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Background: Rapamycin-insensitive companion of mammalian target of rapamycin
(Rictor) protein is a core subunit of mammalian target of rapamycin complex 2, and is
associated with cancer progression. However, the biological function of Rictor in cancer,
particularly its clinical relevance in gastric cancer (GC) remains largely unknown.

Methods: Rictor expression and its association with clinicopathologic characteristics in
GC were analyzed by immunohistochemistry. Effect of Rictor and Caveolin-1 (Cav 1) on
GC cells apoptosis was evaluated via overexpression experiment in vitro. Mechanisms of
Rictor and Cav 1 in GC were explored through overexpression and knockdown, by
immunofluorescence and western blot analyses.

Results: Rictor was upregulated in GC, and mainly located in the cytoplasm of cancer
cells. Moreover, higher Rictor levels were associated with worse prognosis. Rictor could
inhibit GC cell apoptosis and promote cell growth in vitro. The results of
immunofluorescence revealed that Cav 1 localized in GC cell membrane but did not
co-localize with Rictor. Further, Rictor regulated apoptosis-related proteins, long non-
coding RNAs and also activated cellular signaling, thereby positively regulating Cav 1
expression. This effect was attenuated by the Akt inhibitor ly294002. Cav 1 did not
significantly affect the ability of Rictor to inhibit tumor cell apoptosis.

Conclusions: Rictor is upregulated in GC and associated with worse prognosis. It inhibits
tumor apoptosis and activates Cav 1 through the Akt signaling pathway to inhibit the
apoptosis of GC cells. Rictor is, therefore, a promising prognostic biomarker and possible
therapeutic target in GC patients.
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INTRODUCTION

Gastric cancer (GC) is one of the most common malignancies
worldwide, ranking fifth in incidence and third in mortality (1).
East Asia is particularly affected by GC, as indicated by the
comparative high mortality (2). GC is the second most common
cause of death in China, despite a steady decline in western
countries. Owing to high rates of metastasis and recurrence, the
five-year overall survival rate for advanced GC is 20% (3). In
recent years, with the continued advancements in molecular
biology, signaling pathways and targeted therapy have gradually
become the focus of GC research, and are expected to provide
more effective means for the treatment of GC (4). The most
recent advancements in GC research are in the area of non-
coding nucleic acids such as long-non-coding RNAs and
miRNAs (5–9).

The mammalian target of rapamycin (mTOR) signaling
pathway is a key pathway that affects progression of GC. It is
often highly activated in GC, and is closely related to
clinicopathological characteristics, such as recurrence and
metastasis. mTOR exists in the form of mammalian target of
rapamycin complex 1 (mTORC1) and mammalian target of
rapamycin complex 2 (mTORC2). As one of the core subunits
of complex mTORC2, Rictor is the skeleton protein of mTORC2.
It is critical for stability and necessary for normal functioning of
mTORC2. Rictor is mainly responsible for sensing growth factor
concentration, regulating cell proliferation, survival, metabolism
and cytoskeletal remodeling. It has been demonstrated through
immunohistochemical studies that Rictor expression is increased
in association with tumor progression, and that it correlates with
poor prognosis of GC patients (10). Current studies have
confirmed that Rictor promotes cell growth and proliferation
by activating protein kinase B (Akt), promoting cell resistance to
apoptosis and promoting angiogenesis (11, 12). Rapamycin has
not been as successful as expected in clinical trials. The main
reason for this may be the different sensitivities of the two mTOR
complexes. mTORC1 is sensitive to treatment with rapamycin.
Treatment with rapamycin or its analogues primarily inhibits the
mTORC1/S6K pathway and alleviates the negative feedback loop
receptor (IGF-1R) from S6K to insulin-like growth factor-1,
signaling mTORC2 through the complete pathway leading to
Akt activation paradoxically (13). The activation of Akt is
concerning because it promotes cell survival and drug
resistance, and therefore treatment with an mTORC1 inhibitor
might not be beneficial. Inhibition of mTORC2 may eliminate
the adverse signaling effects of mTOR inhibitors. Therefore, it is
important to further study and characterize the potential
therapeutic targets of mTORC2 and explore the associated
molecular mechanism in tumors, particularly in GC (14–16).

