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RNA-Seq is becoming a promising replacement to microarrays in transcriptome profiling and differential gene expression study.
Technical improvements have decreased sequencing costs and, as a result, the size and number of RNA-Seq datasets have increased
rapidly. However, the increasing volume of data from large-scale RNA-Seq studies poses a practical challenge for data analysis in a
local environment. To meet this challenge, we developed Stormbow, a cloud-based software package, to process large volumes of
RNA-Seq data in parallel. The performance of Stormbow has been tested by practically applying it to analyse 178 RNA-Seq samples
in the cloud. In our test, it took 6 to 8 hours to process an RNA-Seq sample with 100million reads, and the average cost was $3.50 per
sample. Utilizing AmazonWeb Services as the infrastructure for Stormbow allows us to easily scale up to handle large datasets with
on-demand computational resources. Stormbow is a scalable, cost effective, and open-source based tool for large-scale RNA-Seq
data analysis. Stormbow can be freely downloaded and can be used out of box to process Illumina RNA-Seq datasets.

1. Introduction

RNA-Seq is the direct sequencing of transcripts by high-
throughput sequencing technology and can profile an entire
transcriptome at single-base resolution whilst concurrently
quantifying gene expression levels on a genome-wide scale
[1–3]. RNA-Seq not only has considerable advantages for
examining transcriptome fine structure—for example, in the
detection of novel transcripts, allele-specific expression, and
alternative splicing—but also provides a far more precise
measurement of levels of transcripts than that of other
methods [4, 5]. With no probes or primers to design, RNA-
Seq delivers unbiased and unparalleled information about
the transcriptome and gene expression. Early studies have
demonstrated that RNA-Seq is very reliable in terms of
technical reproducibility [6, 7]. Compared to microarray-
based profiling, RNA-Seq can detect the expression of low
abundance transcripts and the subtle change under different
conditions; has a wider dynamic range; and avoids technical
issues in microarray related to probe performance such as
cross-hybridization, limited detection range of individual

probes, and nonspecific hybridization [8, 9]. Currently, RNA-
Seq is becoming an attractive approach in the profiling of
gene expression and in evaluating differential expression [10–
13].

Until recently, sequencing has primarily been carried
out in large genome centers which have invested heavily in
computational infrastructure that enables genomic sequence
analysis [14, 15]. The recent advancements in sequencing
technology have greatly decreased the sequencing costs and
increased the size and number of datasets. As a consequence,
larger amounts of sequence data are not only being produced
at lower costs, but also being more often by small to midsize
research groups. It is expected that clinical sequencing will
become produced a part of the diagnostic routines shortly
[16]. However, the enormous data from large-scale RNA-Seq
studies poses a fundamental problem of data management
and analysis in a local environment and requires increasingly
complex computational methods [17]. Consequently, lim-
ited access to computational infrastructure and high-quality
bioinformatics tools and the demand for personnel skilled in
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data analysis and interpretation remain a serious bottleneck
for most researchers.

In recent years, cloud computing has emerged as a viable
option to quickly and easily acquire computational resources
for large-scale data analysis [18–22]. Several cloud-based
bioinformatics applications and resources have been devel-
oped specifically to address the challenges of working with
the very large volumes of data generated by Next Gener-
ation Sequencing (NGS) technology, including CloudBurst
[23], Crossbow [24], Myrna [25], CloVR [26], CloudAligner
[27], and PeakRanger [28]. Cloud computing has created
new possibilities to analyze NGS data at reasonable costs,
especially for laboratories lacking a dedicated bioinformatics
infrastructure.

Differential analysis of RNA-Seq data consists of three key
steps [10]: (i) reads mapping; (ii) expression quantification;
and (iii) statistical testing to determine significantly differ-
ential expressed (DE) genes. For statistical tests, several R-
based packages have recently been developed specifically for
DE analysis in RNA-Seq experiments, including DESeq [29],
edgeR [30], and baySeq [31]. As an input, these algorithms
take count data in the form of a rectangular table of integer
values. The table cell in the 𝑖th row and the 𝑗th column of the
table corresponds to the number of sequence reads mapped
to gene 𝑖 in sample 𝑗. To obtain such a count table, we need
to generate it from the raw sequence reads, which is done by
steps (i) and (ii) that are mentioned above. Both steps are
very computationally intensive [2], especially for RNA-Seq
studies in which hundreds or even thousands of samples are
sequenced.

