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The surgical treatment of congenital heart disease requires navigational assistance with transesophageal echocardiography (TEE);
however, TEE images are often difficult to interpret and provide very limited anatomical information. Registering preoperative CT
images to intraoperative TEE images provides surgeons with richer and more useful anatomical information. Yet, CT and TEE
images differ substantially in terms of scale and geometry. In the present research, we propose a novel method for the registration
of CT and TEE images for navigation during surgical repair of large defects in patients with congenital heart disease. Valve data
was used for the coarse registration to determine the basic location.This was followed by the use of an enhanced probability model
map to overcome gray-level differences between the two imaging modalities. Finally, the rapid optimization of mutual information
was achieved by migrating parameters. This method was tested on a dataset of 240 images from 12 infant, children (≤ 3 years old),
and adult patients with congenital heart disease. Compared to the “bronze standard” registration, the proposed method was more
accurate with an average Dice coefficient of 0.91 and an average root mean square of target registration error of 1.2655 mm.

1. Introduction

Congenital heart disease accounts for 28% of all congen-
ital malformations. In China, the incidence of congenital
heart disease is 0.4–1% among infants with 150000–200000
newborns annually. Imaging of congenital heart disease
includes cardiovascular magnetic resonance (CMR), com-
puted tomography (CT), transesophageal echocardiography
(TEE), and other modalities. CMR provides comprehensive
data on the mechanism of congenital heart disease without
the need for radiography or invasive procedures; however, it
requires subjects to remain stationary for 15–60 min, which
can be challenging in infants and children. Additionally,
the high cost of CMR limits its clinical application. High-
resolution CT can be rapidly imaging and provide a wealth of

anatomical data; however, the equipment of it is not easy to
move and cannot be used in surgery. TEE allows a continuous
visualization of the movement of the visceral organ without
trauma and the observation of the heartbeat in real time,
which is convenient to use in surgery; thus, it can be useful for
navigation during the surgery. However, its images provide
very limited data on cardiac anatomy, it often requires the
use of another imaging modality, and there is no established
method for accurately registering anatomical structures to
TEE images. Each type of imaging modality has advantages
and disadvantages, so image fusion is necessary.

Image registration is the premise of image fusion, which
has significant value in the fields of remote sensing data
analysis, computer vision, and image processing. Feature
point-based registration is one of the most commonly used
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image registration methods. Typical feature points include
corner points, line intersections, centroids of closed curves,
maximum curvature points on the contour, local curvature
discontinuities detected by Gabor wavelet [1], and local
maximum points of wavelet transform [2]. Feature points
can be extracted manually or automatically. There are many
methods to automatically extract feature points. Feng et al.
[3] proposed a 3D feature point extraction using a neural
network. Cheng et al. [4] adapted multilevel feature point
extraction into a Näıve Bayesian classification framework.
Chen et al. [5] presented a novel method of 3D XYT
feature point extraction. Dán et al. [6] extracted feature
points by characterizing of SURF and BRISK Interest Point
Distribution. Wang et al. [7] introduced a multiscale and
hierarchical feature extraction method. The feature point-
based registration can greatly reduce the computational
complexity of the matching process and has better adapt-
ability to the change of gray level, image deformation, and
occlusion. However, when the imagemodalities differ greatly,
the algorithm based on automatically selecting the feature
points has poor registration accuracy and may even result
in completely failed results. Therefore, typically, the coarse
registration was implemented by selecting feature points,
and then the fine registration was carried out based on the
correlation matching techniques.