Caveolin-1 (Cav 1), a membrane protein with a relative
molecular weight of 2.1–2.4 ×104, is the main component of
caveolae, which is involved in malignant transformation,
malignant proliferation, invasion, metastasis and many other
biological behaviors of cells. Cav 1 enhances RANKL−induced
GC cell migration (17) and also plays a role in epithelial to
mesenchymal transition (EMT) impacting the clinicopathological
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features of GC (18, 19). IGF-I receptor (IGF-IR) localizes in
caveolae and tyrosine phosphorylates Cav 1. Cav 1 is involved in
the internalization of IGF-IR and directly interacts with IGF-IR
and its substrate (20). Cav 1 contributes to anchorage‐
independent growth and anoikis resistance of human GC SGC‐
7901 cells via activation of Src‐dependent EGFR‐ITGB1 signaling
(21). The mechanosensitive caveolin-1 activation-induced PI3K/
Akt/mTOR signaling pathway promotes cancer motility,
invadopodia formation and metastasis in vivo (22). This is
agreement with the general information on Akt signaling in
human cancers, including GC (23–26). Given this information,
we hypothesized there may be an interaction in GC between
Rictor and Cav 1 that affects the biological behavior of
tumor cells.

In this study, we report overexpression of Rictor in GC and its
association with worse prognosis. Particularly, we revealed an
anti-apoptosis effect of Rictor in GC cells and that Rictor
activates Cav 1 through the Akt signaling pathway to inhibit
the apoptosis of GC cells.
MATERIALS AND METHODS

Patients and Clinical Data
In total, 92 patients with gastric carcinoma who underwent
surgical resection were recruited for this study. Among them,
84 cases without distant metastasis received gastrectomy together
with a standard D2 lymph node dissection. The study was
approved by the Ethic Committee of Capital Medical
University (#66128) The other eight metastatic patients with
primary tumor complications, such as obstruction or bleeding,
underwent palliative stomach resection. Pathological tumor
staging was based on the 7th edition of the Union for
International Cancer Control (UICC) TNM staging system. All
participants had complete follow-up. The overall survival (OS)
time was determined from the date of surgery to the follow-up
deadline or date of death. The follow-up deadline was July 2015,
and the median follow-up period was 8-9 years (OutDo Biotech
Co., Ltd. Shanghai, China).

