/time of
arrival (AOA/TOA) scenarios. Finally, the performance of the proposed approach is quantified via
simulations, and the results show that the proposed method has a high positioning accuracy and is
robust in both line-of-sight (LOS) and non-line-of-sight (NLOS) positioning environments.

Keywords: wireless sensor networks; least-squares localization; convexity; relative angular matrix;
non-line-of-sight

1. Introduction

In recent years, positioning and navigation technology has been playing an increasingly
important role in many applications, such as public safety, law enforcement, rescue operations, traffic
management, inventory tracking, home automation, etc. At the same time, location-based services
also have significant commercial value [1]. The Global Navigation Satellite System (GNSS) is the
most widely-used navigation and positioning technology, providing services that are suitable for most
applications in an open environment [2]. However, the GNSS might fail to provide reliable services
due to interference and in some challenging environments such as cities, forests and indoors, due to
the weakness of GNSS signals.

An effective way of solving this problem is to supplement and enhance GNSS with
terrestrial positioning systems. At present, there are several positioning systems, including
cellular-based positioning, WiFi positioning, and ultra-wideband-based (UWB-based) positioning
systems. In particular, with the development of large-scale multiple-input and multiple-output (MIMO)
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systems, positioning based on mmWave communication that is becoming an emerging research focus
has also received increasing attention [3,4].

The sensors in the terrestrial system constitute a positioning network, and we are interested
in locating the sensors based solely on measurements from the multi-target scene. Based on the
nodes’ exchange measurements and other data, the WSN positioning scenarios can be divided into
cooperative and noncooperative. Compared with traditional positioning methods, cooperative (also
known as collaborative) positioning has important research and application significance. For instance,
cooperative positioning of connected vehicles that effectively utilizes the relative observations from
the vehicle-to-vehicle (V2V) devices has become a significant trend of future cooperative intelligent
transportation system (ITS) applications [5]. Its advantages have been confirmed theoretically and
algorithmically [6,7]. The analysis of Fisher information can show that nodes can obtain better
positioning accuracy and availability in cooperative scenarios [8].

For various ground systems, the primary positioning methods can be divided into four categories,
among which the distance-based time of arrival (TOA) and time difference of arrival (TDOA)
positioning methods are more common [9]. At present, various classic algorithms for cooperative
positioning are available, such as maximum likelihood (ML) estimation [10], extended Kalman filter
(EKF) [11], particle filter (PF) [12], etc. These algorithms use the minimum mean squared error (MESE)
as the evaluation criterion of estimation, and under certain conditions, they are essentially equivalent
to the LS estimator. For instance, when the ranging error has a Gaussian distribution, the ML algorithm
is equivalent to the LS estimator.

1.1. Related Works

When estimating the location of user nodes, it is necessary to select a reasonable initial value.
Unfortunately, sometimes, there is a problem with initial value sensitivity when the algorithms are
used. In addition, the NLOS propagation error of the signal is also an important factor affecting
the positioning accuracy. Thus far, some efforts have been made to solve these problems. By way
of observation, if measurements based on the received signal strength (RSS) and angle of arrival
(AOA) are considered as the auxiliary positioning methods, the NLOS effect can be suppressed by
the algorithms, and the positioning accuracy can be improved [13–16]. In general, hybrid positioning
methods with multiple measurement methods tend to have higher positioning accuracy and be more
robust than those based on a single measurement. The localization based on mmWave communication
is a hybrid positioning method, but differs from the traditional approach. Its advantage lies in the
unique structure of the MIMO systems, so it can determine the position of targets using only one
base station by measuring the angles of both the transmitted and received signals [17]. This scheme
reduces the cost of base station deployment, but also has apparent disadvantages. One major problem
is the diffuse reflection effect of the signal, which causes a higher angle measurement error. For this
reason, the positioning results will not be accurate; this topic remains to be studied, and the related
improvements are yet to be attained [18,19].

As for the algorithms, a variety of robust positioning algorithms are available. The localization
technique based on multidimensional scaling (MDS), which was first proposed by Shang et al. [20],
offers a new solution of node localization. Recently, several localization methods related to the
classical MDS method have been applied to sensor networks. Forero and Giannakis presented a
robust multidimensional scaling based on regularized least squares [21]. Focusing on the problem of
localization in mixed LOS and NLOS scenarios, a novel localization algorithm called the Gaussian
mixed model based non-metric multidimensional (GMDS) was proposed [22]. The advantages of MDS
are that one can obtain actual positions between nodes by setting only a few anchor nodes; besides,
the anchor nodes’ deployment has no strict restriction. However, it is unreliable in large-scale networks
with sparse connectivity. The work of Destino and Abreu transformed the original WLS function into a
convex one by introducing the Gaussian kernel function and optimizing the smoothing parameters [23].
In the literature [24,25], the problem has been formulated by applying robust statistics techniques on
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squared range measurements. This provides the opportunity to find the estimate efficiently. However,
this formulation is not optimal in the ML sense [23]. Another class of methods is based on the convex
relaxation technique. The paper [26] derived a maximum likelihood estimator for Laplacian noise and
relaxed it to a convex program by linearizing and dropping a rank constraint. Soares et al. [27] set forth
a convex underestimator of the maximum likelihood cost for the sensor network localization based
on the convex envelopes of its parcels. At the same time they capitalized on the robust estimation
properties of the Huber function and derived a convex relaxation [28]. It is known that the semidefinite
programming (SDP) algorithm is one of the most used methods, which also transforms the position
model into a convex optimization problem by applying the convex relaxation technique [29–31]. These
approaches can not only limit the errors caused by the NLOS effect, but also make the cost function
convex. In other words, they are insensitive to the initial value’s selection. However, the downside
of these algorithms is that the estimation accuracy will decrease slightly. Besides, other approaches
such as the parallel projection method (PPM) [19,32], projection onto convex sets (POCS) [33,34], etc.,
have been proposed. These two methods turn the LS cost function into a convex one. At the same
time, the PPM can be used in the distributed cooperative scenario, which significantly reduces the
pressure of information interaction between the two nodes. An outlier detection method was proposed
by Wang et al. [35] based on the maximum entropy principle and fuzzy set theory.

1.2. Contributions

It is known that the LS cost function is nonlinear and nonconvex in the global region. We consider
the location result of an iterative algorithm depending on the selected initial value if the function
has more than one local optimal point, and it seems that the initial value selection is associated with
the convexity of the cost function. Existing studies analyzed the LS source localization problem
to determine the condition of the function being convex [36,37]. Similarly, for WSN localization,
the convexity or the number of local extremum points seems to relate to the quantity of targets and
the ranging error. To explore this problem further, we perform a study of the LS model for WSN
localization to understand theoretically how the targets and the ranging error affect the extremum
point. The major contributions of the paper are as follows:

• A sufficient and unnecessary condition for the LS cost function to be convex is proposed and
proven for WSN positioning.

• We define the relative angle matrix for both noncooperative and cooperative scenarios and show
that the LS function can be transformed into a globally convex function if all the targets are located
inside the convex polygon formed by its adjacent nodes.

• A robust algorithm that detects the relative angular matrix is proposed for WSN localization.
Additionally, we improve the algorithm by using angle constraints so that it can be used in both
the AOA/TOA and TOA positioning methods, which extends the applicability of the method.

It is worth noting that with the development of MIMO technology, the acquisition of ranging
information and angle information between two nodes becomes easier, as the technology provides
hardware and technical support for the measurement of the relative angular matrix. On the other hand,
the position of the virtual anchors can be calculated, so mmWave positioning can be transformed into
an AOA/TOA positioning model in the traditional sense, and the null space algorithm improved in
this paper can be used to solve the position.

