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ABSTRACT The North American mountain goat (Oreamnos americanus) is an iconic alpine species that
faces stressors from climate change, industrial development, and recreational activities. This species’ phy-
logenetic position within the Caprinae lineage has not been resolved and their phylogeographic history is
dynamic and controversial. Genomic data could be used to address these questions and provide valuable
insights to conservation and management initiatives. We sequenced short-read genomic libraries con-
structed from a DNA sample of a 2.5-year-old female mountain goat at 80X coverage. We improved the
short-read assembly by generating Chicago library data and scaffolding using the HiRise approach. The final
assembly was 2,506 Mbp in length with an N50 of 66.6 Mbp, which is within the length range and in the
upper quartile for N50 published ungulate genome assemblies. Comparative analysis identified 84 gene
families unique to the mountain goat. The species demographic history in terms of effective population size
generally mirrored climatic trends over the past one hundred thousand years and showed a sharp decline
during the last glacial maximum. This genome assembly will provide a reference basis for future population
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and comparative genomic analyses.

Mountain goats (Oreamnos americanus) are a symbol of alpine wilder-
ness and belong to the Caprinae subfamily of ungulates (hoofed mam-
mals) that are known for their exceptional climbing ability (Figure 1).
As northern alpine specialists, mountain goats are vulnerable to climate
change (Pettorelli et al. 2007) and face pressures from industrial devel-
opment, recreational activities, and hunting (C6té and Festa-Bianchet
2003). There is a need to provide novel tools and information to sup-
port conservation and management initiatives as it pertains to this
enigmatic species.
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Mountain goats are not true goats (i.e., genus Capra), but diverged
early within the Caprinae lineage and are typically associated with the
chamois (Rupicapra rupicapra) and goral (Naemorhedus spp.); their
phylogenetic position within the Caprinae is not resolved, but sampling
of nuclear and mitochondrial genes suggested an early and independent
divergence within the lineage (Shafer and Hall 2010). Similarly, the
mountain goats phylogeographic history appears dynamic and is con-
tentious (Shafer ef al. 2011a, 2011b). Throughout the last glacial period
most of the present-day range was covered with ice (Shafer et al. 2010),
indicative of multiple refugia and contraction and expansion events of
subpopulations (Shafer et al. 2011a). Within their present-day range,
mountain goat populations are not continuous and dispersal is limited
(Coté and Festa-Bianchet 2003), that combined with regional variabil-
ity in habitat and climate, support the hypothesis of locally adapted
populations across the range.

With the rapid development and lowering costs of sequencing
technologies, the use of genomics in conservation and wildlife
management is becoming more widespread. Over 20 ungulate
genomes have been assembled (Martchenko et al. 2018), with
chromosome-level assemblies for several commercially important
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Figure 1 North American mountain goat female stomping to assert her
dominance at Eulachon Creek, Alaska, USA. Mountain goats display a
strong social structure and one of the highest levels of aggressiveness
among ungulates. Photo by K.S. White.

ungulate species (ARS-UCD1.2, Oar_v3.1, ARS1), and an increasing
number of draft assemblies for wild ungulates (Li et al. 2017; Zhang
et al. 2018; Bana et al. 2018; Wang et al. 2019). This draft genome of the
North American mountain goat adds to this list of ungulate genomes,
and will be used for demographic analyses (e.g., Miller et al. 2015),
comparative genomic studies (e.g., Orlando et al. 2013; Agaba et al.
2016), and testing for putative local adaptation (e.g., Savolainen et al.
2013; Fitzpatrick and Keller 2015).

MATERIALS AND METHODS

Library construction

A tissue sample was obtained from a spleen of a 2.5-year-old female
harvested on Revillagigedo Island, Alaska, USA and frozen promptly
after harvest. High quality molecular DNA was extracted using
the phenol chlorophorm method (Sambrook and Russell 2006). Two
TruSeq Nano genomic library preparations with an insert size of 500 bp
were constructed and sequenced on an Illumina HiSeqX platform with
150 bp paired-end reads. A total of 214 Gbp of raw short-read data were
generated.

We trimmed the adapters and the low quality bases from the reads
with BBDuk (part of BBTools) (Bushnell 2018) to a minimum base
quality 20 and a minimum read length 50 bp after a quality assessment
with FastQC (Andrews 2010). To avoid any potential contamination of
the genome with bacterial or viral sequences, we screened the trimmed
reads with Kraken (Wood and Salzberg 2014) using the full standard
database (Oct. 2017 release). A total of 0.95% of the reads were classified
as belonging to a known bacterial or viral taxon and were removed. The
final short-read dataset comprised 176 Gbp.

Three Chicago libraries were prepared (Dovetail Genomics) follow-
ing the approach in Putnam et al. (2016). Briefly, Chicago library
preparation involves in vitro chromatin reconstitution to generate
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libraries with separations between reads up to maximum fragment size
of the input DNA. These libraries were sequenced on one lane of the
Mlumina HiSegX instrument generating a total of 104 Gbp of sequence
data.