Similarity measures are critical for the correlationmatch-
ing techniques.The sum of squared differences (SSD), sum of
absolute differences (SAD) [8], normalized cross correlation
(NCC) [9], and mutual information (MI) [10] are commonly
used similarity measures. SSD and SAD are particularly
sensitive to the gray scale transformation of the input image
and are often used for monomodality image registration.The
sensitivity of NCC to abnormal points affects the registration.
MI was previously proposed by Viola et al. [10] and Maes et
al. [11] as an insensitive method to differences in intensities
between images and as amethod that does not require feature
extraction or segmentation that has cultivated attention
recently. It is widely used for the registration of multimodal
images; however, it is not a universalmethod.The registration
function of MI can be ambiguous and can contain local
extrema [12]. Therefore, it is common to combine MI with
other imaging features with the aim of improving registration
and having an accurate correspondence on difficult registra-
tion issues.Gong et al. [13] combinedMIwith SIFT to realized
an automatic image registration for remote sensing images.
Woo et al. [14] demonstrated a multimodal Registration via
Mutual Information Incorporating Geometric and Spatial
Context. Atli et al. [15] combined contrast enhancement
techniques with MI-based image registration. Legg et al.
[16] used the feature neighbourhood mutual information for
multimodal image registration. Pradhan et al. [17] incor-
porated utility measure into enhanced mutual information
as a weighted information to the joint histogram of the
images.

Most of the aforementioned similarity measures use joint
probability models of single pixels or voxels. By randomly
changing the location of pixels or voxels on images and eval-
uating the statistical criterion, the same similarity is obtained
[18]. This means that when spatial information between

pixels or voxels is ignored, registration may fail because
the matching criterion is not able to quantify the difference
between the two images. Using spatial distributions of pixels
or voxels rather than single pixels or voxels, Penney et al. [19]
successfully aligned ultrasound images andMR images of the
liver by registering vessel probability images. This technique
used a probability map to enhance corresponding features
and depress those that were noncorresponding between the
images. However, the generation of a probability density
functions as proposed by the authors required a large amount
of training data that were different from the actual test data.
This approach cannot be easily applied to cardiac CT and
TEE image registration. Additionally, the probability map
proposed by Penney et al. yielded evident deviations, which
may not be acceptable for the registration of cardiac CT
and TEE images. In this study, an enhanced probability map
model is proposed to overcome the shortage of training
data and the deviation of the aforementioned probability
map.

The difficulties in cardiac CT-TEE registration lie in
the displacement caused by cardiac motion, as well as the
considerable differences in the distribution of gray levels,
structural features, and edge features. Determining methods
to overcome the above difficulties is the key issue in cardiac
CT-TEE registration. At present, there are few studies on
cardiac CT/MR-TEE registration. D. S. Cho et al. [20] and
C. A. Linte et al. [21] adopted a landmark-based registration
method to reduce image displacement andmodal differences,
both of which relied on custom-developed equipment to
extract landmarks. P. Lang et al. [22] focused only on the
cardiac CT-TEE registration of the aortic root. F. Li et al.
[23] performed a registration using a two-stage approach.
In the first step, ICP algorithm was performed on the
basis of semiautomatic segmentation. In the second step,
sample points were extracted by setting intensity thresholds;
then, these sample points were used to perform a finer
registration step based on MI. This method involves setting
different intensity thresholds manually according to different
images.