Stormbow, as described in this paper, is a cloud-based
tool developed tomeet the computational challenges in large-
scale RNA-Seq data analysis and to significantly reduce the
turnaround time in RNA-Seq data analysis. The tool simply
takes raw sequence reads in FASTA format as inputs and
generates a gene count table for large RNA-Seq studies in a
very short time by processing individual RNA-Seq samples
in parallel using the cloud. Stormbow is an extension of
Rainbow [32], a software package that we developed for large-
scale whole genome sequence data analysis in the cloud.
Both Rainbow and Stormbow were developed to meet the
computational challenges in large-scale genomic sequencing,
with Rainbow for whole-genome sequencing while Storm-
bow for RNA-Seq. Stormbow can be freely downloaded from
http://s3.amazonaws.com/jnj stormbow/index.html.

2. Materials and Methods

The architecture of Stormbow is shown in Figure 1. Amazon’s
Simple Storage Service (S3) [33] centralizes data storage.
Stormbow comes with scripts that automate the Stormbow
pipeline on Amazon’s Elastic Compute Cloud (EC2) [34]
utility computing service. The EC2 driver script can be run
from any Linux computer with internet connection; however,
all the computations are executed remotely by multiple EC2
instances in the cloud. Below, we describe the architectural
design for Stormbow step by step.

2.1. The Algorithm for Mapping Reads. There are multiple
open-source based aligners available to mapping reads to a
reference genome. With Stormbow, we wrap the Omicsoft
Sequence Aligner (OSA) [35], a fast and accurate alignment
tool for RNA-Seq, and run it in Amazon’s cloud environment.
Benchmarked with existing methods, such as TopHat [36],
OSA improves mapping speed 4–10x with better sensitivity
and less false positives than similar tools.The detailed bench-
marking results are reported at theOSAwebsite [37].OSAhas
built-in features to automatically trim those nucleotide bases
with low-quality score at 3󸀠-end when it maps sequence reads
to a reference transcriptome and genome. For raw sequence
data, no additional preprocessing is needed.

2.2. Amazon’s Import/Export Service and S3 for Data Storage.
The raw sequence data for a large-scale RNA-Seq study, in
which several hundred samples are sequenced, is typically
multiple terabytes (TB) in size. For a deep RNA-Seq sample,
the raw sequence data in FASTQ format ranges from 20 to
25GB, and after reads mapping, the corresponding BAM file
(Binary version of a Sequence Alignment Map) ranges from
8 to 10GB. Assuming 200 samples, the input data will be
4 to 5 TB, with the output BAM files adding another 2 TB.
For such large volumes of data, it is impractical to transfer
them to and from Amazon via a typical network connection.
The most efficient and reliable way is to move them through
Amazon’s Import/Export service. This service allows a user
to ship multiple hard drives via FedEx to Amazon; after
which, Amazon copies the data to S3 directly. The user has
the option to encrypt the data on the hard drives to ensure
security during transit. This process usually takes 2 to 3
days. When Stormbow runs, it can fetch the sequence data
from S3 directly (see Figure 1). In the Stormbow pipeline,
S3 centralizes data storage, including inputs, intermediate
results, and outputs. After an EC2 instance finishes its
computational tasks, it is instructed to terminate itself.
After termination, all data in that instance is inaccessible.
Therefore, the result files must be uploaded to S3 prior to
instance termination. S3 provides virtually unlimited storage
space for cloud computing, ensures high durability of its data,
and allows for parallel I/O, which is why we chose S3 as the
centralized data storage for the Stormbow pipeline.

2.3. The Compute Node Type and Configuration for RNA-Seq
Data Analysis. Amazon offers different types of machines
with varying disk sizes and CPU configurations. Users can
select and configure these machines to stratify their compu-
tational needs. However, Amazon does not offer an analysis
solution; it is the user’s responsibility to properly utilize the
resources to analyse data. After requested resources from
Amazon become available, they must be configured with the
necessary software, datasets must be downloaded, and then
analysis can be run.