The rest of the paper is organized as follows. In Section 2, some basic definitions and model
descriptions are given. In Section 3, we analyze the convexity of the unconstrained LS positioning
model and derive a sufficient and unnecessary condition for the function to be convex. In Section 4,
we first provide the definition of the relative angular matrix, then subsequently prove some important
properties, and propose a novel null space algorithm by adding the angle constraint. We perform
a numerical simulation that aims to verify the correctness of the proposition and evaluate the
performance of the proposed algorithm in Section 5. Finally, we conclude the paper in Section 6.
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2. Definition and Scenario Description

2.1. Definition of the Nodes and Links

In the wireless network location scenario based on the TOA method, we assume there are M
targets and use the set Fc = {T1, T2, ..., TM} to enumerate them. The real coordinates of a target are
xj ∈ Rη , 1 ≤ j ≤ M, j ∈ N+, where η ∈ N+ is the Euclidean spatial dimension of the location scene.
There are N anchors, which are represented by the set Fa = {A1, A2, ..., AN}, and their real coordinates
are si ∈ Rη , 1 ≤ i ≤ M, i ∈ N+. Let the set of all node records be Ft; then, Ft = Fa ∪Fc. Assume that
there is a total of L ranging links in the positioning scenario and the set of links is L = {l1, l2, ..., lL}.
In the cooperative scenario, the ranging links can be divided into two categories: that of ranging links
between targets and anchors (AT links) and that of cooperative ranging links between two targets (TT
links). The set of all distance observations is denoted by Dt, the set of AT links by Da, and the set of TT
links by Dc. Obviously, we have Dt = Da ∪Dc, Da ∩Dc = ∅, |Dt| = L, and |Da| = N. Let dKiKj and

d̂KiKj be the real and estimated distances between the nodes Ki and Kj.

2.2. Definition of the Errors

In the TOA positioning method, since the signal is affected by noise, the multipath effect, and the
NLOS effect during propagation, the observed value is not the real distance between the two nodes,
and there usually exists a ranging error. Let ε = [ε1 ε2... εL]

T ∈ RL be the ranging error vector, where
εi represents the error on the ith link. In the LOS environment, the ranging error is caused entirely
by noise, which usually follows a Gaussian distribution with a mean of zero and a constant variance.
Here, we denote it by ε los. In the NLOS environment, besides the noise, there also exists a positive
deviation that follows the Gaussian distribution with both the mean and variance being constant. Here,
we denote it by εnlos. Then, the ranging error can be modeled as follows:

εi =


ε los , if the ith path is LOS

ε los + εnlos , if the ith path is NLOS
(1)

where ε los ∼ N
(
0, σ2

los
)
, εnlos ∼ N

(
µnlos, σ2

nlos
)
, and µnlos > 0.

In the AOA method, we assume that there are observation errors in the relative angle matrix Ω,
which will be defined in the fourth part of this paper. Hence,

Ω̃ = Ω + ∆ (2)

where Ω̃ represents the observation of the relative angular matrix and ∆ is the error matrix, an element
δij of which follows the Gaussian distribution δij ∼ N

(
µα, σ2

α

)
.

2.3. Noncooperative Scenario Description

In the noncooperative localization scenario, there are M targets, and there is no link between any
two targets. Consider target Tj; the target’s real and estimated positions are xj and x̂j; then, the distance
can be given by: 

dTj Ai = ‖si − xj‖2

d̂Tj Ai = ‖si − x̂j‖2

(3)
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where ‖·‖2 represents the Euclidean distance between two nodes. In the noncooperative scenario,
there are N ranging links that are denoted by l1, l2, ..., lN , respectively. Let di and d̂i be the real and
estimated distances, corresponding to link li. Then, we can assign the values as follows:

di =


dT1 Ai 1 ≤ i ≤ q1a

dTj Ai ∑
j−1
m=1 qma < i ≤ ∑

j
m=1 qma j ≥ 2

, (4)

d̂i =


d̂T1 Ai 1 ≤ i ≤ q1a

d̂Tj Ai ∑
j−1
m=1 qma < i ≤ ∑

j
m=1 qma j ≥ 2

, (5)

where 1 ≤ i ≤ N, i ∈ N+ and qja is the quantity of all links directly connected to node Tj. Assume
that the distance observations are ρi ∈ Da, 1 ≤ i ≤ N, i ∈ N+. If the observation error is considered,
the relationship between the distance observation and the true distance is given by:

ρi = di + εi. (6)

Accordingly, the unconstrained LS estimation model in the noncooperative scenario can be expressed
as follows:

arg min
d̂i

Fs =
N

∑
i=1

(
d̂i − ρi

)2
. (7)

2.4. Cooperative Scenario Description

The cooperative scenario is very similar to the noncooperative one. The difference is that there
exist ranging and information interactions between two targets. Let xj and x̂j be the real and estimated
coordinates of node Tj; then,

dTj Ai = ‖si − xj‖2

d̂Tj Ai = ‖si − x̂j‖2

,


dTjTk = ‖xk − xj‖2

d̂TjTk = ‖x̂k − x̂j‖2

, k > j. (8)

In the cooperative scenario, there are L ranging links in total, which are denoted by l1, l2, ..., lL. Let
di and d̂i be the real and estimated distances corresponding to link li. Next, we can assign the values as
follows. If 1 ≤ i ≤ N, i ∈ N+, each li is an AT link, and we assign the values according to Formulas (4)
and (5). If N < i ≤ L, i ∈ N+, li is a TT link, and we assign the values as follows:

di =


dT1Tk , N + 1 ≤ i ≤ q1c

dTjTk , N + ∑
j−1
m=1 qmc < i ≤ N + ∑

j
m=1 qmc j ≥ 2

, (9)

d̂i =


d̂T1Tk , N + 1 ≤ i ≤ q1c

d̂TjTk , N + ∑
j−1
m=1 qmc < i ≤ N + ∑

j
m=1 qmc j ≥ 2

. (10)

Above, qjc is the quantity of TT links with endpoints Tj, Tk such that k > j. Additionally, there also are
Tk ∈ Uj, and Uj is the set of targets that have ranging links with Tj. In set Uj, the elements’ subscripts
are arranged in increasing order, and Tk is the gth element, the index of which is calculated by:

g =


i− N, j = 1

i− N −∑
j−1
m=1 qmc, j ≥ 2

. (11)
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Let ρi ∈ Dt, 1 ≤ i ≤ L, i ∈ N+ be distance observations; then, the relationship between ρi and
di satisfies Formula (6). Accordingly, in the cooperative scenario, the unconstrained LS model is
constructed as:

arg min
d̂i

Fc =
L

∑
i=1

(
d̂i − ρi

)2
. (12)

In this paper, we refer to Fs and Fc together as the LS positioning cost function and denote it by F.

3. Convex Analysis of the Model

In the previous part, we presented the unconstrained LS localization model in the cooperative
and noncooperative scenarios. For the positioning problem, we are interested in finding the global
optimum of the cost function. Due to the nonconvex property of the LS function, there may be multiple
local optima or stagnation points in most scenes. As a result, a local minimum solution is obtained in
the iterative process, which affects the positioning accuracy significantly. In this part, we discuss the
nonconvex property of the unconstrained LS localization model to study when the cost function is
convex and when it is nonconvex. To simplify the analysis, it may be worth considering the positioning
problem on the two-dimensional plane, i.e., for η = 2. It is convenient to generalize the conclusion to a
higher dimensional space. Let sj = [xsi ysi ]

T be the coordinates of the anchor and xj =
[
xj yj

]T be the

coordinates of the target. At the same time, the corresponding estimated position is x̂j =
[
x̂j ŷj

]T .