Reagents and Antibodies
Primary antibodies used were rabbit monoclonal anti-Rictor
(ab70374, Abcam, Cambridge, MA), anti-Cav 1(Rabbit mAb
#3276), Akt (pan) (Rabbit mAb #4691, Phospho-Akt (Ser473)
(Rabbit mAb #4060) (Cell Signaling Technology, Shanghai,
China), Caspase-3 monoclonal antibody (CPP32-4-1-18), Bcl-2
polyclonal antibody (PA5-11379), Bax monoclonal antibody
(6A7), actin monoclonal antibody (ACTN05 (C4) and Biotin
(ThermoFisher, Shanghai, China). Rictor plasmid (Addgene
#1860) and Cav 1 plasmid (Addgene27703) were purchased
from Addgene (USA). Rictor-siRNA and Cav 1-siRNA were
purchased from GenePharma Co., Ltd. (Shanghai, China).
Ly294002 (#9901) was purchased from Cell Signaling
Technology. Human GC cell lines SGC-7901 and AGS were
purchased from iCell Bioscience Inc (Shanghai, China) in
Feb 2018.
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Immunohistochemistry
Tissue microarrays were constructed by Shanghai Xinchao
Biotechnology Co., Ltd. (Shanghai, China). Prepared slides
were incubated at 65°C for 1 h, After incubation, the sections
were deparaffinized in xylene and rehydrated in alcohol.
Following antigen retrieval with high pressure, endogenous
peroxidase activity was blocked with 3% H2O2 for 20 min.
Sections were blocked with goat serum for 1 h and incubated
with primary antibody against Rictor (Abcam, dilution of 1:100)
overnight at 4°C. The next day, the tissues were incubated
with Universal second antibodies (goat anti-rabbit and mouse)
for 60 min at room temperature. Immunostaining was
carried out with DAB substrate kit (Thermo Scientific,
Waltham, USA), followed by immersion into hematoxylin for
nuclear counterstaining.
Scoring of Staining
The results of immunohistochemical staining were evaluated by
two independent investigators according to a semiquantitative
grading system based on both proportion of stained cells and
their intensity. The extent of staining was scored as no staining = 0;
<1/3 staining = 1; 1/3 to 2/3 staining = 2; and >2/3 staining =3.
Staining intensity was scored as: none = 0; weak =1; medium =2;
and strong = 3. The intensity and percentage scores were added to
give a final score ranging from 0 to 6. The results of
immunostaining were divided into two groups where 0-2 was
considered negative (-) and 3-6 was considered positive (+).
Cell Culture and Plasmid Transfections
The two cell lines, SGC-7901 and AGS were respectively cultured
in Dulbecco’s Modified Eagles Medium (DMEM) with 10% Fetal
Bovine Serum(FBS) and Ham's F-12K(Kaighn's) medium
(F-12K) with 20% FBS in a humidified incubator at 37°C with
5% CO2. Cell lines used in the experiments were authenticated
using short tandem repeat (STR) profiling in the Genomics core
facility of Capital Medical University on an annual basis, with
last authentication in April, 2020, and passaged less than 5 times
at any given time. When SGC-7901 and AGS cells grew to 50-
60% confluency, the Rictor and Cav 1 plasmids and vectors were
used to infect cells using lipofectamine 3000 and P3000 (Life
Technologies, China), according to the manufacturer’s
instructions. Rictor-siRNA and Cav 1-siRNA were transfected
into two the cell lines by using lipofectamine 3000 according to
the provided protocols. The transfection efficacy was determined
by western blot.
Cell Apoptosis Assay
Cell apoptosis was measured by Annexin V-FITC/PI Apoptosis
Detection Kit (KeyGEN, Guangzhou, China). Cells were
collected, were digested and isolated in Dulbecco’s Phosphate-
Buffered Saline (DPBS), washed with cold phosphate-buffered
saline (PBS) 3 times, PBS solution and re-suspended in binding
buffer. Cells were stained by AnnexinV-FITC and 7-
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USA) for 15min, sorted using the FACS Calibur system (BD
Biosciences) and counted apoptotic cells when AnnexinV
staining was positive.
Cell Survival Assay (MTS)
To examine the effects of Rictor on the proliferation of GC cells, one-
step 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium (MTS) assays were conducted.
In total, 2000 cells/well in100mL of medium were seeded in a
96-well plate after transfection, and detected at 8h, 32h, and 56h
using an enzyme-labelled meter (Spectramax M3, Molecular
Devices, Shanghai, China) 2h after the addition of MTS.
EdU Cell Proliferation Assay
After Rictor plasmid transfection, the cells were cultivated for
48 h.Then 20,000 cells/well were seeded in a 24-well plate. In
total, 100 mL incubation EdUmedium(1000:1) was added to each
well and incubated for 2 h. After washing with PBS, the cells were
fixed for 30 min in 4% paraformaldehyde. Then, 2mg/mL glycine
was added to the wells and further incubated for 5 min. Then, the
wells were washed with PBS before adding penetrating agent
(PBS containing 0.5% Triton X-100) followed by incubation for
10 min, at room temperature in the dark. Further, cells were
incubated with Apolle dye for 30 min, penetrant decolorizing
cleaned cells for 10 min thrice, Then, for DNA staining, cells
were incubated with the reaction solution for 30min in the dark
at room temperature. After washing with PBS thrice, the product
was tested on Olympus IX51.
Immunofluorescence
To determine the cellular localization of Rictor and Cav 1, SGC-
7901 and AGS cell lines were seeded on sterile coverslips in the
well of 6-well plates, washed with PBS three times, then cells were
fixed with 4% paraformaldehyde for 15min, permeabilized with
0.25% Triton X-100 in PBS for 10 min, followed by blocking in
5% BSA in PBST for 1h. Cells were then incubated overnight in
4°C with special primary antibody: anti-Rictor (dilution 1:100)
and anti-Cav 1(dilution 1:100). The next day, primary antibody
was removed, cells were washed with PBS, and incubated in a
mixture of two fluorescent secondary antibodies (Alexa Fluor
488–conjugated anti-mouse IgG and Alexa Fluor 594–
conjugated anti-rabbit IgG) (dilution1:100,Life Technologies)
in the dark for 2h, Cells were stained with DAPI and
photographed by confocal microscopy (IX83, FLUOVIEW
FV1200, Olympus).
Western Blot
Treated cells were collected and lysed using lysate buffer on ice
for 30 min, and protein concentration was determined by BCA
assay. Equal amounts of proteins (30mg) were separated by SDS-
PAGE and transferred to nitrocellulose membranes. After
September 2021 | Volume 11 | Article 641453
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blocking in 5% non-fat milk for 2 h, the membranes were
incubated with primary antibodies against Rictor, p-Akt
(Ser473), Akt, Cav 1, Caspase-3, Bcl-2, Bax or b-actin
overnight at 4°C. The following day, membranes were
incubated with anti-rabbit or anti-mouse secondary antibodies
at room temperature for 1 h. Finally, immunoblots were
visualized using enhanced chemiluminescence (ECL) reagent
(Thermo Scientific, USA). b-actin was used as a loading control.
Statistical Analysis
Data are presented as Means ± SD. All statistical analyses were
plotted with the GraphPad Prism (Version 8.0.1) and IBM SPSS
Statistical 25. Statistical tests are one-sided or two-sided, t tests
were conducted to evaluate the differences between two groups,
while ANOVA tests were used in multiple comparable groups.
Log-rank tests and Kaplan-Meier plots were applied to assess and
show differences in overall survival (OS) between subgroups. Cox
proportional hazard models were used for multiple-variants
analysis. P < 0.05 was considered to indicate a statistically
significant difference.
RESULTS