Most of the existing cardiac CT-TEE registrations require
the assistance of hardware devices and manual intervention.
Some studies only focused on the cardiac registration of
certain special sections. In this paper, a registrationmethod is
proposed for all cardiac sections, which can minimize man-
ual intervention and does not require additional assistance
of hardware equipment. Considering that heart valves are
clearly visible on TEE images and are also easily located on
CT images, this paper introduced the spatial positions of
valves as a priori information. Then, coarse registration was
performed based on valve positions to narrow the position
difference inCT-TEE registration. To overcome the limitation
of the probabilitymapproposed by Penney et al., an enhanced
probability mapmodel was proposed by generating the prob-
ability map based on the enhancement of regions of interest.
It can better characterize the spatial distribution of gray levels
and can directly generate the probability density function
by using images for subsequent registration. Moreover, we
used the transformation parameters from coarse registration
as the initial values for the optimization algorithm in the
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Input: Cardiac CT image 𝐼𝑅(𝑥) and TEE image 𝐼𝐹(𝑥)
Output:Result of final registration 𝑆𝑓𝑖𝑛𝑎𝑙(𝑥)
Procedure of the Proposed Method:
Step 1: Cardiac CT 𝐼𝑅(𝑥) and TEE 𝐼𝐹(𝑥) images were segmented interactively to yield the CT 𝐺𝑅(𝑥) and TEE
𝐺𝐹(𝑥) image segmentations separately.
Step 2: During interactive segmentations, the spatial positions of heart valves were used as priori information.
Step 3: Based on the valve data, CT 𝐼𝑅(𝑥) and TEE 𝐼𝐹(𝑥) images were registered to yield the transformation
matrix 𝑇𝑏𝑎𝑠𝑖𝑐 and the results of the basic registration 𝑆𝑏𝑎𝑠𝑖𝑐(𝑥).
Step 4: ROI enhancement was performed for the 𝐼𝑅(𝑥) and 𝐼𝐹(𝑥) to obtain the enhanced CT 𝐼𝑅ℎ(𝑥) and the
enhanced TEE 𝐼𝐹ℎ(𝑥) images. During segmentation, gray-scale enhancement was performed to obtain the
enhanced segmentations of CT 𝐺𝑅ℎ(𝑥) and TEE 𝐺𝐹ℎ(𝑥) images.
Step 5: The probability map of the CT 𝑃𝑅(𝑥) image was generated based on the enhanced CT𝐼𝑅ℎ(𝑥) image
and its enhanced segmentation 𝐺𝑅ℎ(𝑥). The probability map of TEE 𝑃𝐹(𝑥) image was generated similarly.
Step 6: Finally, the probability maps 𝑃𝑅(𝑥) and 𝑃𝐹(𝑥) were used to perform the final registration by maximizing
similarity, producing the final registration transformation 𝑇𝑓𝑖𝑛𝑎𝑙 and the result of final registration 𝑆𝑓𝑖𝑛𝑎𝑙(𝑥).

Algorithm 1: Procedure of the proposed method.

final registration to prevent the optimization algorithm from
falling into a local optimum.

2. Materials and Methods

2.1. Method Overview. Registration was performed using
valves as a landmark. Probability map-based MI (VPMMI)
consisted of basic registration using cardiac valves as input
data, while final registration was based on the probabil-
ity map. This method was named VPMMI. Considering
the demand for valve positions in actual application in
this research context, the spatial locations of valves were
introduced as a priori information to improve the effec-
tiveness of CT and TEE image registration. With the a
priori information of valve, we performed a simple and
quick coarse registration. Errors in determining the initial
values may cause an optimization algorithm to fall into a
local optimum. To avoid this, we used the transformation
parameters from coarse registration as the initial values
for the optimization algorithm in the next phase of reg-
istration. Finally, in order to further improve the registra-
tion accuracy, the enhanced probability map was used to
perform a finer registration step, which can overcome the
shortage of training data. To sum up, our method is as
follows.

Cardiac CT 𝐼𝑅(𝑥) was used as the reference image, while
TEE 𝐼𝐹(𝑥) was used as the floating image, where 𝑥 denoted
a point on the 2 image spaces Ω𝑅 and Ω𝐹. The goal of image
registration was to find a suitable transformation 𝑇:Ω𝐹 →
Ω𝑅 in order to maximize the similarity 𝑆(𝑇; 𝐼𝐹; 𝐼𝑅) between𝐼𝑅(𝑥) and T(𝐼𝐹(𝑥)). In this paper, transformation 𝑇 com-
prised𝑇𝑏𝑎𝑠𝑖𝑐 and𝑇𝑓𝑖𝑛𝑎𝑙.𝑇𝑏𝑎𝑠𝑖𝑐 was the transformation obtained
from basic registration that was used as the initial parameter
for the optimization algorithm for the final registration.𝑇𝑓𝑖𝑛𝑎𝑙
transformed positions from the floating to the reference
images.

To achieve the aforementioned goals we performed the
steps shown in Algorithm 1.

A flowchart of the proposed algorithm is shown in
Figure 1.

2.2. Basic Registration

2.2.1. Interactive Segmentation. User interactions were
adopted to introduce feature points and generate subsequent
probability maps. We employed the grab-cut algorithm
[24] for interactive segmentations, which is an image
segmentation algorithm used to minimize energy function
for boundary detection. In order to rapidly obtain
segmentation images, the physician manually selected
ROIs and marked the target and background areas on CT
and TEE images. Figure 2 shows the interactive segmentation
of CT and TEE images.