Genome assembly

A k-mer size of 101 was selected for the short-read dataset
with KmerGenie (Chikhi and Medvedev 2014). The draft de novo
assembly was completed with the Meraculous assembler v. 2.0.4
(Chapman et al. 2011) using the following options: ‘diploid_mode 1’,
‘min_depth_cutoff 0’ to allow for auto-detection of k-mer frequency
cutoff by the assembler, ‘no_read_validation 0’ to decrease the runtime
as the reads were trimmed and screened prior to the assembly, and
‘gap_close_aggressive 1’ to remove the uniqueness requirement and use
the most common sequence obtained from potential gap-closing reads.
For comparison purposes, the short-read data were also assembled with
MEGAHIT v. 1.1.1 (Li et al. 2015) using ‘k-list 101" option.

We improved the short-read assembly by scaffolding with the
Chicago library data using the HiRise pipeline software (Putnam
et al. 2016). The HiRise software uses a likelihood model of the Chicago
data to infer the genomic distance between the read pairs, which is then
used to scaffold and check the orientation of draft scaffolds.

Quality assessment
To assess the assembly quality, we mapped the raw short-insert library
reads to the assembled genome with bowtie2 (Langmead and Salzberg
2012). We also aligned the genome against itself with minimap2
(Li 2018) with options ‘-ax asm5 -X to check for putatively artifactual
duplications, reflected by sequence overlaps between scaffolds (excluding
self-hits). We ordered the SAM file by decreasing alignment scores in
order to identify large regions that are similar between different scaffolds.
To validate the genome assembly and assess potential contamination
and sequencing bias we analyzed the contig and scaffold assemblies with
KAT (Mapleson et al. 2017). KAT plots the k-mer spectra — the number
of distinct k-mers seen once, twice, three times etc. and compares it
between the raw reads and the genome assembly. We calculated an
assembly quality value (QV) following the method of Bickhart et al.
(2017) and ran FRC_align (Vezzi et al. 2012) to identify any problem-
atic regions in the genome. We also evaluated the quality of the assem-
bled genome using BUSCO V3 and the mammalia odb9 database.

Genome annotation

We identified and classified the repeat regions of the assembled
genome using RepeatMasker v. 4.0.8 (Smit et al. 2013). We config-
ured RepeatMasker with RMBlast v. 2.6.0 sequence search engine,
Tandem Repeat Finder v. 4.0.9 (Benson 1999), Dfam_Consensus
database (20181026 release) and RepBase RepeatMasker edition
(20181026 release) (Bao et al. 2015) and used ‘-species artiodactyl’
parameter for the analysis.

We then annotated scaffolds that were greater than 2500 bp (n =482)
using both homology-based and de novo predictions. Proteins from
Homo sapiens, Equus caballus, Bos taurus, and Ovis aries (all Ensembl
89 release (Hunt et al. 2018)) were aligned to genome using blastx v.
2.7.1. We also used NCBI mammalian RefSeq transcipt database v. 1.0
and BLAT v. 1.0 to help identify exon structure. For de novo prediction
we first mapped RNAseq data (SRX1947618) from Capra hircus, the
most closely related species available on NCBI Sequence Read Ar-
chive, to the genome using HISAT2 v. 2.10 (Kim et al. 2015) and used
these data for prediction with Augustus v. 3.1.1 (Stanke et al. 2006).
EVidenceModeler v. 1.1.1 (Haas et al. 2008) was used to generate a
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B Table 1 Genome assembly statistics for the North American mountain goat for the short-read data and subsequent scaffolding

Total length 2,489 Mbp 2,506 Mbp

N50 / L50 29.0 Kbp / 24,137 scaffolds 66,617 Kbp / 13 scaffolds
N90 / L90 6.5 Kbp / 92,814 scaffolds 18,734 Kbp / 37 scaffolds
Number of scaffolds 172,540 3,217

N count (% of genome) 530,049 (0.02%) 17,462,549 (0.70%)

Gaps 23,758 193,083

consensus gene set with the following default weighting scheme
(Humann et al. 2018): gene prediction via Augustus (1x weight);
protein alignments via blastx (5x weight); transcript alignment via
blat (10x weight). Lastly, we used PASA v. 2.3.3 (Haas et al. 2008) to
refine our gene identifications.

To assign function to the newly annotated genes we aligned them to
the NCBI mammalian RefSeq protein database using blastp v. 2.7.1 with
a maximum HSP distance of 30,000 and e-value of 1e’®. The Interpro v
5.29-68 and KEGG databases were screened to annotate domains and
identify pathways based on the top blast hit. We used Infernal v. 1.1.1
(Nawrocki and Eddy 2013) and the Rfam database release 14.1 to
annotate miRNA, rRNA, and snRNA genes; tRNAs were detected
using tRNAscan-SE version 2.0.1 (Lowe and Eddy 1997).