Characterization of Rictor Expression
To evaluate the expression of Rictor in GC, immunohistochemical
assays were performed on 92 patients with GC and adjacent
normal tissues. We found that Rictor localized in the cytoplasm of
cancer cells, but not in the surrounding stroma cells. We also
found that expression of Rictor was significantly increased in GC
tissues compared with normal tissues (Figure 1A). Kaplan-Meier
Frontiers in Oncology | www.frontiersin.org 4
survival analysis with log-rank test for OS in all 92 patients with
gastric cancer (Figure 1B) and survival analysis of 92 cases in
gastric cancer (Figure 1C). Clinicopathological statistical analyses
indicated that Rictor expression was correlated with tumor size,
depth of invasion, lymph node metastasis, TNM stage, WHO
grading and tumor thrombus. There was no significant
association with gender, age, tumor location or distant
metastasis (Table 1). Taken together, our data indicates that
Rictor was located in GC cells but not in the surrounding
stroma cells in GC tissues, and could be used as a potential
prognostic biomarker for GC patients.
Rictor Promoted Growth of GC Cells
In Vitro
To investigate the growth-promoting function of Rictor on GC
cells, we tested apoptosis rates of SGC-7901 and AGS cells after
Rictor overexpression by flow cytometry. The results showed
that overexpression of Rictor level significantly inhibited
apoptosis in GC cells (Figures 2A, B). Rictor down-regulated
Caspase-3 and Bax, and up-regulated Bcl-2 to achieve apoptosis-
inhibiting effect on GC cells (Figures 2C, D). To further explore
the biologic functions of Rictor in GC, we overexpressed Rictor
in SGC-7901 and AGS cells to test cell viability by EdU (Figures
2E, F) and MTS assays (Figures 2G, H). The results suggested
that overexpression of Rictor markedly promoted cell viability in
SGC-7901 and AGS. We further, evaluated effect of Rictor on
long-non-coding RNAs and found that Rictor induced MALAT-
1 as well as GMAN (Figures 3A, B), both of which promote GC
tumorigenesis (27, 28). On the contrary, Rictor down-regulated
MEG3 and GAS5 (Figures 3C, D), both of which are tumor
suppressive lncRNAs (29).
A B