3.1. Analysis of the Noncooperative Scenario

It is known that the convex property of a function is directly related to its Hessian matrix, and the
following theorem holds:

Theorem 1. The second-order condition ensures the function is convex. Assume that function f of x is
second-order differentiable, and let its domain be dom f . If dom f is a convex set and the Hessian matrix exists,
then a sufficient and necessary condition for the function to be convex in dom f is that, for ∀x ∈ dom f , its
Hessian matrix is a semipositive definite matrix [38].

To simplify the problem, we first consider the scenario of only one target, and the target number is
T1. In this case, there are N links between T1 and the anchors. We try to compute the gradient (the
first-order differential) and the Hessian matrix (the second-order differential) of the cost function Fs.
The calculation results are shown in Equations (13) and (14).

grad Fs = ∇x̂1 = 2
N

∑
i=1


(

d̂i − ρi

)
(xsi − x̂1)

d̂i(
d̂i − ρi

)
(ysi − ŷ1)

d̂i

 , (13)

∇2
x̂1

= 2
N

∑
i=1


d̂i − ρi

d̂i
+

ρi

d̂3
i
(xsi − x̂1)

2 ρi

d̂3
i
(xsi − x̂1) (ysi − ŷ1)

ρi

d̂3
i
(xsi − x̂1) (ysi − ŷ1)

d̂i − ρi

d̂i
+

ρi

d̂3
i
(ysi − ŷ1)

2

 . (14)

Considering Theorem 1, we obtain the following corollary:

Corollary 1. If dom Fs of the LS cost function is R2, it obviously is a convex set. Assume that the set of all x̂1,
which satisfy condition ∇2

x̂1
� 0, is A. Then, for x̂1 ∈ A, Fs is a convex function.

Corollary 1 is a sufficient and necessary condition for Fs to be convex. Finding a set A that satisfies the
condition is equivalent to dividing the domain in R2 so that Fs is convex in each divided subinterval.
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Next, the condition of ∇2
x̂1
� 0 will be further analyzed. Note that ∇2

x̂1
is a real symmetric matrix,

and the two following lemmas hold:

Lemma 1. The eigenvalues of a real symmetric matrix are all real numbers.

Lemma 2. A real symmetric matrix is a semipositive definite matrix if and only if all its eigenvalues are
nonnegative [39].

Lemma 2 shows that the assessment of whether a matrix is positive semidefinite can be transformed
into the determination of whether the eigenvalues are positive or negative. Hence, we consider
calculating the eigenvalues of the Hessian matrix. Let J = ∇2

x̂1
∈ R2×2, and let λ be the eigenvalue of

J; then, the eigenvalue polynomial of J is:

G =

∣∣∣∣∣λ− J11 −J12

−J21 λ− J22

∣∣∣∣∣ , (15)

where Jij are the elements of J. Let G = 0; then, the following characteristic polynomial equation can
be obtained:

λ2 − (J11 + J22) λ + J11 J22 − J12 J21 = 0. (16)

It is a quadratic equation of one variable. From Lemma 1, we observe that there must be two real
roots, and the discriminant of roots ∆ ≥ 0 is invariable. From the distribution relation of the two roots,
the sufficient and necessary condition of having two nonnegative real roots is:

J11 + J22 > 0

J11 J22 − J12 J21 ≥ 0
. (17)

Therefore, we can derive the following corollary:

Corollary 2. Set A consists of all the sets of x̂1 that satisfy the condition of the inequality group (15).

Corollary 2 is an equivalent condition of the LS cost function Fs being convex. Compared with
Corollary 1, Corollary 2 transforms the condition that the Hessian matrix is semipositive definite into
the solution of the inequality system, which provides a feasible method for finding the set satisfying
the requirements. However, due to the nonlinear characteristics of Equation (17), it is difficult to obtain
the analytic solutions of inequalities. In the next part, we discuss a particular case and try to provide
the proof.

Proposition 1. If there exists a set C in which all the estimates x̂1 satisfy d̂i − ρi ≥ 0, then the LS cost function
Fs is convex and C ⊆ A.

The proof of Proposition 1 is given in Appendix A.
If there is more than one target and their number is M, the Hessian matrix J has 2M rows and

2M columns, i.e., J ∈ R2M×2M. Consider a decomposition of J, and let J = ∑N
i=1 Qi. In the preceding

formula, Qi is the Hessian matrix corresponding to the ranging link li. It is easy to observe that
there are four elements, and the elements of Qi are located on the diagonal or adjacent positions of
J. An example is shown in Figure 1b, where Dk

ij represents the corresponding elements in J, which
are the second-order partial derivatives of Fs with respect to the coordinates of a target. We translate
the four elements in Qi to the upper left corner via the elementary row-column transformation of
matrices. Let the transformed matrix be Q′

i, as shown in Figure 1c; we observe that Qi and Q′
i are

similar matrices. The following lemma holds for similar matrices:
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Lemma 3. Similar matrices have the same eigenvalues.

This shows that Qi and Q′
i have the same eigenvalues. Let G′

i = λI −Q′
i; to obtain the eigenvalues

of G′
i, we construct the following block for G′

i:

G′
i =

[
G11 G12

G21 G22

]
. (18)

Above, G11 =

[
λ− g11 −g12

−g21 λ− g22

]
∈ R2×2, G12 = 0 ∈ R2×(2M−2), G21 = 0 ∈ R(2M−2)×2,

G22 = Λ ∈ R(2M−2)×(2M−2), where gkl is the element at the kth row and lth column of G′
i. From the

determinant theorem of block matrices, we know that:

|G′
i| = |G11| · |G22 −G21G−1

11 G12| = |G11| · |G22| = λ2M−2|G11|. (19)

Let |G′
i| = 0. According to the previous analysis, the two solutions of |G11| = 0 are λ = 1 and

λ =
d̂i − ρi

d̂i
, and the remaining 2M− 2 solutions of |G′

i| = 0 are all zero. If d̂i − ρi ≥ 0, then Qi � 0.

Proposition 1 still holds if there is more than one target, and it is a sufficient and unnecessary
condition for Fs to be locally convex. The nonconvex interval of Fs decreases with the increasing εi and
the number of links that satisfy εi > 0.

3.2. Analysis of the Cooperative Scenario

Similarly, we try to find a set of x̂j for the condition that the LS cost function is convex in the
cooperative scenario. We guess that Proposition 1 is also valid in that scenario and try to prove it.
In this scenario, the ranging link consists of two parts, an AT link and a TT link. Inspired by Lemma 3,
we decompose Hessian matrix J into several submatrices Qi. Each Qi is actually a function related to

d̂i, which is denoted by f
(

d̂i

)
=
(

d̂i − ρi

)2
. The element of Qi is the second-order partial derivative

of function f
(

d̂i

)
with respect to the target coordinates x̂j. In Section 3.1, it has been proven that

Proposition 1 is satisfied if li is an AT link. Next, we will show that Proposition 1 is also satisfied for
TT links. To facilitate the analysis, we select one TT link lk in the cooperative scenario and denote the
targets at the end of the link as Tm and Tn, the estimates of which are (x̂m, ŷm) and (x̂n, ŷn), respectively.
If the distance measurement is ρk, then the LS cost function can be written as:

Fc =
(

d̂k − ρk

)2
. (20)

Computing the partial derivatives of Fc with respect to x̂m, x̂n, ŷm, ŷn, the gradient vector (the first-order
differential) can be obtained as follows:

grad Fc = ∇x̂m ,x̂n =
2
(

d̂k − ρk

)
d̂k


x̂m − x̂n

x̂n − x̂m

ŷm − ŷn

ŷn − ŷm

 . (21)

Hence, the Hessian matrix is:
J = ∇2

x̂m ,x̂n
. (22)

We are interested in the eigenvalue of J; the characteristic polynomial can be calculated as follows:

λ2 (λ− 4)

(
λ− 4

d̂k − ρk

d̂k

)
= 0. (23)
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Then, the four eigenvalues can be solved as follows:

λ1 = λ2 = 0, λ3 = 4, λ4 = 4
d̂k − ρk

d̂k
. (24)

If d̂k − ρk ≥ 0, thus a TT link has similar properties to those of an AT link. In the following, we try to
generalize this further. If there are two kinds of ranging links in the LS cost function, this property
remains unchanged.