Species-specific genes, phylogeny and

demographic history

Using the predicted protein sequences of Oreamnos americanus, we an-
alyzed the orthologs shared between Capra hircus, Equus caballus, Bos
taurus, Sus scrofa, Ovis aries and Oreamnos americanus with OrthoVenn
(Wang et al. 2015). We also used PHYLUCE v. 1.5.0 (Faircloth 2016) to
identify orthologous UCE sequences between Sus scrofa, Equus caballus,
Bos taurus, Capra hircus, and Ovis aries and Oreamnos americanus using
the 5k amniote probe set (Faircloth et al. 2012). We extracted UCEs with
250 bp flanks totaling 11.9 aligned Mbp. We conducted a maximum
likelihood phylogenetic analysis using RAXML v. 8 (Stamatakis 2014)
under a GTRGAMMATI substitution model selected with jModelTest 2 -
(Darriba et al. 2012). The phylogenetic tree was constructed with PAML
MCMCltree v. 4.9 (Yang 2007) and calibrated with the divergence time of
goat and cow (18.3-28.5 Mya) (Benton and Donoghue 2007).

Lastly, using a random 30X subset of the sequencing data, we
modeled the historical effective population size (N,) for the North
American mountain goat using PSMC [18]. We used the default
parameters of 64 atomic time intervals (-p “4+25*2+4+6”), a gen-
eration time of 6 years (Li and Durbin 2011) and mutation rate
p= 1.33*10"% mutations/site/generation, calculated as the average
mammalian mutation rate of 2.22*10~° mutations/site/year (Kumar
and Subramanian 2002) multiplied by the generation time of 6 years.

Data availability

The raw sequence data have been deposited in the Short Read Archive
(SRA) under accession number PRINA510081. This Whole Genome
Shotgun project has been deposited at DDBJ/ENA/GenBank under the
accession WJNR00000000. The version described in this paper is version
WJNR01000000. Supplemental material available at figshare: https://
doi.org/10.25387/g3.9884003.

RESULTS AND DISCUSSION

Genome assembly
The short-read assembly with Meraculous (Chapman et al. 2011) pro-
duced a genome consisting of 172,540 scaffolds with an N50 of 29.0 Kb
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and total genome size of 2.5 Gbp. For comparison purposes, the short-
read data were also assembled with MEGAHIT v. 1.1.1 (Li et al. 2015),
which produced a less continuous contig assembly of 2.6 Gbp com-
pared to the Meraculous contig assembly (Tables S1 and S2).

The final assembly including Chicago libraries was 2.5 Gbp in length
and consisted of 3,217 scaffolds that have an N50 of 66.6 Mbp (Table 1).
The assembled genome is 93% of the predicted size estimated by Kmer-
Genie (Chikhi and Medvedev 2014). Compared to the other ungulate
species, the N50 of the mountain goat assembly is in the top quartile
and the assembly length is mid-range (Table S3) (Miller et al. 2015;
Bickhart et al. 2017; Williams et al. 2017; Bana et al. 2018). The
genomic GC content is 41.67%, compared to 41.97% for non-primate
mammalian animals (Li and Du 2014).

Quality assessment

Mapping the sequencing reads back to the assembled genome can be
used to identify misassemblies and check assembly quality (Muller et al.
2013). The overall alignment rate of mapped the raw short-insert li-
brary reads to the final scaffolded assembly was 97%; 80% of the reads
aligned concordantly exactly 1 time and 14% of the reads aligned
concordantly more than once (Table S4), indicating the high quality
of the assembly. For reference, when the same analysis was completed
for the high quality assembly of the domestic goat, 89% of the raw
sequencing reads mapped back to the assembled genome (Dong et al.
2013). To detect potential long duplicated regions in the final scaffolded
assembly, we aligned the genome assembly against itself. Sixteen out of
30,472 entries in the SAM file had scores over 1000, ranging from
1011 to 1488. By examining the CIGAR strings of each of those entries,
we concluded that the assembly did not contain duplicated segments
across scaffolds longer than 2 Kbp. The QV score of the genome was
41.8 and the FRC output was consistent with short-read domestic goat
genome assemblies (Bickhart et al. 2017; Table S6).

For both contig and scaffold assemblies for the mountain goat
(Fig. S1 and S2) the number of distinct k-mers (k = 27) with over 1X
coverage, i.e., k-mers that are not single-copy in the assembly, is low,
which suggests low levels of sequencing bias and contamination. The
1X k-mer distribution has a much larger first peak, suggestive of an
inbred individual, which is ideal for assembly purposes and why our
sample was selected. This mountain goat is descended from a founding
population of less than 17 individuals (Smith and Nichols 1984); fur-
ther the mating system of mountain goats is such that only a small
number of males sire most offspring (Mainguy et al. 2009), suggesting
this individual should have low levels of heterozygosity.