C

FIGURE 1 | Rictor is upregulated inside GC cells and correlated with poor prognosis in different GC cohorts. (A) Representative immunohistochemical stains for
Rictor. (B) Kaplan-Meier survival analysis with log-rank test for OS in all 92 patients with gastric cancer sorted by immunostaining of Rictor. (C) Survival analysis of 92
gastric cancer cases.
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Cav 1 Inhibited Apoptosis of Gastric
Cancer Cells
To investigate the function of Cav 1 on GC cells, we tested
apoptosis rates of SGC-7901 and AGS cells overexpressing Cav 1,
by flow cytometry. The results showed that overexpression of
Cav 1 level significantly inhibited apoptosis in GC cells (Figures
4A, B). After Rictor overexpression in SGC-7901 and AGS cells,
western blot analyses showed an increase of Cav 1 expression
(Figures 4C, D). In GC cells, Rictor and Cav 1 did not co-localize
(Figures 4E, F), suggesting there was no direct interaction
between them. Western blot analysis indicated that p-Akt and
Cav 1 levels increased after transfection of both SGC-7901 and
AGS cells with the Rictor plasmid (Figures 4G, H).
Frontiers in Oncology | www.frontiersin.org 5
Rictor Activates Cav 1 Through the Akt
Signaling Pathway to Inhibit Apoptosis of
Gastric Cancer Cells
Two different cell lines (SGC-7901 and AGS) were transfected
with Rictor-siRNA to verify Rictor-siRNA knock down
efficiency (Figures 5A, B). After transfection with Rictor-
siRNA, the protein levels of p-Akt and Cav 1 were analyzed
(Figures 5C, D). After transfection of Rictor plasmid into
SGC-7901 and AGS cells for 24 h, 20mM of the Akt inhibitor
ly294002 was added. Western blot analysis showed the levels of
p-Akt and Cav 1 decreased (Figures 5E, F). Apoptosis increased
in both cell lines, after transfection with the Rictor plasmid
for 24 h and a 24 h treatment with Akt inhibitor ly294002
(Figures 5G, H).
Knockdown Cav 1 Had No Effect on
Apoptosis Inhibition by Rictor
Overexpression
To investigate whether Cav 1 had a direct effect on apoptosis
inhibition due to Rictor overexpression, we co-transfected the
Rictor plasmid and three Cav 1-siRNAs into SGC-7901 and AGS
cells, then tested apoptosis rates by flow cytometry. The results
indicated that knocking down Cav 1 had no effect on apoptosis
inhibition by Rictor overexpression (Figures 6A, B).

Finally, the prospective Rictor signaling pathway is summarized
in Figure 6C. Rictor inhibited the apoptosis of tumor cells by
regulating apoptosis-related proteins, and activated the tumor cell
apotosis inhibition effect of Cav 1 through the Akt signaling
pathway. Cav 1 did not directly affect the inhibitory effect of
Rictor on apoptosis.
DISCUSSION