2.2.2. Introducing Heart Valve Locations as A Priori Informa-
tion. Heart valves play an important role in cardiac circu-
lation. Atrioventricular (between atria and ventricles) and
semilunar valves (in arteries leaving the heart) help prevent
the backward flow of blood.They can be clearly visualized on
TEE and their approximate locations can be determined on
CT scans by professionals. Therefore, it is reasonable to use
valve positions as a priori information.

During interactive segmentation, three endpoints or
midpoints coordinates 𝑥1𝑟 = (𝑖1𝑟, 𝑗1𝑟), 𝑥2𝑟 = (𝑖2𝑟, 𝑗2𝑟),𝑥3𝑟 = (𝑖3𝑟, 𝑗3𝑟) of heart valves on the CT 𝐼𝑅(𝑥) image were
determined as three feature points on CT. Similarly, three
feature points 𝑥1𝑓 = (𝑖1𝑓, 𝑗1𝑓), 𝑥2𝑓 = (𝑖2𝑓, 𝑗2𝑓), 𝑥3𝑓 =
(𝑖3𝑓, 𝑗3𝑓) were determined on the TEE image 𝐼𝐹(𝑥).

2.2.3. Basic Registration Based on Feature Points. Using
the three CT feature points 𝑥1𝑟 = (𝑖1𝑟, 𝑗1𝑟), 𝑥2𝑟 =
(𝑖2𝑟, 𝑗2𝑟), 𝑥3𝑟 = (𝑖3𝑟, 𝑗3𝑟) and the three TEE feature points
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registration

Input CT and TEE, and employ
interactive segmentation

Employ basic registration
based on valves

Use the transformation
parameters as initial values of the

optimization algorithm

Perform area enhancement

Generate probability map

Employ final registration
based on the probability map

Obtain the transformation of
the final registration

Figure 1: Flowchart of the proposed algorithm. CT, computed tomography; TEE, transesophageal echocardiography.

𝑥1𝑓 = (𝑖1𝑓, 𝑗1𝑓), 𝑥2𝑓 = (𝑖2𝑓, 𝑗2𝑓), 𝑥3𝑓 = (𝑖3𝑓, 𝑗3𝑓), the coor-
dinate transformation matrix 𝑇𝑏𝑎𝑠𝑖𝑐 of the basic registration
below was obtained.

[[
[

𝑥1𝑟
𝑥2𝑟
𝑥3𝑟

]]
]
= 𝑇𝑏𝑎𝑠𝑖𝑐 ×

[[[
[

𝑥1𝑓
𝑥2𝑓
𝑥3𝑓

]]]
]

(1)

Based on 𝑇𝑏𝑎𝑠𝑖𝑐, the results of basic registration 𝑆𝑏𝑎𝑠𝑖𝑐(𝑥) were
obtained by performing an affine transformation and a cubic
interpolation to the floating image 𝐼𝐹(𝑥).

2.3. Final Registration

2.3.1. Enhancement of CT and TEE Images. In order to gener-
ate an improved probabilitymap for good performance in the
subsequent registration, we performed region enhancement
to improve the contrasts between the foreground and the
background. First, we set an enhancement matrix 𝑉𝑅(𝑥) for
the CT image 𝐼𝑅(𝑥). 𝑉𝑅(𝑥) was constructed such that the
size of 𝑉𝑅(𝑥) was the same as the size of the CT image
𝐼𝑅(𝑥) and the pixels corresponding to the coordinates of
the ROI on 𝐼𝑅(𝑥) were set to a number N (N set to 80 in
our experiment; this value was based on the average ROI
intensity and empirical experiments) and 0 for the remaining
pixels. The process of region enhancement is shown in
Figure 3.