OSA requires at least 8GB of memory to run. After
benchmarking, the m1.xlarge EC2 instance type was chosen
to run OSA. The m1.xlarge instance consists of a 64 bit
platform, 15GB memory, 4 virtual cores, 1,690GB instance
storage, and very high I/O performance. Since there are 4
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Figure 1: Stormbow in action. S3 centralizes data storage.The large volumes of data are imported into or exported from S3 through Amazon
Import and Export services.Multiple EC2 instances are launched automatically from a local Linuxworkstation by the Perl script, Stormbow.pl.
All EC2 instances fetch sequence data fromS3 and upload result files to S3.Thekey steps and tasks performed by each EC2 instance are detailed
in the right of the figure. The Merge.pl script combines the gene counts in each sample into a consolidated count table that may be used as
input to differential analysis tools, such as DESeq and edgeR.

cores, 4 parallel threads can be launched to map millions of
short reads to the reference genome and gene model. After
an m1.xlarge instance is requested, these required software
packages are installed, including the following: (1) zlib-devel,
a library for data compression and inflation; (2) mono-
2.10.8 [38] to provide a runtime environment in Linux for
applications that require .NET framework support; (3) OSA
software; (4) hg19 (the human reference genome in its 19th
version); (5) RefSeq gene model—both the reference genome
and genemodel are required in readsmapping and expression
quantification and are downloaded fromOmicsoft’s reference
library website [39]—; and (6) s3cmd command line tool [40]
to transfer data to and from S3.

In principle, all required software can be installed on-the-
flywhen eachEC2 instance is launched in the cloud.However,
the total time required for system configuration is about 50
minutes if starting from the default Amazon’s Linux Amazon
Machine Image (AMI) 2013.03 (ami-3275ee5b). A better
solution is to create a customized AMI with all the needed
tools preinstalled and configured. This AMI is then used as
a template for launching new EC2 instances. This approach
saves 50 minutes when launching a new EC2 instance from
this customized AMI, which adds up quickly when several
hundred EC2 instances are launched in the cloud. Another
advantage to using this customized AMI is reliability; all
the needed software packages are properly configured and
tested, which eliminates mistakes in system configuration.
Stormbow is distributed with a script file that contains all the
Unix shell commands needed to create this AMI.

2.4. RNASeq.sh: A Script for Analysing a Single Sample. When
an EC2 instance is launched from the customizedAMI above,
it comes with all required software. Although it is ready for
processing RNA-Seq data, it does not know which sample
to process and/or how to analyse it. These two problems are
solved through the cloud-init mechanism [41], which passes
a piece of user-data to an EC2 instance when it is launched.
The user-data itself is an executable shell script that is respon-
sible for the following: (1) setting the proper environment
variables, such as SAMPLE, GENOME, GENE MODEL, and
REFERENCE LIBRARY and (2) downloading and execut-
ing RNASeq.sh, which contains step-by-step data processing
instructions. The separation of RNASeq.sh from the cus-
tomized AMI allows for flexibility and eases maintenance
of the Stormbow pipeline. Software packages and reference
genomes do not change very often, but RNA-Seq datasets
and their analyses might vary with platforms and projects.
RNASeq.sh is fetched on-the-fly by each EC2 instance, and
tailored RNA-Seq analysis can be achieved by customizing
RNASeq.sh.

As shown in the right side of Figure 1, the main tasks
for the default RNASeq.sh script are as follows: (1) fetching
sequence data from S3; (2) mapping reads to the reference
genome; (3) quantifying gene and transcript expression; (4)
quality checking of mapped reads; and (5) uploading result
files to S3. The script also keeps track of the progress and
status of the application’s execution and collects and records
runtime metrics, such as processing time, transfer time, and
file sizes. In addition, RNASeq.sh handles some common and
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foreseeable errors to make the workflow more robust. For
instance, it is not uncommon for a data transfer from S3 to
EC2 to fail due to network congestion. Our script handles this
failure by waiting a few minutes and attempting to download
the data again instead of failing and terminating the instance.
When the analysis is finished, this EC2 instance is terminated
immediately to release all the requested resources.

2.5. Stormbow.pl: A Script to Launch Multiple EC2 Instances
in the Cloud. So far, we have explained all the details on
how to analyse a single sample in the cloud, including the
hardware, software, and the analysis workflow. Now, it is
time to discuss utilizing multiple EC2 instances to process
many data files in parallel. Stormbow includes Stormbow.pl,
a Perl script that can be run from any Linux computer with
an internet connection to start EC2 instances in the cloud.
Stormbow.pl takes a manifest file (to be discussed below) as
input, prepares a piece of user-data for each sample listed
in the manifest file, and writes this user-data to local files.
The user-data files are shell scripts containing instructions for
the EC2 nodes on how to process each specific sample. As a
consequence, all EC2 instances process different samples in
parallel, which significantly reduces the clock time of RNA-
Seq data analysis. Amazon offers virtually unlimited CPU
resources, and thus provides a computational environment
that is ideally suited to large-scale RNA-Seq data analyses.
As a result, Stormbow can easily scale up or down with the
number of RNA samples, and the total running time remains
almost constant no matter how large an RNA-Seq study is.