Consider the case of M targets in the cooperative scenario; the Hessian matrix of Fc is J ∈ R2M×2M.
For example, the elements of the matrix are shown in Figure 1a, where Dk

ij represents the corresponding
element that is the second-order partial derivative of Fc with respect to the coordinates of a target.
Consider a decomposition of J, and let J = ∑L

i=1 Qi. In the preceding formula, Qi is the Hessian matrix
corresponding to the ranging link li. If li is an AT link, the analysis and result shown in Section 3.1
apply. If the ranging link is a TT link, there are sixteen elements in each Qi. An example is shown in
Figure 1d. All the elements in Qi are translated to the upper left corner, as shown in Figure 1e. We
denote the transformed matrix by Q′

i and let G′
i = λI −Q′

i. Similarly, we construct the following
block for G′

i:

G′
i =

[
G11 G12

G21 G22

]
. (25)

Above, G11 =

λ− g11 ... −g14
...

. . .
...

−g41 ... λ− g44

 ∈ R4×4, G12 = 0 ∈ R4×(2M−4), G21 = 0 ∈ R(2M−4)×4, and

G22 = Λ ∈ R(2M−4)×(2M−4), and gkl is the element at the kth row and the lth column of G′
i. Similar to

Formula (23), we have:

|G′
i| = |G11| · |G22 −G21G−1

11 G12| = |G11| · |G22| = λ2M−4|G11|. (26)

Let |G′
i| = 0. Reviewing the analysis for TT links, the four solutions of |G11| = 0 are λ1 = λ2 = 0,

λ3 = 4, and λ4 = 4
d̂i − ρi

d̂i
, and the remaining 2M − 4 solutions of |G′

i| = 0 are all zero. Hence,

if d̂i − ρi ≥ 0, then Qi � 0.
The analysis above shows that Proposition 1 is still valid in the cooperative scenario. Similar to

the noncooperative scenario, the nonconvex interval of Fc decreases with the increasing εi and the
number of links that satisfy εi > 0.
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(a)

(b) (c)

(d) (e)

Figure 1. A simple example of Hessian matrix J. Graph (a) shows the arrangement of elements in one of
the cooperative scenarios. Graph (b) represents Qi associated with the target Ti, and (c) represents Q′

i,
which is the matrix after the row and column transformation of Qi. Similarly, Graphs (d,e) represent
Qi and Q′

i associated with target-target (TT) links in the cooperative scenario.

Proposition 1 shows that if the condition d̂i − ρi ≥ 0 is satisfied, an appropriate interval in which
the LS cost function F is convex can always be found. Based on this, we can describe the condition for
F to be convex globally.

Proposition 2. For ∀i, if d̂i − ρi ≥ 0 always holds on x̂ = [x̂1 x̂2 ... x̂M]T ∈ R2M, then F is convex on R2M.

Proposition 2 is a sufficient and unnecessary condition for the global convexity of the LS cost
function. In a practical scenario of the ranging error being greater than zero, the distance observation
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ρi is positive. In this case, the condition of global convexity is not satisfied. If εi ≤ −di, we have ρi ≤ 0;
then, d̂i − ρi ≥ 0 is invariable, and F is convex in the global range. Although the global convexity
condition is satisfied if all εi ≤ −di, it is a low probability event that all the observation values will
be negative because of the independence between the distance measurement errors. Therefore, in an
actual location determination scenario, it is not a common phenomenon for the LS cost function to be
convex in the global range.

4. Null Space of the Relative Angle Matrix

From the analysis in Section 3, it is known that a positive ranging error will cause the LS cost
function to be nonconvex. In this condition, when the iterative method is used to search for the
optimal solution, it may fall into a local minimum, causing the result obtained to not be the optimal
global solution. There are generally two ways of solving this problem. The first is to divide the
domain R2M into several intervals so that the cost function is convex in each subinterval. Then,
the appropriate initial value is selected in each subinterval, and the result is obtained by the iterative
method. Proposition 1 shows that such subintervals must exist, so this method is feasible in any case.
The second method is to modify the original LS localization model to make it convex in the global
range. The advantage of this method is that the convexity weakens the requirement of initial value
selection. That is, the solution is insensitive to initial value selection. Based on Proposition 2, we
propose a robust method using the relative angle matrix for WSN positioning. The basic idea of this
method is to transform the LS cost function into a globally convex function by calculating the relative
angle matrix. This algorithm ensures that the minimum obtained by the Gauss–Newton iteration
method will be the optimal global solution. Some further analysis will also be performed in this part.

4.1. Definition of the Relative Angle Matrix

Definition 1. The relative angle matrix in the noncooperative scenario is defined as:

Ωs
4
=


1 cos (θ1T2) ... cos (θ1TN)

cos (θ2T1) 1
. . . cos (θ2TN)

...
. . . ...

...
cos (θ1TN) cos (θ2TN) ... 1

 , (27)

where Ωs ∈ RN×N . If θ′iTj is the angle between li and lj, then θiTj is given by:

θiTj =


θ′iTj , li ∩ lj = Tk

π

2
, li ∩ lj 6= Tk

. (28)

Assume the following formulation:

Ps =



xs1 − x̂1

d̂1

ys1 − ŷ1

d̂1
... 0 0

xs2 − x̂1

d̂2

ys2 − ŷ1

d̂2
... 0 0

...
...

. . .
...

...

0 0 ...
xsN − x̂M

d̂N

ysN − ŷM

d̂N


, εs =


ρ1 − d̂1

ρ2 − d̂2
...

ρN − d̂N

 , (29)

where Ps ∈ RN×2M and εs ∈ RN . Let ∇x̂1 = 0; this condition is equivalent to:

PTεs = 0. (30)
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Further, the relationship between relative angle Ωs and Ps is as follows:

Ωs = PsPT
s . (31)

Substituting (30) into (31), we obtain:
Ωsεs = 0. (32)

Imitating the noncooperative scenario, we can define the relative angle matrix in the
cooperative scenario.

Definition 2. The relative angle matrix in the cooperative scenario is defined as:

Ωc
4
=


1 cos θ1T2 cos θ1T3 ... cos θ1TL

cos θ2T1 1 cos θ2T3 ... cos θ2TL
...

...
. . .

...
...

cos θL−1T1 cos θL−1T2 cos θL−1T3 ... cos θL−1TL
cos θLT1 cos θL−2 cos θLT3 ... 2

 , (33)

where Ωc ∈ RL×L; when i 6= j, if θ′iTj is the angle between li and lj, then θiTj is defined by Formula (28).
If i = j, let ωij represent the element of the ith row and jth column in Ωc. If li is an AT link, then
ωij = 1; otherwise, li is a TT link, and then, ωij = 2. Assume that:

Pc =



xs1 − x̂1

d̂1

ys1 − ŷ1

d̂1
0 0 ... 0 0

xs2 − x̂1

d̂2

ys2 − ŷ1

d̂2
0 0 ... 0 0

...
...