Subsequently, we enhanced 𝐼𝑅(𝑥) and its segmentation
𝐺𝑅(𝑥) to obtain the enhanced CT image 𝐼𝑅ℎ(𝑥) and enhanced
segmentation 𝐺𝑅ℎ(𝑥):

𝐼𝑅ℎ (𝑥) = 𝐼𝑅 (𝑥) + 𝑉𝑅 (𝑥) (2)

𝐺𝑅ℎ (𝑥) = 𝐺𝑅 (𝑥) + 𝑉𝑅 (𝑥) (3)

Similarly, we generated a TEE image enhancement matrix
𝑉𝐹(𝑥). 𝑉𝐹(𝑥) was constructed such that the size of 𝑉𝐹(𝑥) was
the same as the size of the TEE image 𝐼𝑅(𝑥) and the pixels
corresponding to the coordinates of the ROI in 𝐼𝑅(𝑥) were
set to a number M (M was 100 in our experiment; it was
an empirical value based on the average ROI intensity of
many experiments) and 0 for the remaining pixels. Finally,
𝐼𝐹(𝑥) and its segmentation 𝐺𝐹(𝑥) were enhanced to obtain
the enhanced TEE image 𝐼𝐹ℎ(𝑥) and enhanced segmentation
𝐺𝐹ℎ(𝑥):

𝐼𝐹ℎ (𝑥) = 𝐼𝐹 (𝑥) + 𝑉𝐹 (𝑥) (4)

𝐺𝐹ℎ (𝑥) = 𝐺𝐹 (𝑥) + 𝑉𝐹 (𝑥) (5)

It is worth mentioning that although we strengthened the
pixel intensity on this step, we did not change the spatial
relationship between pixels. Therefore, the subsequent prob-
ability map model was not affected.

2.3.2. Probability Map Generation. Instead of using pixel
intensity, the probability map described image information,
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(a) (b)

(c) (d)

Figure 2: The process of interactive segmentation. (a) Interactive segmentation of a CT image. (b) The result of CT image segmentation. (c)
Interactive segmentation of a TEE image. (d)The result of TEE image segmentation. Note: during interactive segmentation, the user selected
a region of interest (yellow box) and marked the target (red dots) and the background areas (blue dots). CT, computed tomography; TEE,
transesophageal echocardiography.

ROI

(a) (b)

Enhanced ROI

(c)

Figure 3: The process of region enhancement. (a) Original CT image 𝐼𝑅(𝑥). (b) Enhancement matrix 𝑉𝑅(𝑥). (c) Enhanced CT image. CT,
computed tomography; ROI, region of interest.
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(a) (b)

(c) (d)

Figure 4: CT and TEE probability maps. (a) The original CT image. (b) The CT probability map. (c) The original TEE image. (d) The TEE
probability map. CT, computed tomography; TEE, transesophageal electrocardiography.

i.e., the probability that a pixel was located inside the
ROI. Probability mapping enhances relevant features and
depresses irrelevant features between two images. Based on
the region-enhanced CT image 𝐼𝑅ℎ(𝑥) and its enhanced
segmentation 𝐺𝑅ℎ(𝑥), the probability density function of CT
𝑓𝑅(𝑖) was generated as follows:

𝑓𝑅 (𝑖) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝑅ℎ (𝑥) 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑅ℎ (𝑥) 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖 % (6)

The probability density function 𝑓𝑅(𝑖) corresponds to a
retrieval table that outputs a probability that a given pixel is
located within the ROI when a pixel value is used as an input.
In the same way, we derived the probability density function
of TEE 𝑓𝐹(𝑖) as follows:

𝑓𝐹 (𝑖) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺𝐹ℎ (𝑥) 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝐹ℎ (𝑥) 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑖 % (7)

Subsequently, we used the region-enhanced CT image 𝐼𝑅ℎ(𝑥)
as the input of 𝑓𝑅(𝑖) to develop the probability map 𝑃𝑅(𝑥):

𝑃𝑅(𝑥) = 𝑓𝑅(𝑖), 𝑖 ∈ 𝐼𝑅ℎ(𝑥). Similarly, using the region-
enhanced TEE image 𝐼𝐹ℎ(𝑥) as the input of 𝑓𝐹(𝑖), we devel-
oped the probability map 𝑃𝐹(𝑥):𝑃𝐹(𝑥) = 𝑓𝐹(𝑖), 𝑖 ∈ 𝐼𝐹ℎ(𝑥). CT
and TEE probability maps are shown in Figure 4.