A total of 4,104 single-copy orthologs were screened against the
assembled mountain goat genome with 3,817 (93%) being complete, and
287 missing or fragmented BUSCOS (7%); this is in the same range as the
BUSCO scores reported for other ungulate species (Li et al. 2017; Zhang
et al. 2018). Similarly, we detected 471 of 481 ultraconserved elements
(UCEs) (Bejerano et al. 2004) using scripts available in PHYLUCE v.
1.5.0 (Faircloth 2016) which is comparable to high quality mammalian
genomes (Seemann et al. 2016).
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B Table 2 Summary of repeats in the assembled genome of Oreamnos americanus

Total interspersed repeats: 1,146,349,974 45.74%
SINEs 286,943,974 11.45%
LINEs 681,473,093 27.19%
LTR elements 122,655,871 4.89%
DNA elements 54,579,895 2.18%
Unclassified 697,141 0.03%

Satellites 3,429,492 0.14%

Simple repeats 17,168,694 0.69%

Low complexity 3,546,216 0.14%

Total: 1,170,891,890 46.72%

Genome annotation

Long interspersed nuclear elements (LINEs) comprised 27.2% of the
assembled genome, short interspersed nuclear elements (SINEs) com-
prised 11.4%, and in total repeats represented 46.7% of the assembly
(Table 2). The repeat content is consistent with other ungulate genomes
(Dong et al. 2013; Li et al. 2017; Zhang et al. 2018).

Our annotation pipeline of the longest scaffolds resulted in 22,292
total genes with 16,012 being protein coding. Of these, the Interpro v
5.29-68 databases identified 13,874 (74%) genes with information, and
9,460 (51%) having a gene ontology assignment. Similarly, RefSeq
protein database detected a a total of 14,470 genes (78%) with NCBI
RefSeq match. Lastly, the Interpro v 5.29-68 databases annotated 13,874
(74%) genes with information, with 9,460 (51%) having a gene ontology
assignment. A total of 34,819 putative noncoding RNA sequences were
identified encompassing 0.1% of the genome and is comparable to other
ungulates (Zhang et al. 2018).

Species-specific genes, phylogeny and

demographic history

A total of 84 gene families were found to be specific to the mountain
goat (Figure 2a). Seventy-three orthologous clusters were uniquely
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shared between Ovis aries and O. americanus, 33 between Capra hircus
and O. americanus, and 41 between Bos taurus and O. americanus.
The gene families unique to mountain goat were enriched for fer-
roxidase activity, transcription regulation and protein folding and
stability; we hypothesize that enrichment for the ferroxidase activity
could potentially have allowed mountain goats to adapt to their
alpine environment due to its link to erythropoiesis and altitude
(Cherukuri et al. 2004).

The phylogenetic analysis (Figure 2b) supports the mountain
goat lineage as ancestral to sheep and goats as expected (Shafer
and Hall 2010). There was no relationship between the assembly
strategy, number of indels in UCEs, and phylogenetic placement
(Table S7). The mitochondrial genome phylogeny confirmed a sim-
ilar relationship (Fig. S3). As the ice sheets progressed during the
last glacial period, the Earth experienced a decrease in average sur-
face temperature; the mountain goat N, reflects these temperature
patterns, with a general downward trend in N, from 200 kya to
35 kya (Figure 3). PSMC analysis suggested a near 10-fold decrease
in the N, of mountain goats at the end of the last glacial period and
the start of the Holocene likely due to warming and loss of suitable
habitat.
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Figure 2 a) A Venn diagram of orthologous clusters shared among mountain goat (Oreamnos americanus), pig (Sus scrofa), horse (Equus
caballus), cow (Bos taurus), goat (Capra hircus) and sheep (Ovis aries). The numbers represent the number of orthologous clusters and only
the clusters unique to each species and shared with O. americanus are labeled for clarity. b) Phylogenetic relationships and divergence times
between the six species estimated from ultraconserved elements (UCEs) and MCMCtree. The calibration points are indicated by orange dots;

node bars encompass the 95% credible intervals.
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Conclusion

This is the first genome assembly and annotation for the North
American mountain goat, and the first de novo assembly of a wild
caprid. The biological sample came from an island with a small found-
ing population (Smith and Nichols 1984) making it ideal for genome
assembly. Using the newly assembled genome we identified species-
specific genes and modeled the historical population demography of
the species that showed a dramatic decline at the height of the last
glaciation. Relative to other ungulate genomes, including economically
valuable domesticated species that incorporated long-read sequencing
strategies, this is among the highest quality wild ungulate genomes to
date (Martchenko et al. 2018).
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