2.6. Manifest File and Consistent Naming Convention for Ease
of Use. Another problem occurs when many EC2 instances
are launched to process data in parallel. Each EC2 instance
generates multiple result files that have to be uploaded to S3.
Thedefault file namesmight be too generic or even exactly the
same. If we simply upload them to S3, we risk name conflicts
and the overwriting of result files. For an RNA-Seq study with
several hundred subjects, therewill be several thousand result
files generated when using OSA to analyse them. All these
files need to be named consistently and managed properly.

In order to centralize andmanage different types of results
files in S3 in an automated fashion, amanifest file and naming
convention are introduced.Themanifest file is a plain text file
to describe the subjects in an RNA-Seq project. Each subject
has a corresponding entry in the manifest file, and each entry
follows the convention below:

J1 s3://bt/J1 1.fq;s3://bt/J1 2.fq s3://bt/out
J2 s3://bt/J2 1.fq;s3://bt/J2 2.fq s3://bt/out

Each entry consists of three fields separated by spaces
or tabs: (1) a unique identifier; (2) raw sequence data in S3;
and (3) an output location in S3. The naming convention,
together with the unique identifier for each subject, controls
how all the intermediate and result files are named, where
these files are stored, and how they are logically organized
in S3. For instance, the gene count table for sample J1 has a
file name J1.Gene.Count.txt, while its transcript count table
is accordingly named as J1.Transcript.Count.txt. Themanifest

file and naming convention work together to guarantee all
files are named and stored consistently and to avoid overwrit-
ing any file associated with another subject.

2.7. Merging of Results for Individual Samples and the Gener-
ation of the Gene Count Table. A Perl script, Merge.pl, was
written to automate the merging of results. The script first
fetches the result files corresponding to each subject from S3
using the s3cmd command line tool. It then calls Merge.R,
an R script to perform the joining, and then puts the merged
results back in S3. In addition to the generation of a combined
gene and transcript count table, the alignment and mapping
summary statistics for each sample are also merged. The
gene count table can be directly fed as input to differential
expression analysis packages such as DESeq or edgeR.

3. Results and Discussions

3.1. A Practical Test Runs of Stormbow. We applied Storm-
bow to analyse those 178 RNA-Seq subjects listed in
Supplementary Table S1 which is available online at
http://dx.doi.org/10.1155/2013/481545. All 178 subjects are
pair-ended sequenced by IlluminaHiSeq 2000 platforms.The
practical steps are described as follows. We first made copies
of the dataset for the original subjects onto an encrypted 2 TB
hard drive and shipped it to Amazon via FedEx. Amazon
then copied the data to our specified S3 bucket. This took 2
days, including FedEx shipping time. After the sequence data
was available in S3, we created a manifest file, in which each
sample was given a unique identifier, locations of inputs, and
an output folder in S3. Then, we ran the Stormbow.pl script
to launch 178m1.xlarge instances in the cloud. It took an
average of 7 hours to process a sample, including sequence
download, analysis, and upload of result files. After the
analysis of 178 samples was completed, we merged the results
and shipped an empty hard drive to Amazon for encrypted
data export, which took another 5 days including hard drive
shipment time to and fromAmazon. Lastly, the large amount
of data in S3 was deleted to eliminate continuing charges for
data storage.

In total, the RNA-Seq analysis of 178 samples using
Stormbow in the cloud was done in less than 10 days, and the
total cost was less than $1,000, including Amazon Import and
Export charges. Amazon charges $0.50 per hour form1.xlarge
instances, which made the average EC2 cost of processing
a single sample $3.50. The total EC2 cost for 178 samples
was $650. For the Amazon Import service, the total cost was
∼$150 for a single 2 TB hard drive, including (a) $30 for FedEx
shipping, (b) a flat $80 charge per device, and (c) $42 for the
data loading fee, which is calculated at $2.49 per data-loading
hour.The cost for the Amazon Export service was the same—
∼$150 in our analysis.