2.3.3. Final Registration Based on theMaximumMutual Infor-
mation of the Probability Map. We used Powell’s algorithm as
an optimization algorithm with initial parameters obtained
from transforming matrix 𝑇𝑏𝑎𝑠𝑖𝑐. The transform matrix of
the final registration 𝑇𝑓𝑖𝑛𝑎𝑙 was yielded when the normalized
mutual information (NMI) between 𝑃𝑅(𝑥) and 𝑃𝐹(𝑥) was
maximized through Powell’s algorithm. Afterward, the final
registration result 𝑆𝑓𝑖𝑛𝑎𝑙(𝑥) was derived as follows: 𝑆𝑓𝑖𝑛𝑎𝑙(𝑥) =𝑇𝑓𝑖𝑛𝑎𝑙 × 𝐼𝐹(𝑥).

3. Results and Discussion

The proposed algorithm was tested on a dataset consisting
of 240 images from 12 patients with congenital heart disease
(identified as Patient 1–Patient 12). Patients 11 and 12 were
adults and the remaining 10 patients were infants and young
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Table 1: Comparison of several registration algorithms on the maximum TRE.

Registration algorithm D. S. Cho et al. [23] C. A. Linte et al. [24] P. Lang et al. [25] Our method
TRE(mm) 5.1 4.8 5 2.3
TRE, target registration error.

Table 2: Registration indexes.

Patient Average Dice coefficient Average TRE (mm)
VPMMI VMI ICPMI VPMMI VMI ICPMI

Patient 1 0.88 0.45 0.80 1.7290 9.5789 3.0710
Patient 2 0.89 0.80 0.82 1.2701 3.6162 1.8111
Patient 3 0.90 0.45 0.79 0.6013 11.5463 2.7112
Patient 4 0.95 0.95 0.84 1.1176 1.6780 8.0261
Patient 5 0.89 0.00 0.60 1.1179 12.3223 9.3880
Patient 6 0.87 0.04 0.88 2.2345 19.0837 4.9850
Patient 7 0.89 0.65 0.59 1.4118 7.5647 9.1564
Patient 8 0.91 0.32 0.89 0.8496 7.3520 0.8964
Patient 9 0.91 0.42 0.92 0.7337 5.7968 0.6936
Patient 10 0.95 0.83 0.85 0.6760 3.8212 2.9338
Patient 11 (adult) 0.90 0.58 0.69 1.7191 13.4195 6.6400
Patient 12 (adult) 0.92 0.62 0.86 1.7260 13.9903 2.2362
Average 0.91 0.51 0.79 1.2655 9.1475 4.3791
TRE, target registration error; VMI and ICPMI, the comparison algorithms; VPMMI, the proposedmethod (valves as a benchmark and probability map-based
mutual information method)

children ≤ 3 years of age. Each patient’s data included CT
images and corresponding TEE images. Due to the difficulty
of data acquisition, TEE images for each patient only included
22 standard sections of the heart. The sizes of all CT images
were 1024 × 1024 and the sizes of all TEE images were 600 ×
800.

All tests were executed on an Intel i5-6500 (Intel Corp.,
Santa Clara, CA) CPU 3.2 GHz, and the code was written
using MATLAB R2015b (MathWorks, Natick, MA) develop-
ment environment.

3.1. Comparison Algorithms. Currently, there are very few
studies on cardiac CT/MR-TEE registration, and each study
focuses on different issues. D. S. Cho et al. [20] employed a
landmark-based registration that was based on anatomical
landmarks extracted using a custom-developed landmark
extraction method. C. A. Linte et al. [21] studied the TEE-
MR registration on porcine subjects, which used the mitral
and aortic valve annuli as landmarks and required manual
segmentation by professionals by using a custom-developed
segmentation technique. P. Lang et al. [22] focused on
the CT-TEE registration of the aortic root, which is only
applicable to sections with complete aortic roots. None of
the above algorithms can be directly implemented for the
registration of our data. Therefore, we have only shown the
target registration errors (TREs) of these algorithms in the
original literatures and compared them with the maximum
TRE of our algorithm in Table 1. F. Li et al. [23] performed
CT-TEE registration according to the following steps: (1)
semiautomatic segmentation was performed followed by
execution of the initial registration based on ICP algorithm;