...
...

. . .
...

...

0 0 0 0 ...
xsN−1 − x̂M

d̂N−1

ysN−1 − ŷM

d̂N−1

0 0 0 0 ...
xsN − x̂M

d̂N

ysN − ŷM

d̂N
x̂2 − x̂1

d̂N+1

ŷ2 − ŷ1

d̂N+1

x̂1 − x̂2

d̂N+1

ŷ1 − ŷ2

d̂N+1
... 0 0

...
...

...
...

. . .
...

...

0 0
x̂k − x̂2

d̂L

ŷk − ŷ2

d̂L
... 0 0



, εc =


ρ1 − d̂1

ρ2 − d̂2
...

ρL − d̂L

 , (34)

where Pc ∈ RL×2M and εc ∈ RL. Then, ∇x̂j = 0 is equivalent to:

PT
c εc = 0. (35)

Multiplying both ends of the equation by Pc results in:

PcPT
c εc = 0. (36)

In the cooperative scenario, it still holds that:

Ωc = PcPT
c . (37)

Substituting Formula (36) into Formula (37), we obtain:

Ωcεc = 0. (38)
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We refer to the relative angle matrices Ωs and Ωc collectively as Ω. The following property of Ω is
established generally.

Property 1. In the two-dimensional plane, let r be the rank of Ω, i.e., r = rank (Ω). Assume that there are M
targets in the localization scenario, and the number of unknown variables is τ = 2M; then, the inequality r ≤ τ

is satisfied.

The proof of Property 1 is given in Appendix B.

4.2. Null Space Algorithms

From Formulas (32) and (38), we can conclude that the ranging error is the null space of Ω. It is
also known from Property 1 that once Ω has been determined, if the number of nontrivial solutions of
ranging error ε is NB, we have NB ≥ 1. If and only if r = τ, then NB = 1. If r < τ, the solution satisfying
the equation should be a set, i.e., there is an infinite number of ε satisfying the equation. Hence, if a
basic solution of ε has been obtained, ε is the linear space formed by Φ, where Φ ∈ RNA×(τ−r). Let
Φ =

[
ϕ1 ϕ2...ϕτ−r

]
; then, the general solution of ε can be expressed as:

ε =
τ−r

∑
i=1

kiϕi, (39)

where ki ∈ R and ϕi ∈ RNA . Equation (39) indicates that for ε in the same linear space, the LS cost
function F has the same local optimal point. However, convexity will vary with ε. If ε > 0, F is
likely to be a nonconvex function; thus, multiple local optima will exist. If ε � 0, it is known from
Proposition 2 that F can be transformed into a convex function in the global range. Assuming that Ω

is known, we can determine Φ for a given ε. If there exists a linear combination of column vectors
in Φ that results in ν� 0, then by the same property of the local optima, we can change the LS cost
function F and make it convex in the global range.

Proposition 3. Let ν be an element of the null space of Ω such that ν� 0; then, Equations (7) and (12) can be
rewritten as:

arg min
d̂i

F′s =
N

∑
i=1

(
d̂i − ρi − νi

)2
, (40)

arg min
d̂i

F′c =
L

∑
i=1

(
d̂i − ρi − νi

)2
. (41)

In this paper, we refer to F′s and F′c collectively as F′. In Proposition 3, F′ and F have the same
local optimal point, i.e., the objective functions are equivalent. Additionally, F′ is also globally convex,
which endows it with the characteristic of large-scale convergence. Thus, using it can reduce the
sensitivity to the initial value selection. If we want to apply Proposition 3, the following problems
remain to be solved:

• How do we achieve Ω?
• For an arbitrary Ω, does ν satisfy the condition of ν� 0?
• When there are errors in Ω, how do we deal with them?

For the first problem, the direct method is to measure the angle, which is similar to the AOA
method. In this way, Proposition 3 is transformed into an AOA/TOA hybrid location algorithm.
Another method is to transform the distance data into the corresponding angle via the cosine theorem
and construct the relative angle matrix. To answer the second question, we will prove that the following
properties are valid:



Sensors 2019, 19, 2627 14 of 26

Property 2. In both noncooperative and cooperative scenarios, there always exists ν � 0 if the node to be
located is inside the convex polygon composed of adjacent nodes, whereas there is no ν satisfying this condition if
the node is outside the convex polygon.

The proof of Property 2 is given in Appendix C.
According to Property 2, Proposition 3 can be applied in both noncooperative and cooperative

scenarios; however, there is a limitation that it can only be applied if all the targets are located in the
convex hull composed of adjacent nodes. In contrast, Proposition 3 does not hold if there are targets
outside the convex hull formed by neighboring nodes.

In the third problem, the angle measurement errors will influence the final positioning result.
In addition, in the process of calculating the null space of Ω, it is possible that no suitable ν� 0 exists
due to the errors. In this case, Proposition 3 will also be invalid, and it is necessary to eliminate it.

The paper [36] used the method of principal component analysis (PCA) to reduce the deviation of
the relative angular matrix in source localization. The main steps are as follows. First, Ω is decomposed
by SVD. Then, all the eigenvalues are sorted in descending order, and the large eigenvalues are selected
as the main eigenvalues. At the same time, the eigenvectors corresponding to the eigenvalues are
selected to reconstruct Ω, which is denoted by Ω′. The null space of Ω′ is determined; one of the
vectors is selected as the value of the base vector ϕ1 and is multiplied by the coefficient k1 to satisfy
ν = k1ϕ1 � 0. The PCA method is simple and efficient; when the measurement errors are not large,
it can calculate ν well. In WSN localization, the PCA method cannot obtain the appropriate ν as the
errors and the number of targets increase. If the cosine theorem is used to transform the ranging
data into angle data, the ranging measurement error will be converted into the angle measurement
error after the calculation. Hence, similar problems will also exist. We consider the main reason for
this problem to be that the distance circles formed by the node and the range measurement may not
intersect at one point. Then, the sum of radian measures of the relative angles of each node at the same
point will not equal 2π.

Let α̂1, α̂2, ..., α̂n be the estimated values of the angles, formed by the target and its adjacent nodes,
and the corresponding angle measurements or calculated values be α1, α2, ..., αn. We define the angle
least squares cost function as follows:

arg minα̂i Fα = ∑N
i=1 (α̂i − αi)

2

s.t. ∑N
i=1 α̂i = 2π

. (42)

Formula (42) is a linear optimization problem with equality constraints and can be transformed into an
unconstrained optimization problem by introducing Lagrange multipliers. If the Lagrange multiplier
is λ, then Formula (42) is equivalent to:

arg min
α̂i

f ′α =
N

∑
i=1

(α̂i − α)2 + λ

(
N

∑
i=1

α̂i − 2π

)
(43)

We calculate the partial derivatives of f ′α:

∂ f ′α
∂α̂1

= 2 (α̂1 − α1)− λ

...
∂ f ′α
∂α̂n

= 2 (α̂n − αn)− λ

∂ f ′α
∂λ

= α̂1 + α̂2 + ...α̂n − 2π

. (44)
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Setting every derivative in (44) to zero, we obtain the following optimal point:

α̂1 =
1
2

λ + α1

...