The runningmetrics are reported in supplementary Table
S1. The time required for analysis varies from sample to
sample, but the majority of samples were processed within 6
to 8 hours. On average, each sample has 53 million pairs of
reads, and the average FASTQ file size is 23GB. The average
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Figure 2: The relationship between the alignment time and the
FASTQ file size. Surprisingly, the running times for those samples
with a comparable number of sequence reads varyes significantly.
The properties of reads, such as indels, mismatches, and multiple
mapping, contribute to the difference in running time. More time
fluctuations result from the performance difference among EC2
instances.

download and upload times are 18 and 12 minutes, respec-
tively. To create a gene count table from a BAM alignment
file it takes an average of 24 minutes, and the same time is
needed to create a count table at transcript level.Themapping
of more than 100M reads to a reference genome is the most
time consuming step and takes an average of 321 minutes
to accomplish. The relationship between the alignment time
and the FASTQ file size is shown in Figure 2. There is no
discernibly linear relationship between the computational
time and the number of sequences.

We are puzzled by the trend shown in Figure 2. Each
sample is analyzed in identical environments, including CPU,
software, and parameters for alignment, but the running
times seem to vary significantly for samples with comparable
numbers of reads. After discussing our results with OSA
developers and rerunning the analysis for sample J1 four times
in the cloud, we discovered two main reasons to explain the
observed difference. First, the time to map a single sequence
read to a reference genome varies significantly.The properties
of reads have a dramatic effect on running time. Reads
that are mapped with indels and mismatches require longer
alignment time. Also, samples with more unmapped reads
and multiple mapped reads will require additional alignment
time. Moreover, sequence quality impacts alignment time as
well. The total alignment is not simply determined by the
number of sequence reads. Secondly, not all EC2 instances
are identical in terms of performance. If we repeat the
analysis in a local environment, the running times are nearly
identical. However, when we analysed sample J1 in the cloud
4 times using the same computational environment, the
running timeswere 5 h:20m, 5 h:06m, 5 h:19m, and 5 h:44m.
When alignment begins, all the sequence reads and reference
genomes are in local instance storage drives, so we cannot
attribute the difference to network fluctuations.Therefore, we
can assume that the EC2 instances themselves give rise to
the observed time difference. An EC2 instance is a virtual
machine, and many EC2 instances can run on a single
piece of hardware. Depending on the neighbouring EC2
virtual machines, each EC2 instance may get slightly varying
amounts of perceived CPU, memory, and I/O bandwidth.

As a consequence, the analysis time does vary. Despite the
running time difference, the result files are identical for all
separate runs of the same sample.

3.2. Amazon Cloud as an Execution Environment for Storm-
bow. When we implemented Stormbow, we chose Amazon’s
cloud as the execution environment over local clusters for two
reasons: (1) Amazon offers virtually unlimited storage and
CPU resources for easy and fast scaling to handle large RNA-
Seq studies; the option to set up a local high-performance
cluster to keep pace with the computational and storage
challenges for NGS data analysis was not a feasible option
for us; and (2) Amazon provides on-demand access to a
wide range of cloud infrastructure services, charging you only
for the resources you actually request. This “pay-as-you-go”
model works better for our research because we do not need
dedicated resources for RNA-Seq data analysis year-around.
With its massive economies of scale, Amazon is continually
driving cost down and reducing costs to the end users.
Furthermore, cloud computing offers operational advantages,
such as setting up infrastructure in minutes rather than
months, and completing massive computational tasks with a
large number of resources quickly.

We chose S3 to centralize data storage, including inputs,
intermediate results, and outputs from every computational
step in Stormbow. S3 provides virtually unlimited storage
space for cloud computing and stores multiple copies of its
data, which guarantee the safety of data in Amazon’s cloud.
All objects in S3 have unique identifiers and can be fetched
in parallel without input/output (I/O) congestion.This paral-
lelism is critical when multiple EC2 instances are uploading
or downloading large amounts of data simultaneously to and
from S3.