(2) after the first-step alignment, the intensity threshold was
used to extract the sample points, which were then applied to
the registration based on the NMI.We employed this method
(denoted by ICPMI) for our data as one of the comparison
algorithms; the results are presented in Figures 5 and 6 and
the indicators in Table 2. In addition, we used a method
that optimized the NMI between the original CT and TEE
images generated by the proposed basic registration as the
comparison algorithm (denoted by VMI). The only differ-
ence between this comparison algorithm and the proposed
algorithm is the use of the enhanced probability map; thus,
our approach can be used to illustrate the performance of the
enhanced probability map.

3.2. Visualization of the Results. The study was divided into
two stages consisting of the basic and final registration.
First, ROIs were manually segmented on both CT and TEE
images using the grab-cut algorithm to locate the relevant
valves. Based on those locations, we performed a simple and
fast coarse registration of the original images to obtain the
results of the basic registration. Afterward, the selected ROIs
were enhanced and probability maps were generated. Finally,
based on the transformation matrix obtained from the basic
registration, we registered the enhanced probability map by
optimizing the MI metric using Powell’s optimizer.

Figures 5 and 6 show the process of registration for sets
of sections from an infant patient (Patient 8 in Table 2) and
an adult patient (Patient 12 in Table 2). Our algorithm did not
produce any difference in the registration of infant and adult
data. On comparing the fusion images of the basic and final
registrations, we found that the basic registration was only a
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Registration process for a set of sections from an infant patient (Patient 8 in Table 1). (a) The original CT image. (b) The original
TEE image. (c) The result of basic registration. (d) The result of final registration. (e) The fusion result based on the basic registration. (f)
The fusion result based on the final registration. (g) The fusion result obtained from the comparison algorithm VMI. (h) The fusion result
obtained from the comparison algorithm ICPMI. Note: the yellow arrows in (e), (f), and (h) indicate the alignment of the heart valves. CT,
computed tomography; TEE, transesophageal electrocardiography; VMI and ICPMI, comparison algorithms.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: Registration process for a set of sections from an adult patient (Patient 12 in Table 1). (a) The original CT image. (b) The original
TEE image. (c)The results of the basic registration. (d)The result of the final registration. (e)The fusion result based on the basic registration.
(f)The fusion result based on the final registration. (g)The fusion result obtained from the comparison algorithm VMI. (h)The fusion result
obtained from the comparison algorithm ICPMI. Note: the yellow arrows in (e), (f), and (h) indicate the alignment of the heart valves. CT,
computed tomography; TEE, transesophageal electrocardiography; VMI and ICPMI, comparison algorithms.
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rough alignment of CT and TEE, while the final registration
enabled the precise alignment of the valves (yellow arrows).
Fusion images of the VMI (Figures 5(g) and 6(g)) were
almost a complete failure of the registration performance,
while the registration performance of ICPMI (Figures 5(h)
and 6(h)) is also worse than the proposed algorithm. The
differences between the VMI and the proposed method only
lied in the enhanced probability map, which verified its great
performance in registration. Our results revealed the exact
alignment of the atria, ventricles, vessels, and valves in all
patients.

3.3. Index Analysis. Index analysis was performed in order
to evaluate quantitatively the performance of the proposed
method and comparison algorithms. Dice coefficients [25]
and registration errors are shown inTable 2. Final registration
parameters were referenced to rigid registration methods
[26]. First, ROI was obtained by manual segmentation. Each
pixel within the ROI was transformed using both parameters
of the proposed registration and the “bronze standard”
registration [26]. And the root mean square (RMS) distance
between these positions was calculated to yield a target
registration error (TRE) (Table 2). Dice coefficients were
obtained as follows:

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 2 |𝐴 ∩ 𝐵|
|𝐴 + 𝐵| (8)

with A and B representing the number of pixels in regions
generated by transforming the artificial segmentation using
the proposed method (or contrast algorithm) and the bronze
standard registration, respectively, and 𝐴 ∩ 𝐵 represents the
number of pixels in the overlapping area between them.