α̂n =
1
2

λ + αn

λ =
2
n
[2π − (α̂1 + α̂2 + ...α̂n)]

. (45)

Using this method, the relative angle between targets and adjacent nodes can be estimated.
After that, the sum of relative angular radians of each target will be 2π. According to the properties of
the relative angular matrix, ν� 0 must exist. After that, F can be transformed into a globally convex
function by Proposition 3 and solved by the Gauss–Newton iteration method.

If the cosine theorems are used to calculate the angle, the theorem may be inapplicable. In other
words, because of the existence of the ranging error, the triangle’s trilateral side lengths may not satisfy
the theorem’s condition, and the method needs to be further improved. In this paper, we use the
generalized cosine law. Assume that the angle in a triangle is denoted by β; then, we calculate β

as follows:

β =


π t < −1
arccos t − 1 ≤ t ≤ 1

0 t > 1
. (46)

Above, tis calculated from the trilateral relationship according to the cosine theorem. We call
the respective methods the “angle-based null space algorithm” (A-NLS) and “cosine law-based null
space algorithm” (C-NLS), whereby the angles are obtained by angle measurement or the cosine law
calculation. The main steps of the algorithm are shown in Algorithm 1.

Algorithm 1: A-NLS and C-NLS algorithms.

Input: si, ρi, 1 ≤ i ≤ L, i ∈ N+ and αi (the angle observation is unnecessary for C-NLS);
Output: x̂
1: Measuring or calculating Ω that entails errors;
2: Angle estimation is performed by using the Equation (45);
3: Obtain Ω′;
4: Calculate the null space of Ω′, and choose the appropriate ki so that ν� 0;
5: For ∀i, calculate ρ′i = ρi − νi, set K > 0, t = 0, and choose random x0;
6: while‖ xt+1 − xt ‖> K do
7: Update xt+1 for using the Gauss–Newton iteration method;
8: t = t + 1;
9: end while
10: return x̂ = xt

5. Simulations and Results

In the fifth part of this paper, we will validate the proposition and the proposed algorithm using a
numerical simulation. The following simulation chooses two typical scenarios of non-cooperative and
cooperative positioning for analysis and verification.

5.1. Simulation Scenario Setting

In the noncooperative scenario, we assumed that there were four anchors and one target. In the
cooperative scenario, there were two targets and six anchors. The Cartesian coordinate system was
established in the two-dimensional plane. The coordinates of each anchor are shown in Table 1. Three
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kinds of environments were simulated: the NLOS environment, the LOS environment, and the case
of negative ranging errors. We can consider the latter case as a particular condition. Although it
is not common in actual positioning practice, we can regard it as the equivalent ranging error after
using Proposition 3. The magnitudes of errors of each scenario in various situations are shown in
Tables 2 and 3.

Table 1. Coordinates of the anchors.

Node Number A1 A2 A3 A4 A5 A6

Noncooperative/(m) (−10,−10) (−10, 10) (10,−10) (10, 10) – –
Cooperative/(m) (15, 15) (30, 0) (15,−15) (−15,−15) (−30, 0) (−15, 15)

Table 2. Ranging errors in the noncooperative scenario.

Link Number l1 l2 l3 l4

NLOS εi/(m) 10.59 6.53 7.23 6.93
LOS εi/(m) 2.03 1.58 −1.48 1.42

Negative εi/(m) −17.42 −24.06 −26.57 −20.69

Table 3. Ranging errors in the cooperative scenario.

Link Number l1 l2 l3 l4 l5 l6 l7

NLOS εi/(m) 10.31 8.98 9.54 11.04 8.42 2.72 3.67
LOS εi/(m) −1.62 2.26 3.08 1.32 4.22 2.13 −2.74

Negative εi/(m) −29.13 −30.32 −34.61 −38.75 −35.69 −28.02 −36.64

5.2. Convexity Verification

First, function Fs was simulated globally to observe the convexity in various environments.
The convexity of Fs was considered under various ranging errors. The function image, the semipositive
definite condition, and the estimates calculated by the iterative algorithm were obtained. The results
are shown in Figure 2.

Figure 2c,f,g shows the condition of Hessian matrix J at each point in the plane; the red part
represents semipositive definite, the blue part seminegative definite, and the green part indefinite.
Theorem 1 shows that if J is semipositive definite, the function is convex. It is observed from Figure 2c
that if the targets were in the NLOS environment, the semipositive definite area was discontinuous.
The sum of the indefinite and seminegative definite areas was larger. If the targets were in the
LOS environment, the semipositive definite area was continuous, while the sum of indefinite and
seminegative definite areas was smaller. Proposition 2 shows that if there is a positive ranging error,
the cost function is nonconvex in the global range. Therefore, in the above two environments, Fs cannot
be nonconvex in the global range.
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Figure 2. The graphs related to Fs of one target in the noncooperative scenario. Above, Graphs
(a,d,g) are the images of Fs in each scene; Graphs (b,e,h) are the results of the Gauss–Newton iteration
algorithm when different initial values were selected; Graphs (c,f,i) represent the semipositive definite
distribution of Hessian matrix J in the two-dimensional plane.

The target position was solved for by the Gauss–Newton iteration method, with different initial
values selected from different directions. The results are shown in Figure 2b,e,h. In the NLOS
environment, because of the positive errors, the LS cost function Fs had more than one local optimal
point due to nonconvexity. When the initial value varied, the iterative algorithm converged to different
minimums. In the LOS environment, there were lower ranging errors. Although the LS cost function
Fs was also nonconvex in the global range, there was no increase in the number of local optimal points.
In this case, the iterative algorithm converged to the same location. Hence, the original LS model was
applicable in the LOS environment.

The results obtained if the ranging error was negative and satisfied the condition for the cost
function Fs to be convex are shown in Figure 2g,i. It is observed that J was semipositive definite
and Fs was convex in the global range. Figure 2h shows the results of the Gauss–Newton iteration
algorithm with various initial values. The circle formed by the dotted lines in the graph indicates that
the ranging error was negative, and its size is the absolute value of the distance observation. According
to the results, the algorithm can eventually iterate to the same location regardless of the initial value,
which confirms the global convergence in this case.

In the cooperative scenario, various initial values were selected, and the target location was
calculated by the Gauss–Newton iterative algorithm. The iterative images are shown in Figure 3a–c.
In the NLOS positioning environment, because of the positive ranging errors, the cost function was
not convex in the global range. Therefore, various initial values caused the iteration algorithm to
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converge to different minimums. In the LOS positioning environment, although Fc was also nonconvex
in the global range, the positive ranging error was lower; hence, the algorithm could still converge to
the same local optimal point. If the ranging error was negative, the cost function was convex in the
global range. Thus, regardless of the selected initial value, the algorithm would converge to the global
optimal point.
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Figure 3. The results of the Gauss–Newton iteration algorithm when different initial values were
selected in the cooperative scenario. Above, graph (a) shows the result for NLOS positioning
environment, graph (b) shows the result for LOS environment, and graph (c) shows the result when
the ranging error was negative.