3.3. The Choice of OSA for Reads Mapping and Expression
Quantification. To apply RNA-Seq to differential expression
analysis, we need first to quantify the gene expression level
in each sample, and then run statistical tests to identify
DE genes. The quantification task typically involves (1) the
mapping of large number of reads to a reference genome or
transcriptome, and (2) the estimation of gene and isoform
abundances based on the readmappings. In addition to OSA,
there are other algorithms available tomap reads in RNA-Seq
studies, such as Tophat [36].The reasons we chose OSA are as
follows: firstly, OSA is several times faster than Tophat with
better sensitivity and less false positives; secondly, OSA takes
a parameter file to control how the reads are mapped to a
reference genome or transcriptome, which is more versatile
to pass to an EC2 node in the cloud than using a command
line parameter; thirdly, the vendor of OSA has provided
and maintained prebuilt genome and gene models for many
common organisms, which removes the time and complexity
of developing these by ourselves; finally, OSA not only is
an alignment tool, but also has a built-in subcommand for
expression quantification. Of course, Tophat remains a tool
widely used in the RNA-Seq community. In fact, we use it
for the discovery of novel genes and isoform or the detection
of gene fusion. However, for differential studies in which we
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investigate the effects of compound treatment and/or gene
knockdown, our main interest is to identify those known
genes that are differentially expressed, not to discover novel
genes or transcripts. In this scenario, OSA fits our needs
better.

To generate a gene count table from mapped reads is
complex. The first major complication in quantification is
the fact that RNA-Seq reads do not always map uniquely to
a single gene or isoform. The transcripts from which RNA-
Seq reads are derived are not always uniquely determined.
Paralogous gene families, low-complexity sequence, and high
sequence similarity between alternatively spliced isoforms of
the same gene are primary factors contributing to mapping
uncertainty. In addition, polymorphisms, reference sequence
errors, and sequencing errors require mismatches and indels
to be allowed in read alignments and further contribute
to lower confidence in mappings. As a consequence, a
significant number of reads are multireads: reads that have
high-scoring alignments to multiple positions in a reference
genome or transcript set. Another challenge in quantification
is gene overlapping. Some regions are shared by more than
one gene. If a read is mapped to such regions, to which gene
this read should be counted is ambiguous. OSA implements
an algorithm similar to RSEM [42] to deal with gene over-
lapping and multireads. OSA estimates maximum likelihood
(ML) expression levels using an expectation maximization
(EM) algorithm and gives more accurate gene expression
estimates than those using only unique reads or other alt-
erative rescue strategies.

3.4. Stormbow versus Rainbow and Myrna. Both Rainbow
[32] and Stormbow are cloud-based tools we have developed
for large-scale sequence data analysis, but they have different
goals. Rainbow is developed for whole genome sequence data
analysis, where typically there are more than 1 billion reads
per sample. With Rainbow, instead of launching a single
EC2 instance to map billions of reads, a compute cluster is
launched in the cloud to process the data in parallel with the
output being all the Single Nucleotide Polymorphisms (SNP)
for a sample. In contrast, Stormbow is designed for much
smaller RNA-Seq data analysis, and its output is a gene count
table to represent the expression levels of all genes in a gene
model.

Myrna [25, 43] is another cloud computing tool for
calculating differential gene expressions in large RNA-Seq
datasets. Myrna was developed more than 3 years ago, and
it uses a modified Bowtie [44] for short read alignment.
The Bowtie version in Myrna does not handle insertion
and deletion when mapping reads to a reference genome.
Thus, Myrna’s biggest drawback is that it does not attempt to
align reads across junctions, assemble isoforms, or otherwise
analyse on the isoform or junction level. Unfortunately, many
sequence reads from RNA-Seq indeed span two or more
exons. Although Stormbow and Myrna are both designed to
process large RNA-Seq datasets, the parallelism is achieved by
different strategies. Stormbow launches multiple individual
EC2 instances to process RNA-Seq samples in parallel, while
Myrna launches a large compute cluster to sequentially

process RNA-Seq data sample by sample, and parallelize
data analysis within each RNA-Seq run. Of course, mapping
millions of reads can be easily accomplished in parallel,
but not all steps in data analysis can be easily parallelized.
Compared toMyrna, Stormbow achieves a higher parallelism
than that achieved by Myrna and virtually can scale up to a
large RNA-Seq study of any size.