Oncogenic signaling and metabolic alterations are interrelated in
cancer cells. mTOR, which is frequently activated in cancer, controls
cell growth and metabolism (30). This signaling pathway is often
highly activated in GC, and is closely related to clinicopathological
characteristics, such as recurrence and metastasis (31). Studies
have proved, through immunohistochemistry, that the increase in
Rictor expression is associated with tumor progression and poor
prognosis in GC patients (10). It has also been reported that
p-mTOR could be used as a prognostic marker, suggesting that
investigations of mTOR inhibitors may provide a novel
therapeutic approach. mTOR exerts additional functions when
combined with Rictor to form mTORC2 (32). However, the
expression and role of Rictor remains unclear in GC. In this
study, we found that Rictor was expressed at 77.17% in GC versus
25.33% in adjacent mucosa, and this overexpression significantly
correlated with tumor size, depth of invasion, lymph node
metastasis, and TNM stage. This indicates that Rictor is
involved in tumor growth and metastasis. In addition, Kaplan-
Meier analysis showed that Rictor positive expression predicted
poorer overall survival. In renal cancer, Rictor is closely related
TABLE 1 | Correlation of Rictor expression with clinicopathological
characteristics in 92 gastric cancer patients.

Factors Cases Rictor

n (%) P value

Gender

Male 57 44(81.5) 0.238

Female 35 27(77.1)

Age(yr)

≤60 30 22(68.8) 0.470

>60 62 49(79.0)

Location

Upper 11 10(90.9) 0.173

Central 24 18(75.0)

Lower 49 36(73.5)

Diffuse 8 7(87.5)

Size

<5cm 41 35(85.4) 0.019*

≥5cm 51 35(68.3)

Depth of invasion

TI+T2 14 13(92.9) 0.026*

T3+T4 78 58(74.4)

Lymph node metastasis

Negative 23 18(78.2) 0.037*

Positive 69 53(76.8)

Distant metastasis

M0 84 64(76.2) 0.033*

M1 8 7(87.5)

TNM stage

I 9 9(100) 0.009*

II 28 20(71.4)

III 47 35(74.5)

IV 8 7(87.5)

Who grading

Grade 1 14 14(100) 0.029*

Grade 2 68 50(73.5)

Grade 3 10 7(70.0)

Tumor thrombus

Negative 79 60(75.9) 0.046*

Positive 13 11(84.6)
Statistical analysis indicated that Rictor expression was correlated with tumor size, depth
of invasion, lymph node metastasis, TNM stage, WHO grading and tumor thrombus.
There was no significant association with gender, age, tumor location and distant
metastasis. *P < 0.05.
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to metastasis and cell proliferation of renal cancer cells, and
the downregulation of Rictor could inhibit metastasis and
proliferation, thus inhibiting tumor growth (33). In mouse
Frontiers in Oncology | www.frontiersin.org 6
mammary glands, downregulation of Rictor can block the
expansion and obstruction of ductal branches regulated by
mTORC2, as well as the invasion and survival of mammary
A

B D

E

F

G H

C

FIGURE 2 | Growth promoting effect of Rictor in gastric cancer cell lines. (A) Transfection of Rictor plasmid can inhibit the apoptosis of SGC-7901 cells (n=9). (B)
Transfection of Rictor plasmid can inhibit the apoptosis of AGS cells (n=9). (C) Expression of apoptosis related proteins after transfection with Rictor plasmid in SGC-7901
cells. (D) Expression of apoptosis related proteins after transfection with Rictor plasmid in AGS cells. b-actin served as loading control. (E) EdU verification that transfection of
the Rictor plasmid increased proliferation of SGC-7901 cells (n=3). (F) EdU verification that transfection of the Rictor plasmid increased proliferation of AGS cells (n=3). (G)
Transfection of Rictor plasmid can increase the proliferation of SGC-7901 cells (n=3). (H) Transfection of Rictor plasmid can increase the proliferation of AGS cells (n=3). Values
represent the Means ± SD. *P < 0.05, **P < 0.01 and ***P < 0.001 as calculated using the Student’s t-test.
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epithelial cells (34). Rictor is highly expressed in human
glioblastomas, and activation of mTORC2 also enhances
phosphorylation of the downstream substrate Akt (35). Our
results are consistent with the majority of the reported findings.
We propose that Rictor positive expression is implicated in
progression and metastasis of GC, and might serve as a novel
biomarker and therapeutic target. The present study of Rictor
expression by immunohistochemistry in human cancer tissues
suggests that targeting Rictor/mTORC2 may attenuate tumor
growth. As a result, we found that Rictor overexpression can
affect the expression of apoptosis-related proteins such as
Caspase-3, Bax, and Bcl-2, thereby reducing the apoptosis of
GC cells. Targeted inhibition of Rictor leads to growth inhibition
and induces apoptosis in both rapamycin-sensitive and
rapamycin-resistant CRCs, suggesting that selective targeting of
mTORC2 may represent a novel therapeutic strategy for
treatment of CRC (36). The effects of Rictor on cell
proliferation and apoptosis have been observed in malignant
pheochromocytoma (37), melanoma (38, 39) and lung
cancer (40).