5.3. Null Space Algorithm Performance

To compare the performance of algorithms (LS, A-NLS, and C-NLS), the following simulations
were performed in both the noncooperative and cooperative scenarios. We assumed that all the targets
were located in the polygon composed of adjacent nodes. The coordinates of each anchor are shown
in Table 1. We performed simulations in both the LOS and NLOS environments. The ranging error
parameters were set to µnlos = 5 m, σ2

los = 3 m2, and σ2
nlos = 4.5 m2, and in the AOA angle measurement,

it was assumed that the parameters of the relative angle error matrix were µα = 0.1, σ2
α = 0.5. In the

noncooperative scenario, the real location of the target was x1 = [2, 4]T , while in the cooperative
scenario, the real locations of the two targets were x1 = [4, 3]T and x2 = [−6,−5]T . For the LS,
C-NLS, and A-NLS algorithms, any position was selected as the initial iteration value of the algorithm
in each calculation. To consider all directions of the location of the initial value, the distribution
x̂0 ∼ N (µ0, Σ0) was used, where µ0 is the mean vector and Σ0 is the covariance matrix; their values

were set to µ0 = [50, 50]T and Σ0 =

[
100 0

0 100

]
. As a reference, we chose the SDP and PPM algorithms

to compare the performance with that of the null space algorithm proposed in this paper. For the
PPM algorithm, the initial iteration position of each target was equal to the average of coordinates
of its adjacent nodes. For each scenario, 100 numerical simulations were performed. The estimated
positions obtained by the algorithms were compared with the real positions of the targets. The root
mean squared errors (RMSE) were calculated according to Formula (47).

eRMSE =

√√√√ 1
M

M

∑
j=1
‖x̂j − xj‖2. (47)

We calculated the convergence probability for different algorithms. The simulation results are
shown in Figure 4, Tables 4 and 5. If the convergence threshold was 5 m, we can see from the graphs
or tables that in the LOS environment, there was a high convergence probability of each algorithm in
the noncooperative scenario, while in the cooperative scenario, the convergence probability of the LS
and PPM algorithm became lower. In the NLOS environment, the convergence probability of the LS
and PPM algorithm decreased seriously, especially in the cooperative scenarios, which was almost
non-convergent. The convergence performance of the SDP algorithm in the cooperative scenario also
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decreased considerably. However, the C-NLS algorithm maintained a high convergence probability in
all environments and scenarios. The performance of the A-NLS algorithm was similar to that of the
C-NLS algorithm, but it slightly decreased in the NLOS environment of the cooperative scenario.
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Figure 4. Convergence for algorithms in the different scenarios and environments. Above, Graphs
(a,b) are the results in the noncooperative scenario, where (a) represents the LOS environment, while
(b) represents the NLOS environment. Graphs (c,d) are the results in the cooperative scenario, which
represent the LOS and NLOS environments, respectively. The red boxes in the figure represent the
anchors, while the blue stars represent the targets. We drew the ranging link as the green dotted line and
the convergence radius as the blue dotted circle. The solid points represent the results of positioning.

Table 4. Convergence probability in the noncooperative scenario. PPM, parallel projection method;
SDP, semidefinite programming; A-NLS, angle-based null space algorithm; C-NLS, cosine law-based
null space algorithm.

Algorithms LS PPM SDP A-NLS C-NLS

LOS/% 99 99 100 99 100
NLOS/% 6 3 94 100 100

Table 5. Convergence probability in the cooperative scenario.

Algorithms LS PPM SDP A-NLS C-NLS

LOS/% 66 68 93 100 99
NLOS/% 0 0 30 78 97
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Figure 5. The CDF of the minimum mean squared error (MESE) for algorithms in the different
scenarios and environments. Above, Graphs (a,b) are the results in the noncooperative scenario, where
(a) represents the LOS environment, while (b) represents the NLOS environment. Graphs (c,d) are the
results in the cooperative scenario, which represent the LOS and NLOS environments, respectively.

Afterwards, the corresponding cumulative probability distributions of errors were obtained.
The results are shown in Figure 5. In particular, Figure 5a,c shows that in the LOS environment,
the differences between the algorithms were not significant in both the noncooperative and cooperative
scenarios. In the NLOS environment, as shown in Figure 5b,d, the differences between the algorithms
were apparent. The LS and PPM algorithms showed large positioning errors in the cooperative and
noncooperative scenarios. The main reason is that the positive ranging errors increased, which directly
led to a sharp decline of positioning performance.

The location precision of the SDP and null space algorithms (A-NLS, C-NLS) did not decrease in
the NLOS environment, which reflects the stability of these algorithms in various situations; i.e., the
algorithms can obtain better location estimates in both the LOS and NLOS environments. At the same
time, the null space algorithm proposed in this paper was slightly better than the traditional SDP
algorithm in both noncooperative and cooperative scenarios and achieved the desired goal.

6. Conclusions

In this paper, a necessary and sufficient condition for the global convexity of the LS cost function
was specified for WSN positioning. Generally, when all the ranging errors were far less than zero,
the LS cost function was convex. Next, we defined the relative angle matrix in both the noncooperative
and cooperative scenarios and proved the two essential properties. We observed that if all the targets
were located in the convex polygon formed by their adjacent nodes, the LS cost function could be
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transformed into a globally convex function by constructing measurements with a negative distance.
Based on the analysis, we proposed a robust algorithm for WSN localization. The proposed method
reduced the sensitivity of the Gauss–Newton iteration algorithm to initial value selection and made the
function globally convex. In other words, the function had the characteristic of large-scale convergence.
In the fifth part of the article, numerical simulations were performed to verify the proposition described
in the third part, and the robust algorithm was compared with the conventional methods. The results
showed that the null space algorithm effectively constrained the error in the NLOS environment
and obtained more accurate positioning results in both the LOS and NLOS environments.

In the future, we will carry out a study on the impact of varying the topologies and number of
anchors and targets. Furthermore, we will deal with the problem when the targets are not located
inside the convex polygon formed by its neighboring nodes.

Author Contributions: Y.T. and J.L. proposed and implemented the main idea. S.T. organized the overall flow of
the manuscript, and Y.T. drafted the manuscript. J.Z. and W.L. refined the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China (Grant No. 61601511).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Before proving the proposition, we first give the following lemma:

Lemma A1. A matrix, which is the sum of finite semipositive definite matrices, is still semipositive definite.
That is, if Ri � 0, 1 ≤ i ≤ N, i ∈ N+, there exists W = ∑N

i=1 Ri � 0.

Proof of Proposition 1. Consider decomposing J and the representation J = ∑N
i=1 Qi, where:

Qi =


d̂i − ρi

d̂i
+

ρi

d̂3
i
(xsi − x̂1)

2 ρi

d̂3
i
(xsi − x̂1) (ysi − ŷ1)

ρi

d̂3
i
(xsi − x̂1) (ysi − ŷ1)

d̂i − ρi

d̂i
+

ρi

d̂3
i
(ysi − ŷ1)

2

 . (A1)

To find the eigenvalues of Qi, let:
|λI −Qi| = 0. (A2)

Simplifying it, we obtain:

λ2 − 2d̂i − ρi

d̂i
λ +

d̂i − ρi

d̂i
= 0. (A3)

The two roots of λ can be obtained as follows:
λ1 = 1

λ2 =
d̂i − ρi

d̂i

. (A4)

As Formula (A4) shows, matrix Qi has two eigenvectors, and λ1 > 0 is invariable. If another
eigenvector satisfies λ2 = d̂i − ρi ≥ 0, then Qi � 0. From Lemma A1, we know that if
d̂i − ρi ≥ 0, 1 ≤ i ≤ N, i ∈ N+ holds, then J � 0. Then, the set of all estimates x̂1 that satisfy this
condition is C.
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Appendix B

Proof of Property 1. We first show that this property holds in the noncooperative scenario with one
target. Let the angles between two adjacent anchor nodes and the target be α1, α2, ..., αN . Then, we can
compute that:

Ωs =



1 cos α1 cos (α1 + α2) ... cos
(

∑N−1
i=1 αi

)
cos

(
∑N

i=2 αi

)
1 cos α2 ... cos

(
∑N−1

i=2 αi

)
cos

(
∑N

i=3 αi

)
cos

(
∑N

i=3 αi + α1

)
1 ... cos

(
∑N−1

i=3 αi

)
...