Table 1 shows the comparison of the maximum TREs
between the existing methods and our method. Although the
resolution and modality of the dataset used by each method
are different, we can use this comparison to verify that our
registration accuracy is within the acceptable range described
in the current research on cardiac registration.

All measurements in Table 2 were based on an average
over all 2D image slices for each patient. The average Dice
coefficient of the proposed method reached 0.91 and the
average TRE approached 1.2655 mm.These two indexes were
notably better than those obtained by VMI from the 12
patients and ICPMI from the 11 patients besides Patient 9. In
summary, the registration performance of our method was
beyond the VMI and ICPMI in both infants and adult. The
similarity of the enhanced probability maps in this paper
worked better than the similarity of original images.

3.4. Performance Analysis. Our findings demonstrated the
validity of probability mapping for the registration of cardiac
CT and TEE images. Conventionally, infant data is more
challenging to register compared to adult data due to the
incomplete development of the heart and the smaller organs
in infants. In our investigation, the registration performance
of the proposed method was satisfying for both infant and
adult data, which shows its good applicability to a variety of
cardiac data.

Furthermore, the average time for optimizing MI of
the probability map in our method was 7.45 s, which is
substantially less than the average of 25.63 s for optimizing
the original image under the same parameter conditions
(Windows 7, 64-bit system, MATLAB 2015b operating envi-
ronment).Therefore, the use of the probabilitymap improved
the observable accuracy of registration and reduced the reg-
istration time. Since CT interactive segmentation and feature
point selection can be performed before surgery, interaction
with TEE images is the only procedure necessary during the
operation. This interaction involves simple markings with
a mouse, on which professionals in this study spent a few
seconds on each. Therefore, our method may be able to meet
the requirements for real-time image guided surgery.

4. Conclusions

The imaging of congenital heart disease utilizes CMR, CT,
TEE, and other technologies. Most existing image guidance
surgery systems are based on traditionalmonomodal imaging
and are therefore unable to provide comprehensive informa-
tion about cardiac structures. In this study, we hypothesized
that registering preoperative CT images to intraoperative
TEE images can provide detailed navigation for congenital
heart surgery. Compared to CT-MRI, MRI-US, and CT-PET
registration of other organs in the human body, cardiac CT-
TEE registration in infants is very challenging.Morphological
differences caused by the deformity of heart tissues and
heartbeat in addition to significant differences in gray levels
between CT and TEE can complicate image registration.
To address these issues, we proposed a large-deformation
dynamic image registration method to meet the needs of
surgical navigation in infants, young children, and adultswith
congenital heart disease. Our approach used valve positions
to perform coarse registration, which was an enhanced
probability map model for final registration and parameter
transfer. These strategies were rapid and accurate. However,
there were several limitations to our algorithm. First, basic
registration required intervention during segmentation and
feature point selection, which could have increased the
workload of physicians and extended the duration of regis-
tration. Second, due to the difficulty of reconstructing TEE
images, we implemented 2D-2D image registration without
extending registration to a 3D space.

Data Availability

All test data in this research were obtained from Guangdong
General Hospital in China. Sets of 22 standard TEE slices
were collected from 12 patients with congenital heart disease
using a PHILIPS S7-3t (PhilipsMedical Systems Technologies
Ltd., Amsterdam, Netherlands) Pediatric with thermal index
for soft tissue=0.1, mechanical index=0.3, frequency of the
vibration=78 Hz, and 128 bpm. CT images were acquired
from the same patients using a Siemens Somatom Definition
(Siemens Healthcare, Forcheim, Germany) with voltage=100
kV, electric current=178 mA, multiplane reconstruction=0.8
mm, and Ctvidol=6.59. The image size of the TEE was 600 ×
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800 (pixel size=0.224 mm × 0.224 mm) and that of CT was
1024 × 1024 (pixel size=0.32 mm × 0.32 mm).
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