Resistance of solid tumors to chemo-and radiotherapy
remains a major obstacle in anti-cancer treatment (41). Cav 1
has gained attention owing to its high expression in many
tumors, and high Cav 1 levels are correlated with a worse
Frontiers in Oncology | www.frontiersin.org 7
clinical outcome. Cav 1 plays an important role in modulating
tumor host interactions by promoting tumor growth, metastasis,
therapy resistance, and cell survival. Understanding these
interactions and thus, inhibiting Cav 1, may offer a novel
strategy for preventing cancer therapy resistance and
improving clinical outcomes. Cav 1 is an integral membrane
protein that is abundantly expressed in adipocytes, endothelial
cell, pneumocytes, fibroblasts, and muscle cells (42–44), and is
involved in cell signaling and transport. It is also involved in
caveola-mediated endocytosis, and therefore regulates numerous
cellular processes by transmitting extracellular signals via
intracellular pathways (45, 46). Cav 1-dependent signal
transduction regulates cell cycle, proliferation and invasion
(47) and cell death (48–50). The molecular mechanisms of Cav
1, mediating radio and chemoresistance of cancer cells, have
been increasingly studied in the last few years. High Cav 1
expression, correlated with worse clinical outcomes and drug
resistance, has been reported in ovarian, colon, and breast cancer
(51–53). High Cav 1 expression is also associated with RAF-ERK
signaling, cell cycle progression and colony forming ability (54).
Patients with Cav 1-positive tumors, post-gastrectomy, display
decreased disease-free and overall survival (55). Moreover, Cav 1
expression is associated with poor prognosis in GC (56). Cav 1
expression is low in GC patients in comparison to healthy
A B

DC

FIGURE 3 | Long-non coding RNAs modulating effect of Rictor in gastric cancer cell line SGC-7901. Transfection of Rictor plasmid increased the expression of
lncRNAs (A) MALAT-1 and (B) GMAN and decreased the expression of lncRNAs (C) MEG3 and (D) GAS5. Values in control (vector-transfected cells were assigned
a value of ‘1’ and those in Rictor-transfected cells are presented as comparative fold-change. *P < 0.05 and **P < 0.01, as calculated using the Student’s t-test.
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stomach tissue. Additionally, GC cell lines of primary tumors
display low levels of Cav 1, whereas cell lines originated from
metastases show high expression levels (57). In human SGC-
7901 cells, Cav 1 promotes anchoring‐independent growth and
apoptosis resistance by activating Src-dependent EGFR-ITGB1
Frontiers in Oncology | www.frontiersin.org 8
signaling, which may indicate Cav 1 to be a potential therapeutic
target for gastric metastasis (21). Mechanically sensitive
caveolin-1 activation induces the PI3K/Akt/mTOR signaling
pathway to promote motility and invasive in vivo formation,
and metastasis of breast cancer (22).
A
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G H