...
...

. . .
...

cos αN cos (αN + α1) cos (αN + α1 + α2) ... 1



=



1 cos α1 cos (α1 + α2) ... cos
(

∑N−1
i=1 αi

)
cos (−α1) 1 cos (−α1 + α1 + α2) ... cos

(
−α1 ∑N−1

i=1 αi

)
cos (−α1 − α2) cos (−α1 − α2 + α1) 1 ... cos

(
−α1 − α2 −∑N−1

i=1 αi

)
...

...
...

. . .
...

cos
(
−∑N−1

i=1 αi

)
cos

(
∑N−1

i=1 αi + α1

)
cos

(
∑N−1

i=1 αi + α1 + α2

)
... 1


. (A5)

An elementary row transformation is performed on Ωs; then, the simplified matrix can be structured as:

Ω′s =



1 cos α1 cos (α1 + α2) ... cos
(

∑N−1
i=1 αi

)
0 sin α1 sin (α1 + α2) ... sin

(
∑N−1

i=1 αi

)
0 0 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0


. (A6)

From this, we observe that the rank of Ωs with one target satisfies r ≤ 2. Consider the case of more
than one target in the noncooperative scenario. For each node, we can perform a similar elementary
row transformation, and the number of nonzero rows is no more than two. Hence, we know that the
number of nonzero rows of Ω′s will not be greater than τ. In the cooperative scenario, the first to the
Nth rows of Ωc are similar to those of Ωs. For rows numbered from N + 1 to L, due to the existence of
the TT link, the number of nonzero elements per row is four; if i = j, we have ωij = 2. The reason is
that the targets connect between the cooperative link. If each target has at least two known location
nodes connected to it, the element in the respective row can be reduced to zero by a row transformation
similar to that in the noncooperative scenario. In the simplified relative angular matrix Ω′c, each user
node is independent of other nodes, so it must hold that r ≤ τ.

Appendix C

Definition A1. An adjacent node of Tj is defined as the node that has a ranging link with Tj, whether it is an
anchor or a target.

Definition A2. A point p in a convex set K is said to be an extreme point if it cannot be written in the form
p = tx + (1− t) y, where x and y are distinct points of K and 0 < t < 1; informally, this means p is not
between two other points of K.

Lemma A2. Every point in a bounded closed convex set must be a convex combination of its extreme points [40].
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Lemma A3. Let K1,K2 be convex subsets of Rn and Rm, respectively. Then, K1 ×K2 ⊂ Rn ×RmRm+n is
convex. Furthermore, point (P1, P2) is an extreme point of K1 ×K2 if and only if P1 is an extreme point of K1

and P2 is an extreme point of K2 [40].

Proof of Property 2. We first assume that there is only one node in the scenario, and the error vector
is set to ε = [ε1 ε2 ... εN ]

T . According to Formula (32),
ε1 + ∑N

i=2 cos
(

∑i−1
j=1 αj

)
εi = 0

∑N
i=2 sin

(
∑i−1

j=1 αj

)
εi = 0

. (A7)

As Figure A1a shows, if a coordinate system is established with T1 as the origin, then Formula (32) can
be rewritten as follows:  1

0

 ε1 +
N

∑
i=2


cos

(
∑i−1

j=1 αj

)
sin
(

∑i−1
j=1 αj

)
εi =

 0

0

 . (A8)

Take T1 as the center of a circle; consider a unit circle, and suppose that the intersection with li occurs

at point Pi. It is easy to observe that

 1

0

 ,

 cos α 1

sin α 1

 , ...,


cos

(
∑N−1

j=1 αj

)
sin
(

∑N−1
j=1 αj

)
 are the coordinates

of points P1, P2, ..., PN in the Cartesian coordinate system. If P1, P2, ..., PN form a convex polygon and
P1, P2, ..., PN are the extreme points of that polygon, the origin T1 must be a point inside the convex
polygon. Lemma 3 shows that there exists a convex combination, so that the coordinates of T1 are
composed of convex combinations of P1, P2, ..., PN . In other words, ∃ ξ1, ξ2, ..., ξN , ξi ∈ (0, 1) and
∑N

i=1 ξi = 1 such that:  1

0

 ξ1 +
N

∑
i=2


cos

(
∑i−1

j=1 αj

)
sin
(

∑i−1
j=1 αj

)
ξi =

 0

0

 . (A9)

Let εi = ξi; then, we can prove that Property 2 holds in the single target scenario.
If more than one node exists, we suppose that the jth user node Tj has a total of rjt links,

including rja AT links and rjc TT links. These links divide the plane into rjt parts. Every two
adjacent links form an angle with the Tj as the vertex. Let the radian measures of angles at Tj
be γj1, γj2, ..., γj(rja−1), γjrja , ..., γjrjt . The two adjacent links constituting these angles are numbered
lsj1 , lsj2 , ..., lsjrjt

, lsj1 , where sjk is the number of all links connected to Tj, which satisfies sj(k+1) > sjk.

The error vector is set to ε = [ε1 ε2 ... εL]
T ; according to Formula (36), it holds that:

εs11 + ∑r1t
k=2 cos

(
∑k−1

m=1 γ1m

)
εs1k = 0

∑r1t
k=2 sin

(
∑k−1

m=1 γ1m

)
εs1k = 0

...

εsM1 + ∑rMt
k=2 cos

(
∑k−1

m=1 γMm

)
εsMk = 0

∑rMt
k=2 sin

(
∑k−1

m=1 γMm

)
εsMk = 0

. (A10)
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As shown in Figure A1b, consider any Tj, and consider a unit circle centered at Tj that intersects li
at points Psj1 , Psj2 , ..., Psjrjt

. Then, the jth and j + 1th lines in Equation (A10) can be written as follows:

 1

0

 εsj1 +

rjt

∑
k=2


cos

(
∑k−1

m=1 γjm

)
sin
(

∑k−1
m=1 γjm

)
εsjk =

 0

0

 , (A11)

where

 1

0

 ,

 cos γj1

sin γj1

 , ...,


cos

(
∑

rjt
m=1 γjm

)
sin
(

∑
rjt
m=1 γjm

)
 represent the coordinates of points

Psj1 , Psj2 , ..., Psjrjt
in the Cartesian coordinate system. Then, Psj1 , Psj2 , ..., Psjrjt

form a convex polygon,
and they are the extreme points of that polygon. Hence, all the points inside the polygon constitute a
closed convex set Hj ⊆ R2. If all Ti are located in the corresponding convex polygons, then set Hj
exists for ∀j, 1 ≤ j ≤ M, j ∈ N+.

(a)
(b)

Figure A1. Establish the coordinate system with the user node as the origin. Draw the unit circle with
the origin as the center. The points and angles defined by each link are as shown. Graph (a) denotes
one target T1 in the noncooperative scenario, and Graph (b) denotes the cooperative scenario, where
one of the user nodes is Tj.

As can be observed from Lemma A3, the Cartesian product Ht = H1 ×H2 × ...×HM ⊆ Rη is
also a convex set. Combining extreme points x̂j, 1 ≤ j ≤ M, j ∈ N+ inHj forms a new extreme point
x̂ = [x̂1 x̂2 ... x̂M]T ∈ R2M in Ht in Ht. According to Lemma A2, the origin is a convex combination
of extreme points. In other words, ∃ ξ1, ξ2, ..., ξL, ξi ∈ (0, 1) and ∑L

i=1 ξi = 1 satisfy Equation (37).
If εi = ξi, then Property 2 also holds in the multitarget scenario.
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