3.5. The Advantages of Stormbow. RNA-Seq is a powerful
technology that is predicted to replace microarrays for
transcriptome profiling [1]. The amount of data coming out
of an RNA-Seq experiment can be staggering, orders of
magnitudemore thanmicroarrays. For instance, a typical raw
CEL data file generated from Affymetrix HT HG-U133+ PM
array is 5MB per sample, whereas RNA-Seq data is about
23GB in our study. The raw data alone increases 4,600-fold.
Leveraging recent advances in sequencing technology, RNA-
Seq experiments produce larger amounts of sequence data
at lower costs, and quite often by small to midsize research
groups that have no access to local high-performance com-
puting environment. The cloud-based Stormbow processes
the large volume of RNA-Seq data quickly at an affordable
price as our in-house test run has demonstrated.

Stormbow is fully scalable and developed for large-scale
RNA-Seq differential studies. It is written using Perl, Shell,
andR scripts, and it is simple to be deployed and used by third
parties. It can be used out of the box to process IlluminaRNA-
Seq datasets.Themanifest file is the only file that a user needs
to prepare in order to run Stormbow. In essence, Stormbow
is a wrapper of OSA, but it hides the complexity of directly
using OSA for RNA-Seq data analysis in the cloud. More
importantly, the performance of Stormbow has been tested
by practically applying it to analyze 178 RNA-Seq samples
simultaneously.

3.6. Lessons Learned with Amazon Cloud Computing. To
analyse large volumes of data in Amazon’s cloud is different
from in a local environment. Quite often, large datasets
are stored in S3. They have to be downloaded from S3 to
EC2 instances first, which is not trivial. Physically, the data
transfer is done through Amazon’s internal network, which
is not always reliable. Network congestion or failure is not
uncommon for. We encountered this situation a few times
during the development of Stormbow and in our test run.
As shown in Figure 3, the download time was an average of
18.4 minutes per sample; however, it had taken as long as 79
minutes to download Sample J3 in our test run of Stormbow.
We repeated the analysis for J3, and the download time
was about 18 minutes. Clearly, the network congestion can
cause nontrivial download delays. In Stormbow, the s3cmd
command line tool is used to fetch sequence data from S3 to
an EC2 instance.When the network connection is lost during
an upload or download, s3cmd responds with an error. In our
test run of those 178 samples, we received this type of error
twice. When you move data around in the cloud, it is always
advised to check andmake sure the data transfer is successful
regardless of the data size.
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Figure 3: The relationship between the download time and the
FASTQ file size. The average FASTQ file size is 23GB, and the
download time is 18.4 minutes on average. For sample J3, it takes
79 minutes to download 22.3GB.

Amazon offers a variety of EC2 instances for you to
choosewith different pricingmodels. You need to understand
how your algorithmworks and benchmark to choose the best
option. In Stormbow, the m1.xlarge instance was chosen to
run OSA due to reasons stated previously. When we tested
on an instance type with more CPU cores, the running time
was not strikingly different. The reasons behind this are as
follows: first, more threads cause I/O congestion since all
threads write the results into the same hard drive; second,
more threads increase the parallelism only for the first step in
OSA, but not the second step. For our application, an instance
with higher absolute CPU andmemory performance was not
a better option.

For those developers who want to wrap other standalone
applications and launch multiple EC2 instances to run them
in parallel, they might be facing some common challenges,
including the following: (1) transferring large amounts of
data; (2) launching many EC2 instances automatically; (3)
instructing instances to perform specific computations; and
(4) managing the large number of result files in S3. In
Stormbow, we wrote a driver script to automate the launch
of EC2 instances, and made use of the cloud-init mechanism
to pass instructions to new EC2 instances. The manifest file
and naming convention standardize how the intermediate
and result files are named and logically organized in S3.
All these ideas and practices have proven to work well in
Stormbow, and can be helpful for developing other cloud-
based bioinformatics tools.

4. Conclusions

In this paper, we described the motivation for the devel-
opment of Stormbow, its implementation, and evaluation.
Stormbow is a cloud-based software package that wraps
OSA for parallel execution in the cloud. It is designed
for large-scale RNA-Seq studies in which several hundred
or even thousand samples are sequenced for differential
analysis. It is cost effective and simple to use as we have
demonstrated in our test run. Stormbow is open-source based
and implemented using Perl, Shell, and R scripts. The source
code for Stormbow is freely available for download from

the Stormbow website [45]. OSA is free to academic users,
but for commercial users, you need to contact Omicsoft Inc.
Since all computations are performed in the Amazon cloud,
a user will need to pay Amazon to be able to run analyses.
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