C

FIGURE 4 | Cav 1-induced inhibition of apoptosis of gastric cancer cells and association between Rictor and Cav 1. (A) Transfected Cav 1 plasmid could inhibit the
apoptosis of SGC-7901 cells (n=9). (B) Transfected Cav 1 plasmid could inhibit the apoptosis of AGS cells (n=9). Values represent the Means ± SD, *P < 0.05 and
***P < 0.001 were calculated using Student’s t-test. (C) Western blot analysis of the increase of Cav 1 expression with Rictor overexpression in SGC-7901 cells.
(D) Western blot analysis of the increase of Cav 1 expression with Rictor overexpression in AGS cells. (E, F) Immunofluorescence showed no co-localization
between Rictor and Cav 1. (G) Western blot analysis of p-Akt and Cav 1 levels increased after transfection of SGC-7901 cells with Rictor plasmid. (H) Western blot
analysis of p-Akt and Cav 1 levels increased after transfection of AGS cells with Rictor plasmid. b-actin served as a loading control.
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We found that overexpression of Rictor led to increased
expression of Cav 1. Similarly, knocking down Rictor led to
decreased expression of Cav 1. By immunofluorescence, Rictor
was located in the cytoplasm and Cav 1 was located on the cell
membrane. There was no co-location between Rictor and Cav 1.
Frontiers in Oncology | www.frontiersin.org 9
We speculate that there is no direct interaction between them,
and that Rictor regulates Cav 1 through the Akt signaling
pathway by activating Akt Ser473. This regulatory effect
was reduced when Akt was inhibited by the PI3K/Akt
inhibitor ly294002, and apoptosis of GC cells also increased
A B

D

E F

G

H

C

FIGURE 5 | Association between Rictor and Cav 1 analyzed using western blot and apoptosis detection. (A, B) Two different cell lines were transfected with Rictor-
siRNA respectively to verify Rictor-siRNA knock down efficiency. (C) Protein levels of p-Akt and Cav 1 induced by Rictor knockdown in SGC-7901 cells were
assessed. (D) Protein levels of p-Akt and Cav 1 induced by Rictor knockdown in AGS cells. (E) After transfection of Rictor plasmid in SGC-7901 cells for 24 h and
addition of 20 mM ly294002 for 6 h, the changes of p-Akt and Cav 1 protein levels were detected by western blot. (F) After transfection of Rictor plasmid into AGS
cells for 24 h, and addition of 20 mM ly294002 for 6 h, the changes of p-Akt and Cav 1 protein levels were detected by western blot. b-actin served as loading
control. (G) Apoptosis of SGC-7901 cells after 24 h transfection with Rictor plasmid and 24 h treatment with 20 mM ly294002 (n=3). (H) Apoptosis of AGS cells after
24 h transfection with Rictor plasmid and 24 h treatment with 20 mM ly294002 (n=3). Values represent the Means ± SD. **P < 0.01, ***P < 0.001 and ****P < 0.0001
were calculated using Student’s t-test.
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significantly. However, siRNA knockdown of Cav 1 did not
affect the apoptotic resistance of Rictor to GC cells. We speculate
that Rictor is upstream of Cav 1 and has a positive regulatory
effect on Cav 1; however, Cav 1 does not have a significant
effect on Rictor. These results indicate that inhibition of
Rictor/mTORC2 may prevent undesired oncogenic effects of
Cav 1 simultaneously.

Targeting Rictor/mTORC2 as an anticancer therapy is an
attractive prospect, since 68% of GC patients show elevated
Akt levels, and mTORC2 is a critical kinase to phosphorylate
Ser473 residue for full activation of Akt. Rictor/mTORC2 might
be more deleterious to cancer cells than to normal cells, leading
to less toxicity by selective mTORC2 inhibition. Our results also
support the hypothesis that Rictor plays a critical role in GC
proliferation. Our findings provide the rationale for further
investigations toward mTOR kinase inhibitor targeting both
mTOR complexes or specifically targeting mTORC2 as an
effective therapeutic candidate against GC in the future (58).

In summary, the current study provides substantial new
evidence that Rictor is involved in GC cell proliferation and
increases the tumor-promoting effect of Cav 1, indicating that
Rictor may serve as a feasible therapeutic target for GC.
Frontiers in Oncology | www.frontiersin.org 10
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